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Strong quantum squeezing near the pull-in instability of a nonlinear beam
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Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe,
transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies,
and emerging optomechanical and chem-bio sensors. We predict a significant squeezing in the quantum state of
motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. By taking into
account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary
regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of
the pull-in instability of the oscillator. We discuss a possible application of this strong quantum squeezing as
an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other
novel sensing actions.
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I. INTRODUCTION

Quantum effects that may be exhibited by mechanical
resonators have been of increasing importance, as reported
by Blencowe in his review of quantum electromechanical
systems [1], and more recently by Poot and van der Zant
in their review of mechanical systems in the quantum
regime [2], and by Aspelmeyer et al., in their review of
cavity optomechanics [3]. In particular, micro- and nanobeams
and cantilevers [4–7] have proved highly useful in a host
of applications such as photon-oscillator interaction [8] and
oscillator-quantum dots coupling [9]. These oscillators have
played a central role in the development of several forms
of scanning probe microscopy, most notably in the atomic
force microscope (AFM) [10–12]. Fabricated typically from
silicon or silicon nitrite and coated with thin metallic films of
gold or chromium, self-assembled monolayers of biological
material such as DNA and aptamers, or other functionalizing
materials, microbeams have also been attracting a great deal
of interest as biosensors. In a variety of applications such as
delayed dynamics [13], optomechanical [14], plasmonic [15],
and gas-kinetic forces [16], these oscillators continue to be
instrumental to establishing the transition from macro- to
microscopic behavior of the studied effects. Employing ultra-
thin single crystal silicon cantilevers, sub-atto-Newton force
resolution has already been demonstrated in low temperature
high vacuum experiments [17]. Apart from the general pursuit
of observation of quantum effects in macroscopic systems,
understanding and designing oscillators that exhibit superior
signal to noise ratio, frequency response and amplitude control
can indeed be of great practical importance in sensing and
imaging [18], where the ability to sensitively control the
response of cantilevers by invoking the properties of their
quantum states will lead to a new paradigm in the application
domain of such oscillators [2,3]. Ordinarily however, quantum
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effects are only weakly exhibited by micro- and nanocan-
tilevers. For example, the vibrational energy of a cantilever
oscillating in its lowest resonant deformation state (∼kHz)
with a typical tip displacement ∼μm, is only ∼10−16 [J].
Setting the lowest oscillation energy of a cantilever to �ω yields
a tip displacement ∼ a few pm, the measurement of which
would typically require a temperature T � �ω/kB ∼ μK.
However, material, geometric, and force-induced nonlinear-
ities can greatly affect the cantilever response and possibly
enhance the associated quantum effects. While in principle,
an oscillator in one of its flexural modes, say the fundamental
eigenmode, can be prepared in its ground state [19], in practice,
it is often prepared in an initial state which is close to the
ground state, for example by cavity cooling [20–22].

In the case of force-induced nonlinearity, it is well known
that microelectromechanical systems (MEMS) subject to an
electric potential develop an instability as the voltage increases
past a critical value (pull-in instability) [23]. While this is a
classical effect, quantum properties of microcantilevers have
also been studied for electrically driven cantilevers [24,25], as
well as fixed beams near the Euler (buckling) instability [26],
and squeezed quantum states were shown to exist (assuming
that quantum mechanics applies to such mesoscopic systems).
Here we explore the quantum effects near the pull-in instability
for the arrangement shown in Fig. 1. Investigation of this highly
nonlinear parameter regime is in part motivated by our previous
observation of the broadband sensitive scattering properties of
passive multilayer thin film dielectric or semiconductor-metal
beams [14,15]. Thus, as an application we propose a photon
detection scheme based on the strong photoacoustic response
to infrared photons by metal coated thin films of silicon nitrite
suspended near a substrate, which is here suggested as a
candidate system in the presented investigation of the squeezed
states. For example, as depicted in Fig. 1, for a ∼5 mm diameter
100 mW output beam of a quantum cascade laser, amplitude
modulated at 100 kHz and with a center wavelength of
λ = 10 μm, roughly a fraction of 10−10 J power will scatter off
the surface of a cantilever [14] and engenders a photoacoustic
stimulus. Without spectral optimization of the absorption cross
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FIG. 1. A polysilicon mechanical oscillator biased to a potential
V (t) with respect to a substrate. Response to both mechanical and
electric excitation can be computationally obtained by solving the
coupled elastodynamic and electrodynamic equations. The computed
third displacement eigenmode of the suspended beam is shown as an
example along with the potential and field E distributions (top). In a
proposed application, low count midinfrared photons are allowed to
impinge on the oscillator surface and are subsequently detected via
a squeezed quantum deformation state. The spectral response of an
example system is shown for silicon nitrite.

section of the involved materials, a signal �100 mV can
be observed by employing pump-probe reflectometry and
lock-in detection under ambient conditions. With optimization,
considering a photon energy of ∼2 × 10−20 J, the detection
limit of such a signal would imply a large number of photons
(∼million). It is proposed that under the quantum conditions
(vacuum, mK cooling, and proper squeezing), this number can
be drastically reduced.

