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Modeling of the carrier dynamics in nonlinear semiconductor nanoscale resonators
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The Green’s function formalism is used in order to model the diffusion of free carriers in nonlinear
semiconductor nanoscale resonators. In combination with the time-dependent coupled-mode equations, this
leads to excellent agreement with measurements carried on a variety of samples and materials, using a minimal
set of fitting parameters. The role of the geometry of the cavity is evidenced and the influence of linear and
nonlinear absorption on the response of the resonator is discussed. This model can handle a broad range of
phenomena: switching, self-pulsing, including resonant four-wave mixing.
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I. INTRODUCTION

All-optical gates [1] modify the transmission of an optical
signal with an optical control. This can be used to avoid
the conversion into the electric domain, which, under some
circumstances, would simplify the architecture of photonic
integrated circuits. Nonlinear optical interactions are usually
weak. However, it has been shown long ago that semiconductor
cavities can produce a fast and strong nonlinear response,
owing to the resonant enhancement and the substantial change
of the refractive index induced by the excitation of free
carriers [2]. An important point observed there is that the field
confinement enhances the nonlinear response, but also results
in a faster dynamics.

Nonlinear resonators in integrated photonic circuits have
been proposed since the 1990s, particularly in GaAs [3]. It
was pointed out later that all-optical switching is feasible
on a silicon photonics platform [4,5]. Modern fabrication
techniques providing high-quality etching and submicron
patterning have enabled optical microcavities with close to
diffraction-limited optical confinement and very low internal
losses. The volume occupied by the optical field is here
Vm ≈ (λ/n)3, implying that low-input power translates into
optical power density large enough to trigger nonlinear effects.
More recently, all-optical gates with femtojoule switching
energy have been demonstrated owing to the combination of
a very small optical resonator and optimized semiconductor
material [6]. Moreover, a similar technology has been shown to
be capable of an optical read-only memory operation requiring
a nanowatt power level. This should, in principle, allow scaling
up to the Mbit optical storage capacity [7]. The integration of
25 individual gates on a single optical circuit has been reported
very recently [8].

More subtle changes in the optical design have a re-
markable and positive impact on the nonlinear dynamics of
nanoscale resonators [9]. The addition of quantum wells in the
semiconductor layer [10] or conformal surface coating [11]
have been successfully introduced to control the recovery
dynamics.

The particularity of these nanopatterned semiconductor res-
onators is the role of geometry and, specifically, of the surface
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in determining how fast and how strong the nonlinear response
is, because that is directly related to the generation, the
diffusion, and the recombination of free carriers. Interestingly,
this has also been observed in micropillar resonators [12]. The
dynamics of nonlinear resonators is extremely rich and is being
actively studied. For instance, nonadiabatic dynamics [13] and
excitable [14] response has been observed, self-pulsing has
been predicted [15] and observed [16], multistability has been
investigated in nonlinear coupled resonators [17] and, very
recently, coherent effects have been evidenced in InP photonic
crystal resonators [18].

A technical difficulty is that the carrier dynamics develops
in a complicated geometry, which requires exact calculations
of the diffusion equation. By itself, this is not an issue and
has already been done [19]; however, the connection to the
Maxwell equations, describing the optical field in the structure,
via direct coupling is very heavy computationally, because the
time scales involved are very different. Thus, in the context
of photonic nonlinear cavities, the diffusion equation has been
solved only to provide an estimate of time constants for the
rate equation. This approximation may not be satisfactory, for
the reasons discussed in Sec. IV.

We instead introduce a model where the exact calculation
of the diffusion equation is reformulated using the Green’s
function formalism, which is allowed by the linearity of the
diffusion equation in the ambipolar approximation, holding
here. Thus, the time-domain equation for the optical field
can be indirectly but rigorously coupled to the diffusion
equation and therefore this provides a more accurate model,
only requiring a minimal set of fitting parameters, namely the
surface recombination velocity.

In Sec. II we introduce the equations for the complex field
amplitude describing an ensemble of coupled linear resonators
and input and/or output waveguides and we discuss the main
approximations. In Sec. III we detail the nonlinear response
and in Sec. IV we describe the modeling of free carriers and
the derivation of an effective carrier density response. The
model is compared with experiments performed on different
semiconductors in Sec. V. Finally, we use the model to
evidence the role of the geometry by comparing the response
of different cavity design in Sec. VI. We also compare the case
of the excitation of free carriers through linear or nonlinear
absorption in Sec. VII.

2469-9926/2016/94(2)/023814(12) 023814-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.023814
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II. COUPLED-MODE THEORY

An ensemble of optical resonators coupled to waveguides
is conveniently described by the coupled-mode theory (CMT)
in the time domain [20]. The basic assumption is that the
optical field can be described in terms of normal modes in the
waveguides and in the cavities. This approximation is correct
as long as cavity modes are well confined; i.e., leakage can be
treated as a small perturbation. While a more general situation
is conveniently treated using quasinormal modes and suitable
normalization procedures [21,22], here the optical leakage is
dominated by coupling into the cavity modes, and the loaded Q

factor is well above 103. In single-mode cavities with mode size
close to the diffraction limit, it can be shown that the energy
density is about Q times stronger than in the waveguide (see
discussion in Appendix A) and, therefore, the approximation
is good enough.

A. Formalism

For the sake of simplicity, we consider the case of a single
resonator (Fig. 1) coupled to two waveguides, serving as an
input (port a) and an output (port b), with strengths γa =
|κa|2 and γb = |κb|2, respectively. The complex envelopes
of the incoming “+” and outgoing “−” waveguide modes
are represented as vectors Sin = (S+,a , S+,b)T and Sout =
(S−,a , S−,b)T, with subscript letters denoting the ports. The
normal modes of the waveguides are normalized such that
|Sin|2 = Pin and |Sout|2 = Pout, representing the input and
output powers (Fig. 1). The electric field in the cavity E(r,t) =
A(t) U(r) is factorized into the complex envelope A(t) and the
normal mode U(r), which is normalized with the condition

1

2

∫
ε0εr |U(r)|2d r = 1, (1)

which defines the mode volume V −1
mod = ε0εr

2 max(|U |2).
Consequently, the energy in the cavity is Wcav(t) = |A(t)|2.

The motion equations [20] for the envelopes A, input Sin,
and outputs Sout are rewritten in the matrix formalism,

∂tA = MA − RSin, (2a)

Sout = QA + P Sin, (2b)

with R, Q, and P :

R = (κa κb), (3a)

Q = (κa κb)T, (3b)

P =
(

1 0
0 1

)
. (3c)
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FIG. 1. Coupled mode theory: scheme representing a cavity
coupled to two waveguides.
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FIG. 2. Two coupled cavities and access waveguides and related
parameters in the CMT model.

In the linear limit, M = −iω0 − (�0 + γa + γb)/2, with
ω0/(2π ) the frequency of the normal mode. With little loss of
generality, we consider hereafter the situation where excitation
is applied to port a, and therefore S+,b = 0.

This formalism can be generalized to handle an arbitrary
number of cavities and waveguides. A very important as-
sumption is that the resonators are weakly coupled together,
such that supermodes are conveniently described in the tight-
binding approximation. Recently, it has been shown that in
some cases, e.g., a chain of PhC cavities, some corrections are
needed [23], which can be integrated in our model.

An interesting configuration consists of two resonators and
two waveguides (Fig. 2). Then,

∂t A = ∂t (A1 A2)T = M A − RSin. (4)

Subscripts in Ak relate to the two cavities and M = Mkl is a
2×2 matrix,

Mkl = iωk,0 − 1
2 (�0,k + |κk,a|2 + |κk,b|2)δkl, (5a)

Mkl = (iμ − κ1,aκ2,ae
−iβ12 − κ1,bκ2,b/2)(1 − δkl), (5b)

where �0,k is the photon decay rate, due to internal losses,
μ the cavity mutual coupling, γk,(a,b) the cavity-to-waveguide
coupling, the overline denotes complex conjugation, and δkl

the Kronecker δ coefficient. Q, R, and P have the forms

R =
(

κ1,a κ1,b

κ2,ae
−iβ12 κ2,be

−iβ12

)
, (6a)

Q =
(

κa
1 κa

2 e−iβ12

κb
1 κb

2 e−iβ12

)
, (6b)

P =
(

1 0
0 1

)
. (6c)

The generalization to an arbitrary number of coupled
cavities and input/output ports is straightforward and R, P ,
and Q are determined based on the energy conservation [20].

B. Device design and comparison with linear measurements

As an example, Fig. 3 represents the transmission spectra
of PhC devices consisting of two waveguides and two coupled
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FIG. 3. Linear transmission measured (dots) and calculated (solid lines) with the CMT model for (a) InP, (b) GaAs, and (c) ALD-coated
GaAs resonators; the corresponding designs are sketched above. (d) Corresponding SEM image of the PhC structure with the mode profile
superimposed.

cavities made of different materials: InP, GaAs, and ALD-
coated GaAs. The differences in the line shapes are due
to slightly different designs, as schematically represented in
Fig. 2. The CMT reproduces the experimental transmission
well with the fitted parameters listed in Appendix D. We point
out that Fabry-Pérot modulation and other fast modulation of
the spectra are absent here, owing to a design minimizing the
length of the waveguides (and so coherent scattering) and to the
use of adiabatic tapers to avoid reflection at their terminations.

The designs of the samples considered here are all based on
two coupled H0 cavities [24], which are spaced by three lattice
periods along the M direction [Fig. 3(d)]. In the case of the
sample a, the positions of the waveguides are such that the both
cavities are coupled to them. The interference between the two
paths results in a Fano-like line shape [Fig. 3(a)], which is the
sample reported in Ref. [25]. The samples in panels (b) and
(c) are instead based on a design such as only one of the two
cavities is coupled to the waveguides. Consistently, Fano line
shape is absent in the transmission spectra.

The practical interest is that waveguides are on the same
side of the sample, thus more convenient for experiments. The
transmission minimum is actually a zero of the transmission
spectra. The fact that they are not centered can be explained
by a slight difference between the two cavity resonances
(see Table III).

III. NONLINEAR DYNAMICS

Nonlinear effects induce a change in the complex permittiv-
ity ε, which we account for by allowing the complex resonance
of each cavity ωk = ω0

k + i�0
k/2 to be corrected with the

contribution �ω̃ = �ωk + i��k/2. Thus, M becomes

MNL
kk = i�ωk(Ak) − ��k(Ak)/2. (7)

This choice implies that the nonlinear effect is local at the
scale of the cavity; i.e., the nonlinearity in cavity Ci only
affects the other cavities Cj �=i indirectly, through the linear
coupling coefficients γ and μ.

In the case of semiconductors, three dominant effects take
place. The thermo-optic effect, which is slow (microsecond or
longer) [26] and it not discussed here [27]. The nonlinear po-
larizability, i.e., the anharmonicity of the electronic potential,
specifically the third-order term χ (3), inducing both a change

in the real and imaginary parts of the refractive index [28],
as prescribed by the Kramers-Kronig relationship for physical
transitions, e.g., absorption and/or emission. This phenomenon
is extremely fast when nonresonant, which is the case of
semiconductors.

The term is expressed as(
i�ωk − ��k

2

)
Kerr

= |Ak|2c0

(
iωn2 − βT PA

c0

2

)
V −1

χ ,

(8)

with n2 the nonlinear index (�n = n2I , with I the irradi-
ance), βT PA the two-photon absorption (defined from ∂zI =
−βT PAI 2), and Vχ the nonlinear volume (Appendix B).