In Sec. II we adopt a linear isotropic elastic material (i.e.,
Hookean stress-strain relations) to formulate the oscillator
dynamics but introduce a nonlinearity in the external forces
via electrodynamic interactions. By considering the resulting
nonlinear dynamics of the beam in Sec. III, we first establish
the conditions under which quantum effects may become
significant. In doing so we consider a single transversal
deformation mode, specifically the fundamental eigenmode of
the oscillator and treat the variable describing the position of
the beam as an observable so that creation and annihilation
operators would alter the quantized oscillation amplitude
of the fundamental mode. We then examine the possibility
of existence of squeezed states, and therefore investigate
whether it is possible to squeeze the oscillation amplitude
and phase of a beam oscillating in its fundamental eigenmode
without and with being subject to the electrodynamic force
nonlinearity. We find that, in the latter case, the squeezing
can be made arbitrarily strong as one approaches the pull-
in instability. Section VII contains our conclusions and a
discussion of the possibility that precision measurements,

FIG. 2. Critical voltage Vc (right axis) and the undriven un-
damped resonance frequencies ω1 and ω2 (left axis) as functions
of L0. The annotations display the averages of the frequency and
voltage ratios.

such as single photon detection capitalizing on mechanical
nanometer scale displacement, may benefit from the presented
strongly squeezed state.

II. COMPUTATIONAL AND ANALYTICAL
CLASSICAL MODEL

The deformation properties of a planar solid, as formulated
in continuum mechanics, can be specialized to describe the
dynamics of a polysilicon beam-shaped microstructure with
length 0 � x � L, width −b/2 � y � b/2, and thickness
−d/2 � z � d/2, in an inertial system xyz, where it is
immobilized at x = 0 and x = L and suspended a distance
g0 above a planar polysilicon domain, as shown in Fig. 1.
Denoting the displacement field with u, the equation of motion
in the system shown in Fig. 1 (i,j = x,y,z) for an elastic
medium of density μ subject to a volume force f is μ∂ttui =
fi + σji,j , where σ , proportional to the strain tensor ε, is the
Cauchy stress tensor, which using the stiffness tensor c can
be expressed via the constitutive equation σij = cijklεkl . The
material (polysilicon) considered in this work is assumed to
be isotropic and homogeneous, that is, cijkl ∝ (E,ν), ∀i,j,k,l

with (E,ν) being the Young modulus and Poisson ratio. For
a linear material εij = (ui,j + uj,i − uk,iuk,j )/2, which when
used with the equation of motion above, one obtains the
Cauchy-Navier equation. Fourier transforming the Cauchy-
Navier equation expresses it in eigenvalue form −μω2ui =
fi + σji,j . For practical dimensions (L,b,d) = (L0,20,2) μm,
with L0 in μm as a convenient parameter, this equation
can be solved numerically [27] for the domain defined in
Fig. 1. We computationally obtain an (infinite) eigenfrequency
spectrum {ωn(L0)},n = 1,2, . . . , as shown in Fig. 2 with fi =
0 and damping neglected. For example, ω2(30) = 108.0 MHz,
ω2(90) = 12.9 MHz, ω1(120) = 7.2 MHz, etc. can help design
a system to achieve a given frequency response. We note
that the fluctuation-dissipation theorem establishes a path
to obtaining the mode n dependent Brownian oscillation
amplitude of the cantilever. In the absence of any explicit
driving forces, the cantilever is therefore assumed to possess
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FIG. 3. Capacitance and stationary deformation (inset) of the
system as functions of applied potential difference. The dashed curve
in the inset shows a midpoint deformation of near −800 nm leading
to the pull-in instability at a voltage near 42 V.

sufficient Brownian amplitude to be resonantly excited into
low amplitude oscillations with the first few eigenmodes
readily observed experimentally [13].