We point out that this time-domain formulation of nonlinear
responses also accounts for four-wave mixing, as long as the
spectral domain of interest is narrow enough to validate the
rotating-wave approximation underlying the CMT.

The third effect is due to the excitation of free carriers,
entailing a change of the refractive index. This consists of
three contributions [29]: band-filling, free-carrier dispersion,
and band shrinkage. We note that band shrinkage is negligible
for GaAs or InP at Telecom wavelengths and then will
be neglected. In contrast to the nonlinear polarization, the
response of the refractive index to the optical excitation is not
instantaneous, but follows the population of free carriers. It is
convenient to define N

(k)
eff as the effective carrier density, i.e.,

the carrier density weighted by the spatial distribution of the
cavity normal mode (see Appendix C):

Neff = 1

2
ε0

∫
V

εrN (r,t)|U(r)|2dr. (9)

The corresponding contribution to the CMT model reads(
i�ωk − ��k

2

)
FC

= i
ω

n

(
∂ñ

∂N

)
FC

N
(k)
eff , (10)

with the derivative representing the dependence of the complex
index of refraction ñ on the density of free carriers. Note
that the definition of Neff already takes into account the
connection between the refractive index and the frequency
of the resonance (Appendix C).
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IV. FREE CARRIERS DYNAMICS

A. Ambipolar model

The modeling of ultrafast carrier dynamics has been broadly
addressed in the context of semiconductor optical devices [30].
Here we use a more standard drift-diffusion model [31]. The
justification of the underlying approximations is given in
Appendix C. In the absence of doping and external electric
field, the evolution of photoexcited carriers in the domain
� can be described in the ambipolar approximation of the
drift-diffusion model, where electrons and holes have the same
distribution, i.e., N (r,t) = P (r,t),

∂tN − Da∇2N = G − N

τ
∀ r ∈ �, (11a)

Da∇N · n̂ = −SN · n̂ ∀ r ∈ ∂�. (11b)

where Da = (Dnμp + Dpμn)/(μp + μn) is the ambipolar
diffusion coefficient, with Dn,p and μn,p the diffusion co-
efficient and the mobility of electrons and holes, respectively.
Considering two-photon absorption, the generation term is
expressed as

G(r) = βT PA

c2
0ε

2
0

8�ω
εr |U(r)|4|A|4. (12)

Note that this equation is based on the scalar approximation
of the nonlinear tensor (Appendix B). Integrating G(r) we
obtain the total generation rate, which is equal to the rate of
absorbed photons, hence the equation

c2
0βT PA

|A|4
2�ωVχ

= − 1

2�ω
∂t |A|2 (13)

consistently with Eq. (8).
Carrier recombination has nonradiative and radiative con-

tributions (see Appendix B), which are summarized here by a
time constant τ . In the specific case of photonic nanostructures,
where the volume-over-surface ratio is V/S = Ls � 100 nm,
corresponding to about the average distance of the carriers
from the nearest surface; thus, surface recombination is
extremely important. Considering the Shockley [32] approx-
imation τ−1

eff = τ−1 + S/Ls , the surface recombination may
actually dominate the carrier lifetime, as shown in the case
of GaAs photonic crystal cavities [33], as in GaAs S might
approach the saturation velocity [34] and, in general, is highly
dependent on the material and the fabrication process.

This has two implications. First, radiative and nonradiative
recombination in the bulk material plays a minor role, and,
therefore, can be very well approximated with a single time
constant τ . The second implication is that the validity of the
rate equation model needs to be scrutinized in detail.

B. Rate equations

To clarify this point, let us assume that the carrier population
decays following a time constant only determined by the
dominant process, namely surface recombination. Then a
simple rate equation model could then represent the evolution
of the excited carriers in the cavity, which is a very common

approximation:

∂tNeff = −τ−1
eff Neff + KT PA

Vc

|A|4. (14)

The generation term KT PA|A|4 = ∫
V

G(r) is obtained from
Eq. (13). A carrier volume Vc is introduced empirically to
obtain an effective generation density.

It turns out that this approximation may not be satisfactory
in the context of semiconductor nanocavities. Here diffusion
might also lead to an initial, extremely fast change of the carrier
distribution seen by the cavity, i.e., Neff . More interestingly,
it has been observed experimentally that then the dynamics is
slowed down in a variety of semiconductors: InP, GaInAsP,
and silicon [5,6,35,36]. This behavior has been described
with a multiexponential decay, which is actually understood
as resulting from the successive diffusion of photogenerated
carriers to a larger reservoir with volume Vx and population
density Nx , until recombination takes place. This is readily
seen using one or more auxiliary equations [36]:

∂tNeff = −γdiff(Neff − Nx) + KT PA

Vc

|A(t)|4, (15a)

∂tNx = −τ−1
eff Neff + γdiff

Vc

Vx

(Neff − Nx). (15b)

Accordingly, an auxiliary carrier diffusion rate γdiff is
introduced. If this approach can represent the multiexponential
decay observed experimentally, it is still not satisfactory for
several reasons: First, the mode volume and the diffusion rate
γdiff are not well defined, and can only be used as a fitting
parameter to coarsely model the diffusion process; second,
more than one auxiliary equation may be necessary, as pointed
out by Yu et al., for instance [37], therefore mechanically
increasing the number of fitting parameters.

Actually—and this is a key point of this paper—the rate
equation formalism, implying exponential decaying dynamics,
is not the best choice for modeling a diffusion process. The
reason of the failure of the exponential fit emerges when
solving the diffusion equation analytically in the case of
a Gaussian initial spatial distribution and radial symmetry,
namely N (r,t). It is found that the spatial maximum of N

decays as t−1. Although in our case the geometry is way
more complex and the diffusion equation requires a numerical
solution, this suggests a nonexponential decay of the carrier
density (not the total population) when diffusion is important.

In this paper we introduce a major change in the model,
consisting in replacing the rate equation with a more suitable
representation of the diffusion dynamics. Moreover, since
in semiconductor nanostructures this dynamics is essentially
nonlocal, as surface recombination and diffusion dominate,
this demands an accurate calculation of carrier dynamics in
the actual geometry. This is achieved in several steps, which
are detailed below.

C. Green’s function formalism

The diffusion equation [Eq. (11)], resulting from the am-
bipolar approximation, is a linear, partial-derivatives equation;
consequently, the temporal and spatial distribution of the free
carriers can be related to the generation term [Eq. (12)] through
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a Green’s function K(r,r ′; �τ ):

N (r,t) =
∫ t

−∞

∫
K(r,r ′; t − τ )G(r ′,τ )d r ′dτ. (16)

An interesting similarity appears with photoreflectance mea-
surements, where the time and spatial evolution of the tem-
perature, following the excitation with a localized laser spot,
are modeled through the Green’s function formalism [38,39].
There the geometry allows the use of an analytic expression
of the Green’s function, which considerably eases the calcula-
tions. The geometry of PhC cavities, however, is such that the
numerical calculation is unavoidable, which is an important
point of this work.

As a matter of fact, the calculation of the general Green’s
function is not necessary here, as the excitation [Eq. (12)] is a
separable function in the form G(r,τ ) = ψ(r)f (τ ). Therefore,
the space integral in Eq. (16) can be carried out to yield a
simpler integral form,

N (r,t) =
∫ t

−∞
K̃(r; t − τ )|A(τ )|4dτ, (17)

with the kernel resulting from the above equations:

K̃(r; τ ) = βT PA

c2
0ε

2
0

8�ω
εr

∫
V

K(r,r ′; τ )|U(r)|4d r ′. (18)

The integral is carried out within the volume occupied by the
semiconductor, denoted by V . Note that K̃(r; τ ) = 0 when
τ < 0, because of causality.

The numerical calculation of the kernel is straightforward.
Let us consider the Dirac excitation for Eq. (17), namely in
the form |A(t)|4 = |A0|4�tδ(t) (�t being an arbitrary small
time interval). Using Eq. (12), this leads to the corresponding
initial condition for Eq. (11):

N (r,0+) = G(r,0+)�t. (19)

This represents the distribution of carriers at t = 0+, after
the Dirac impulse and before any diffusion process takes
place. Equation (11) is then solved using a time-domain
finite-element technique and the kernel is obtained through

N (r,t) = K̃(r,t)|A0|4�t. (20)

Let us now consider the projection of the carrier distribution
on the optical mode, namely the effective carrier concentration
introduced in Sec. III. A new integral equation, relating Neff

to the excitation A(t), is obtained by combining Eq. (9) with
Eq. (17) and changing the order of the integrals:

Neff(t) =
∫ t

−∞
h0(t − τ )|A(τ )|4dτ. (21)

In the end, the Green’s function formalism reduces to an
explicit integral equation where the dynamics is contained in
a time-dependent function h0(t − τ ), which, consistently with
Eqs. (9), (17), and (21), is defined as

h0(τ ) = 1

2
ε0

∫
εrK̃(r; τ )|U(r)|2dr. (22)

In the context of signal theory, h0 is referred to as an impulse
response function. Hereafter, it is referred to it as effective

carrier density response function. Its initial value, which also
corresponds to its maximum, is calculated by inserting Eq. (18)
into Eq. (22), which does not require the diffusion equation,

h0(0+) = βT PAc2
0ε

3
0

16�ω

∫
V

ε2
r |U(r)|6dr3 = βT PAc2

0

2�ω
V −2

3PA, (23)

to be solved. Thus, h0(0+); hence, the maximum of effective
carrier density depends only on the field of the cavity mode
U . Interestingly, the equation above defines a higher-order
nonlinear interaction volume, V3PA, which is related to the
three-photon absorption (3PA).

We note that these formulas are valid for the particular case
of two-photon absorption. Linear absorption is discussed in
Sec. VII.

As an example, h0 is calculated for a H0 photonic crystal
resonator (Fig. 4), depending on the surface recombination
velocity S. First, the comparison between the spatially av-
eraged kernel κ(t) = ∫

V
K̃(r,t)dr (or, equivalently, the total

population of of excited carriers) and h0 reveals the role of
the diffusion. In fact, h0 decays much faster than the total
population of the carriers, as first pointed out in the context
of silicon PhC cavities [19]. This is also apparent in the
false-color maps. Here the distribution of carriers, represented
by K̃(r,t) normalized by its maximum at t = 0, evolves very
differently, depending on the surface recombination.

The role of the diffusion becomes less important as the
recombination S increases, which is the case of GaAs nanos-
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FIG. 4. H0 cavity: (a) h0(t) (solid line, left axis) and spatially
averaged kernel function κ(t) (dashed line, right axis), calculated for
different values of the surface recombination velocity S. Note that the
initial value is independent on the diffusion parameters. Normalized
spatial distribution K̃(r,t) of the carriers at excitation (t = 0+)
(b) and after 10 ps [denoted by the dashed line in panel (a)], with S =
104 cm s−1 (c), S = 5×105 cm s−1 (d), and S = 1×107 cm s−1 (e).
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(green line) spectra in the pump-probe experiment. The orange shaded
area represents the part of the spectrum acquired to generate the
time-resolved maps in Fig. 6. The arrows denote the spectral shift of
both resonances resulting from by the generation of the free carriers.

tructures [33,40,41], inherently related to its large density of
defects at midgap [34]. It must be pointed out that the surface
recombination is assumed to be identical at any interface,
namely at the holes and at the top and bottom sides of the
slab. This might not be true, as different surfaces are exposed
to different fabrication process steps. However, discriminating
the values of S depending on the surface is far from obvious.