By imposing a time (t) dependent harmonic potential
difference V (t) between the weakly oscillating (noise driven)
cantilever and the substrate, the system can be driven
into high amplitude resonance by frequency tuning f (ω) =
V 0 sin(ωt) = Fdrive, where |V 0| may be obtained from inte-
grating Maxwell’s stress tensor. As shown computationally
in Fig. 1 for the third excited eigenmode ω → ω3(300) and
g0 = 2 μm, the approaching point to the surface (variable
gap) will depend on the excited eigenmode. In the stationary
case where V is static, solving the coupled Cauchy-Navier and
Poisson equations for the transversal displacement component
of the neutral axis defined by (0,0,w), we obtain a pull-in
instability of just above 42 V, as seen from the capacitance
plot in Fig. 3, and from the corresponding displacement
as a function of the applied voltage indicating a midpoint
deformation of w|x=L0/2 ≈ −800 nm just before the collapse
to the substrate, shown in the inset of Fig. 3. The computed
deformation agrees well with the general approximation of
the static deformation of a MEMS parallel plate capacitor
≈g0/3 as we are not considering dynamic or resonant
pull-in cases [28]. For a fixed g0 = 2 μm, the onset of
instability occurs when w|x=L0/2 ≈ −800 nm, irrespective of
L0. However, the capacitance drops with L0 reduction and the
voltage required to induce an instability is computed to scale
as shown in Fig. 2. Interestingly, one may observe numerically
that Vc = αnωn, where the constants αn may be extracted from
Fig. 2, as annotated.

The computed spectrum of eigenfrequencies {ωn} for
the three-dimensional model includes lateral, longitudinal,
transverse, and torsional degrees of freedom. However, the
specific arrangement in Fig. 1 permits the negligence of all
but the transverse motion, which greatly simplifies (Euler-
Bernoulli approximation) the exact equation of motion above
to one dimension, allowing an analytical pursuit. Denoting
the Lagrangian density with L, we may therefore write the
Lagrangian L = ∫ L

0 Ldx, excluding damping for the moment,

with L = μẇ2/2 − u(w,w′,w′′), where μ is now the linear
density of the material, and ẇ = ∂w/∂t , w′ = ∂w/∂x. We
consider the possibility that the potential energy of the system
u includes the effects of an external force Fdrive. Explicitly, we
consider the potential

u = EI

2
(w′′)2 + ε0V

2

2
ue(w), (1)

where I is the second moment of inertia, and ε0V
2ue is the

electrostatic potential. The dimensionless quantity ue is related
to the capacitance and is given by [29]

ue = b

g0

[
w

g0 − w
− γ log

(
1 − w

g0

)]
, γ = 0.65

g0

b
, (2)

where g0, defined above, denotes the distance between the
substrate and the beam in the undeformed state (g0 � L, here
2 μm � 300 μm). In the absence of deformation (w → 0),
the form of the contribution of the capacitor energy to the
potential reduces to (b/g2

0)ε0V
2/2 with a constant capacitance

≈36.3 fF. The equation of motion can be written as

μẅ + F ′
1 − F ′′

2 = Fdrive, (3)

where F1 = −∂u/∂w′, F2 = −∂u/∂w′′, and Fdrive =
−∂u/∂w subject to the boundary conditions:

w(0) = w′(0) = w(L) = w′(L) = 0. (4)

The explicit form of the equation of motion is obtained by
differentiating the potential to get F1 = 0, F2 = −EIu′′, and
the electrically induced force:

Fdrive = ε0bV 2

2

[
1

(g0 − w)2
+ γ

g0(g0 − w)

]
, (5)

which puts Eq. (3) into the form (undamped, driven Euler-
Bernoulli equation)

μẅ + EIw′′′′ = Fdrive, (6)

which we will treat in both the linear and the nonlinear regimes
to prepare for the sought quantization.

In order to solve Eq. (6), we first solve the homogeneous
case (V = 0), that is, μẅ + EIw′′′′ = 0, by separating the
variables with w = X(x)eiωt , to obtain X′′′′ − λ4X/L4 = 0
with λ4 = μω2L4/EI. The solution which satisfies three of
the boundary conditions is

X(x) = λ sinh
λx

L
− λ sin

λx

L

− λ
cosh λ − cos λ

sinh λ + sin λ

(
cosh

λx

L
− cos

λx

L

)
. (7)

The eigenvalue λ is constrained by the fourth boundary condi-
tion X(L) = 0 to satisfy cosh λ cos λ = 1, leading to the dis-
crete spectrum λ = λ1,λ2, . . . . Numerically, λ1 ≈ 4.73, . . . .
Let Xn be the corresponding normalized eigenfunctions,
explicitly