In conclusion, given a geometry, the resonator material, and
the surface recombination velocity, a unique effective carrier
density response function h0 is enough for modeling accurately
the nonlinear dynamics of the resonator, including diffusion
effects.

V. MEASUREMENTS

Our model is used to reproduce the dynamical response
of PhC nanocavities made of different materials (InP and
GaAs) and in one case followed by surface passivation through
atomic layer deposition (ALD) [11]. The recovery dynamics
is measured by a nondegenerate pump-probe technique. The
nonlinear resonators (Fig. 3) have been designed to provide
two resonances spaced by about 10 nm, located in the C band
of the Telecom spectrum (about 1550 nm) and with loaded
Q factor between 2000 and 3000. The resonator results from
the coupling of two H0 cavities so that the two resonances
are associated with the symmetric and antisymmetric combi-
nation of the fundamental modes of the H0 resonators. As a
consequence, the field intensity of these two modes overlaps
nearly perfectly and this maximizes the nonlinear coupling.
Thus, the excitation of either modes induces nearly the same
spectral shift for both resonances.

The pump-probe measurement is based on a femtosecond
mode-locked laser (MLL) at a repetition rate of 36 MHz
(Optisiv). As detailed in Ref. [11], the pump is obtained by
spectral slicing and amplification, resulting in a 6-ps pulse.
The pump is set with a small detuning (roughly 0.25 nm
on the blue side) from the high-energy resonance (Fig. 5).
The full spectrum of the laser, attenuated, is used as a “white
light” probe. The transmitted spectra around the low-energy
resonance is acquired as a function of the pump-probe delay,
resulting in a spectrally and temporally resolved map (Fig. 6).

It is enlightening to compare these measured maps with
their simulated counterparts, where pump and probe, as
measured, are used as excitation terms. The model itself
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right, relate to InP, bare GaAs, and ALD-coated GaAs.
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consists in Eqs. (4), (6), (8), (10), and (21), which are integrated
using a standard high-order adaptive routine for ordinary
differential equations. The map is constructed by solving the
equations for each value of the pump-probe delay and Fourier
transforming the calculated outputs to generate the spectra.

The parameters used in the model are given in Appendix
D. All these parameters have been determined independently
of the pump-probe measurements. They have been either
calculated (e.g., the nonlinear volumes) or obtained from
the literature (e.g., the properties of the semiconductor bulk
material) or fitted from the linear transmission measurements
(e.g., the coupling factor and the resonances), as shown in
Fig. 3. This procedure singles out one parameter, the surface
recombination S, which is process and material dependent. It is
therefore a sensible option to consider it as a fitting parameter
when comparing the experiment with the model. This model
has been used to discuss the case of GaAs and coated GaAs
PhC gates [11]. Here the discussion is generalized to a broader
range of materials and geometries.

The comparison between the experimental and calculated
maps in Fig. 6 reveals that not only is the displacement
of the resonance well reproduced, but other features are
well capturedas well, such as, for instance, the spectral
broadening and the drop in the transmission at the pump-
probe coincidence. This is true for the three cases considered
here. Another important consideration concerns the different
responses of the three devices in terms of recovery time and
extent of the spectral shift. Since the structural parameters
(Q factor and splitting of the resonances, as well as the
nonlinear absorption and carrier-induced index change) are
very similar (see Table III), these changes are explained by
the different surface recombination S, which therefore plays a
dominant role, and not only in terms of recovery time.

A more quantitative comparison is possible by defining the
normalized transmission and the frequency shift (Fig. 7) as the
first-order momentum of the spectrum:

�νc(t) = −νres +
∫

�ν(t,ν)S(t,ν)dν. (24)

As extensively discussed in Ref. [11], the very large value
of the surface recombination S in uncoated GaAs leads to a
basically instantaneous response (more precisely, faster than
the duration of the excitation), also resulting in a decrease
of the spectral shift. This behavior is well reproduced when
considering S = 107 cm s−1, which is consistent with the liter-
ature. Coating with ALD decreases the surface recombination
and favors the buildup of a larger population of free carriers
and thereby a larger spectral shift. This leads to an optimum for
using these cavities as fast and still energy-efficient switches,
which is the point of Ref. [11].

The case of InP is quite different, as surface recombination
velocity is even smaller, and this results in a slightly larger
spectral shift but also in a much longer recovery time, as
apparent in Fig. 7. In this case, it takes about 100 ps to
observe an almost complete recovery of the resonance, which
is much longer than in GaAs. The agreement is excellent for
both the spectral shift and the transmission. The changes are
explained by a change of the surface recombination velocity
S is 1×107 cm s−1 (GaAs), 3×105 cm s−1 (GaAs coated) and
1×103 cm s−1 (InP), which is consistent with the dominant role
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FIG. 7. Measured spectral shift (red circles), transmission (blue
squares), and modeling (dashed lines) for (a) bare GaAs, (b) ALD-
coated GaAs, and (c) InP. The corresponding surface recombination
velocity is S = 1×107 cm s−1, 3×105 cm s−1, and 1×103 cm s−1,
respectively.

of diffusion and surface recombination. The discrepancy of the
measured transmission with the calculations is due to the spec-
tral features in the transmission of the output waveguide. These
are the consequences of disorder-induced scattering [42],
primarily affecting the output waveguide, which, in the InP
sample is much longer. The other samples have been designed
with short input and output waveguides and therefore show a
clean double-peaked line shape (Fig. 3). We note that in the
conditions of these experiments, carrier-induced nonlinearity
is by far dominating the Kerr contribution. Shorter pulses might
evidence a greater role of the Kerr effect, as observed in GaAs
micropillars [43].

We consider that our model is accurate enough to capture
the response of semiconductor photonic crystal cavities.

VI. IMPACT OF THE GEOMETRY ON THE DYNAMICS

The Shockley formula provides a rough estimate of the
effective carrier lifetime in subwavelength resonators by
assuming an average distance from the surface. The model
introduced here takes the geometry of the structure into
account accurately, as it is based on solving the ambipolar
diffusion equation exactly. Thus, we apply our model to single
out the role of the geometry in determining the nonlinear
dynamical response.
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Different cavities are considered here, all widely used,
namely H0 [Ref. [24] and Fig. 8(a)], H1 [Ref. [44] and
Fig. 8(b)], L3 [Ref. [45] and Fig. 8(c)] and L5 [Ref. [45] and
Fig. 8(d)]. In order to highlight the role of the geometry, the
coupled Q factor is set to the same value, namely Q = 3000.
What instead is different is the volume of the optical mode,
more specifically Vχ , which primarily impacts the level of opti-
cal power required for triggering enough nonlinear absorption,
and the carrier dynamics, i.e., the h0 function, which affects
both the speed and the amplitude of the nonlinear response.

Here it is apparent that geometry is extremely important;
for instance, Vχ differs by about a factor of two between L3

and H0, and h0(0) is about one order of magnitude larger in the
latter (see Table I). Thus, an order-of-magnitude improvement
in energy efficiency can be ascribed to the cavity design. Also,
the h0(0) can be used for a quick estimate of the maximum

TABLE I. Cavity modal volume Vmod, nonlinear modal volumes
Vχ,V3PA, and maximum of the effective carrier density response
function for InP and GaAs (ALD).

Design Vmod Vχ V3PA h0(0) (InP) (GaAs)
(10−18 m−3) (1061 J−2 s−1 m−3)

L5 0.08 4 0.88 6.7 4.6
L3 0.057 3 0.67 12 8.1
H1 0.064 2.6 0.60 14 10
H0 0.045 2.2 0.32 51 35

of the carrier density. For instance, let us consider that the
field in the cavity is such that it contains W = 100 fJ and
let us consider a lifetime of τc = 10 ps; then with h0(0) =
3.5×1062 J−2 s−1 m−3 we obtain N = 1018 cm−3.

The impact of geometry on the time response is less
straightforward. It is interesting to first consider the initial
spatial distribution of the photogenerated carriers, which is
directly related to the distribution of the electric field of
the optical mode |U |4. This is shown in Figs. 8(a)–8(d). It
is apparent that in the case of cavities H0 and H1 carriers
are generated close to the holes, where they are likely to
recombine, whereas in panels (c) and (d) it is apparent that
they need to diffuse away, before reaching the holes.

This explains, in part, the different decay of the effective
density Neff , more precisely h0(t), calculated in Figs. 8(e)
and 8(f). Let us first consider the short time scale, and the case
of low surface recombination (e.g., InP). It was first pointed
out [19] that an initial phase of fast decay due to diffusion is
followed by a slower dynamics. What is interesting here is the
role played by the geometry.

The decay of the effective density in the H0 cavity is much
faster, but at least at the very first stage, the H1 resonator is
almost as fast. This is mostly because the initial distribution of
photogenerated carriers is much more concentrated in the H0,1

cavities than in the others. After this initial stage, the dynamics
of the H1 slows down and tends to approach the behavior of the
L3 and L5 structures. Actually, in these two cavities carriers
diffuse mostly perpendicular to the cavity main axis, owing to
a larger concentration gradient. This explains why the decay
of the effective density is almost identical for the two. A few
picoseconds after the excitation, the carriers accumulate with
a spatial distribution, which is roughly Gaussian and extends
to the geometric volume of the cavity.

When the surface recombination increases, then the geom-
etry tends to be less important. Consider the case of GaAs with
coated surface (S = 3×105 cm/s), shown in Fig. 8(f). Here the
H0 is still about twice as fast as the other cavities, but the differ-
ence is much less striking. This is consistent with the picture
of surface recombination eventually dominating the dynamics.

The calculated spectral shift �ν, which is obtained by
solution of the full model, is shown in Fig. 9. Here the temporal
response is also determined by the optical properties of the
resonator (the cavity lifetime) and by the excitation. Still,
given the loaded Q factor of the resonators (≈3000, hence
cavity lifetime Q/ω ≈ 3 ps) and the duration of the pulses,
also in the same range, the decay is clearly dominated by the
carrier dynamics. What is clearly visible here is the role of the
nonlinear volume Vχ on the amount of pulse energy required
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to achieve a prescribed spectral shift (here 250 GHz), again
confirming the net advantage of the H0 cavity. The difference
is substantial but not as large as Table I might suggest.

VII. LINEAR ABSORPTION

Our model allows the comparison of optical switches
activated either by linear or nonlinear absorption. The pe-
culiarity of nonlinear absorption is that the material used for
the nonlinear resonator can also be used to create the access
waveguides. In fact, at operating power levels, the material is
transparent except in the cavity, owing to the enhanced strength
of the optical field. Conversely, in optical microcavities,
nonlinear absorption can be a rather energy-efficient process,
in striking contrast with macroscopic cavities, where nonlinear
absorption is usually considered as a perturbation.

Also, strong linear absorption spoils the Q factor of the
cavity; thus, a weak linear absorption is preferable. The
most efficient microcavity all-optical switch resulted from
the optimization of the material absorption by choosing the
suitable composition of the GaInAsP alloy because it entails a
weak absorption [6]. Moreover, the nonlinear index change is
maximized owing to the band-filling contribution [29].

This situation is considered in our model by introducing a
modified version of Eqs. (12), (17), (18), (20), (21), and (23),
namely

G(r) = α
c0nε0

2�ω
|U(r)|2|A|2, (25a)

N (r,t) =
∫ t

−∞
K̃(r; t − τ )|A(τ )|2dτ, (25b)

K̃(r; τ ) = α
c0ε0

2�ω
εr

∫
V

K(r,r ′; τ )|U(r)|2d r ′, (25c)

0 20 40 60 80 100
Time (ps)

0

1

2

D
et

un
in

g 
(1

0
2 

G
H

z)

TPA - 200 fJ

Linear Absorption - 11.5 fJ

Input Pulse (a.u)

FIG. 10. Spectral shift in a cavity induced by TPA (green or light
line) or by linear absorption (red or dark line). The input excitation is
also represented (dashed line).

N (r,t) = K̃(r,t)|A0|2�t, (25d)

Neff(t) =
∫ t

−∞
h0(t − τ )|A(τ )|2dτ, (25e)

h0(t0+ ) = αc0ε
2
0

4�ω

∫
V

εr |U(r)|4dV = αc0

�ωVχ

. (25f)

We consider two structurally identical devices, aiming at
showing that linear and nonlinear absorption induce a different
nonlinear dynamics in the cavity. In order to single out this
contribution, we have used the same parameters as for the InP
sample discussed in Sec. V. The sample labeled as “Linear
absorption” is made of GaInAsP, as in Ref. [6]. The relevant
parameters are in Table IV; however, the surface recombination
is arbitrarily taken as that of InP, in order to single out the role
of the geometry and the diffusion process in addition to the
absorption mechanism.

The result is shown in Fig. 10. The excitation energy is
adjusted to reach the same spectral shift, again 250 GHz. As
expected, the energy is about a factor 20 lower in the case
of the optimized material. It is, however, intriguing to note
a striking difference in the dynamics. First, the leading edge
of δν is much steeper in the case of the nonlinear absorption,
which can be understood in the dependence on |A|4 instead of
|A|2 of the excitation. Second, the faster initial decay, which
is related to the diffusion, is largely explained by the stronger
gradient of the initial spatial distribution of the photoexcited
carriers, i.e., |U |4 instead of |U |2.

Note that the Q factor here is designed to be smaller
than in Ref. [6] in order to be consistent with calculations
in the previous sections of our paper. We note that the TPA
device is faster, although the ambipolar coefficient of InP
(Da = 9 cm2/s) is smaller than InGaAsP (Da = 17 cm2/s).
This example shows the flexibility of our model and the
capability of modeling a variety of devices and materials.

VIII. CONCLUSIONS

We have introduced a model for the dynamical response of
nonlinear nanoscale semiconductor resonators. The diffusion
of the photoexcited carriers is taken into account rigorously,
within the ambipolar approximation, using the Green’s func-
tion formalism. The model is able to reproduce the experi-
mentally measured response accurately and with a minimal
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set of fitting parameters. We use it to highlight the role of the
geometry of the resonator and that of the linear or nonlinear
generation of free carriers. This model can be used for any
semiconductor nonlinear resonator and would greatly help
the design of complex devices comprising mutually coupled
resonant devices. This would provide a reliable description of
the resulting complex nonlinear dynamics. Also in the case of
nominally independent wavelength-multiplexed optical gates,
such as in Ref. [8], such a model might be useful in accounting
for potential and unwanted nonlinear cross talk, which is
important for a correct design of complex photonic circuits.
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APPENDIX A: APPROXIMATIONS IN THE CMT

Let us consider the simple case of one cavity coupled to a
waveguide, and |γ | 
 |�0|. At steady state and at resonance
ω = ωk , Eq. (2) reduces to 0 = − γ

2 A + κSin; hence, |A|2 =
2γ −1|Sin|2. Moreover, the energy density in the waveguide
is related to the power by the group velocity vg and the
waveguide cross section σwg; hence, the energy density in

the waveguide is Wwg = |Sin|2
vgσwg

= 2 γWcavVcav

vgσwg
, . Thus, the ratio

Wcav
Wwg

= vgσwg

2γVcav
. Assuming the normal mode of the cavity is the

stationary counterpart of the traveling waveguide modes (e.g.,
L3, L5 cavities and line defect waveguides built out of the
same lattice), then Vcav/σwg ≈ Lcav the waveguide length and
therefore 2 Vcav

σwgvg
is the cavity round-trip time τr . This allows

interpreting vgσwg

2γVcav
as γ −1τ−1

r = 1/F , the inverse of the finesse
of the cavity, which is a well-known result. In a single-mode
cavity such as H0, this number is very close to the Q factor.

APPENDIX B: CALCULATION OF THE KERR
AND TPA NONLINEAR TERMS

The nonlinear interaction terms have been derived in the
context of the coupled-mode theory in countless publications
and monographs; see, e.g., [46]. For the sake of consistency
with our own notation, we provide here the derivation of the
nonlinear coefficients.

With the usual approximations (rotating wave, set of
orthogonal normal modes U), the nonlinear perturbation of
the complex envelope reads

∂tA = −i
exp(iωt)

4ω

∫
U∗∂2

t PNLdV. (B1)

The specific case of the third-order susceptibility (Kerr
nonlinearity) is considered here. Following Boyd [28],

PNL · E∗ = n2εrε
2
0c0

2|E|4 + |E · E|2
3

, (B2)

which in the case of a single-cavity mode becomes

∂tA = −i
ωn2c0

4

∫
ε2

0εrχr

2|U |4 + |U · U |2
3

dV |A|2A, (B3)

where we account for the inhomogeneity of the nonlinear
tensor by introducing a factor χr = χ (3)(r)

χ
(3)
max

, which vanishes

outside the nonlinear material. This equation is rewritten as

∂tA = i�ω(A)A = −|A|2V −1
χ c0n2ω. (B4)

This defines the instantaneous frequency shift and the Kerr
volume:

V −1
χ = ε2

0

4

∫
εrχr

2|U |4 + |U · U |2
3

dV. (B5)

The two-photon absorption is related to the Kerr effect
and is treated accordingly. Thus, Eq. (12) is generalized by
replacing |U |4 with 2|U |4+|U ·U |2

3 . This leads to a correction to
Eq. (12):

G(r) = βT PA

c2
0ε

2
0

8�ω
εr

2|U |4 + |U · U |2
3

|A|4. (B6)

In the geometries considered here, the scalar approximation of
Vχ is reasonably accurate, the discrepancy being about a few
percent or less and, therefore, can be safely used.

APPENDIX C: APPROXIMATIONS IN MODELING
THE CARRIERS

Depending on the time scale considered, the dynamics of
carriers is described by models of increasing complexity. The
main assumption here is that the excitation is never shorter than
1 ps. Consequently, it is expected that excited carriers have
already relaxed to their quasiequilibrium distribution, which
is described by quasi-Fermi levels. Thus, effects of carrier
heating are ignored, and the energy released by thermalized
carriers, namely 2�ω − Eg , is considered as heat. We also
consider that the injected power is not large enough to induce
the saturation of the absorption, which is reasonable since
large-enough spectral shift is achieved without reaching carrier
density above 1018 cm−3.

Recombination here can be treated with a single term,
accounting for the dominant mechanism, namely nonradiative
recombination at the surface. Recombination in the bulk of
the material is orders of magnitude lower; also, radiative
and Auger recombination are safely negligible. The effective
carrier density Neff is introduced to relate the calculation of
the diffusion equation to the spectral shift of the resonance.
The perturbation analysis is used to connect the change of the
dielectric permittivity �ε to the spectral shift �ω:

�(ω2) = −ω2

∫
ε0�εr |U |2dV∫
ε0εr |U |2dV

. (C1)

Hence, �ω = −ω
4

∫
ε0�εr |U |2dV . Moreover, �εr =

2n�n = 2n(∂Nn + ∂P n), which, in the ambipolar
approximation N = P becomes ∂Na

n = ∂Nn + ∂P n. Finally,

�ω = −ω

2
nε0

∂n

∂Na

∫
N |U |2dV. (C2)

023814-10



MODELING OF THE CARRIER DYNAMICS IN NONLINEAR . . . PHYSICAL REVIEW A 94, 023814 (2016)

Consider a volume with uniform carrier density N (r) = Neff

and εr . Then Eq. (C2) becomes

�ω = −ω

n

∂n

∂N
Neff . (C3)

Comparing (C2) and (C3) leads to the definition of the effective
carrier density:

Neff =
∫

N
ε0εr |U |2

2
dV. (C4)

APPENDIX D: TABLES

TABLE II. Model, summarized.

Field dynamics Ȧ = M A − RSin

Kerr NL i�ωk − ��k

2 = |Ak|2c0(iωn2 − βT PA
c0
2 )V −1

χ

Free carriers NL i�ωk − ��k

2 = i ω

n

∂ñ

∂N
|
FC

N
(k)
eff

Free carriers dynamics Neff (t) =
∫ t

−∞
h0(t − τ )|A(τ )|4dτ

TABLE III. Simulation parameters value used in the CMT model for bare GaAs, ALD-coated GaAs and InP (cf. Sec. V).

Parameter Bare GaAs ALD GaAs InP Units

ω1 192.31 191.89 192.85 2π THz

ω2 192.50 192.13 192.85 2π THz
μ 3.3059 3.6581 3.5853 1012 s−1

κa
1 5.79 7.76 6.36 105 s−1/2

κa
2 0 0 0 105 s−1/2

κb
1 5.79 7.76 6.355 105 s−1/2

κb
2 0 0 3.759 105 s−1/2

�0,1 1.21 1.21 1.21 10−12 s−1

�0,2 1.21 1.21 1.21 10−12 s−1

S 1×107 3.3×105 1×103 cm s−1

Epmp 100 150 500 fJ
Eprb 1 1 1 fJ
ωpmp 192.99 192.66 193.38 2π THz
ωprb 191.93 191.39 192.30 2π THz
tpmp 5 5 6 ps
tprb <0.5 <0.5 1 ps

TABLE IV. Parameters for GaAs, InP, and InGaAsP at λ = 1.55 μm.

Parameters Symbol GaAs Ref. InP Ref. InGaAsP Ref. Units

TPA coefficient βT PA 10.2 [47] 15 [48] 65 [6] cm GW−1

Absorption α 3 [6] cm−1

Kerr coefficient n2I 1.6×10−4 [47] 4.4×10−5 [28] 3.2×10−3 [6] cm2 GW−1

Free carrier dispersion ( ∂n

∂Neff
)
FCD

−5.8×10−21 [29] −5.1×10−21 [29] cm3

Band filling ( ∂n

∂Neff
)
BF

−2.4×10−21 [29] −3.5×10−21 [29] −8.2×10−20 [6] cm3

FCA ∂�

∂Neff
3.2×10−7 [29] 1.1×10−6 [29] cm3 s−1

Ambipolar diffusion coefficient Da 19 [49] 9 [49] 17 [6] cm2 s−1
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[17] Y. Dumeige and P. Féron, Phys. Rev. A 84, 043847 (2011).
[18] P. Colman, P. Lunnemann, Y. Yu, and J. Mørk,

arXiv:1604.06215.
[19] T. Tanabe, H. Taniyama, and M. Notomi, J. Lightwave Technol.

26, 1396 (2008).
[20] C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus,

and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322
(1999).

[21] G. Lecamp, J.-P. Hugonin, and P. Lalanne, Opt. Express 15,
11042 (2007).

[22] P. T. Kristensen and S. Hughes, ACS Photon. 1, 2 (2014).
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