Xn(x) =
(

sinh λn + sin λn

)
(sinh λnx

L
− sin λnx

L
)√

L
2 (cosh 2λn + 2sechλn − 3)

− (cosh λn − cos λn)
(

cosh λnx

L
− cos λnx

L

)
√

L
2 (cosh 2λn + 2sechλn − 3)

, (8)
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so that w(x,t) = ∑
n wn(x,t) = ∑

n Qn(t)Xn(x), or explicitly

w(x,t) =
∞∑

n=1

[AnXn(x)e−iωnt + BnXn(x)eiωnt ]. (9)

As is observed experimentally in frequency domain from the
room temperature and pressure Brownian motion, we assume
the system to be in the lowest mode w1 and denote Q1(t) =√

Lq(t). The state of the beam is then approximately

w(x,t) ≈
√

Lq(t)X1(x). (10)

Higher modes n > 1, which become important at higher
temperatures, can be added straightforwardly. For a finite
V , inclusion of an electrostatic force introduces a nonlinear
correction. Integrating the potential yields

U =
∫ L

0
dx u ≈ 1

2
mω2

1q
2 + ε0V

2L

2
Ue(q), (11)

where m = μL is the mass of the cantilever (numerically,
m ≈ 30 ng), and Ue = ∫ L

0 dx ue(q
√

LX1)/L may be expanded
in the small dimensionless quantity q/g0, resulting in

Ue = b

g0

[
0.83(1 + γ )

q

g0
− (2 + γ )

q2

2g2
0

+ 0.44(3 + γ )
q3

g3
0

]

+O

(
q4

g4
0

)
. (12)

The minimum of the potential is at q = q̄, where q̄ satisfies

U ′(q̄) = mω2
1q̄ + ε0V

2L

2
U ′

e(q̄) = 0. (13)

Therefore, small oscillations around the stable equilibrium
point q = q̄ have frequency 
, defined as


2 = ω2
1 − δ2, δ2 = ε0V

2L(2 + γ )b

2mg3
0

. (14)

There is a critical value of the voltage V = Vc, for which U ′
has a double root (U ′′ = 0). In addition to (13), we obtain

 = 0, which determines the pull-in instability. Numerically,
at the pull-in instability, the voltage is Vc ≈ 42 V, and the
displacement is q̄ ≈ 1 μm. For V > Vc, there is no equilibrium
point (
2 < 0), and (13) has no solution. For V < Vc, we
have 
2 > 0, and (13) has two solutions. The smaller solution
corresponds to a stable equilibrium point, whereas the larger
one leads to an unstable equilibrium point. We are interested in
V < Vc with V close to Vc. At the stable equilibrium point, we
have oscillations of (small) frequency 
. In this case, nonlinear
effects are significant.

III. QUANTIZATION AND NOISE

The classical state of the beam [Eq. (9)], under ordinary con-
ditions and without an explicit driving force, can be described
by a mixed mode w = ∑

n wn excited solely by random forces.
In this mode, denoting the conjugate momentum density with
π = ∂L/∂ẇ = μẇ = ∑

n πn, or explicitly

π (x,t) = −iμ

∞∑
n=1

ωn[AnXn(x)e−iωnt − BnXn(x)eiωnt ],

(15)

the Hamiltonian is H = ∫ L

0 Hdx, with the density H =
π2/2μ + u. With w, π and the coefficients in Eq. (9) promoted
to operators, we quantize the system in the absence of an exter-
nal potential, by imposing equal-time commutation relations

[w(x,t),π (x ′,t)] = i�δ(x − x ′),

[w(x,t),w(x ′,t)] = [π (x,t),π (x ′,t)] = 0. (16)

Using Eqs. (9), (15), and (16) we obtain

w(x,t) =
∞∑

n=1

√
�

2μωn

[bnXn(x)e−iωnt + b†nXn(x)eiωnt ],

(17)

π (x,t) = −i

∞∑
n=1

√
�μωn

2
[bnXn(x)e−iωnt − b†nXn(x)eiωnt ],

(18)

where ωn = (λn/L)2(EI/μ)1/2. At t = 0 we deduce

bn = 1√
2�μωn

∫ L

0
dx[μωnw(x,0) + iπ (x,0)]Xn(x), (19)

and b
†
n is obtained by conjugation. In terms of the

modes bn and b
†
n, the commutation relations (16) read

[bn,b
†
m] = δnm, and the Hamiltonian, after normal ordering,

reads H = ∑∞
n=1 �ωnb

†
nbn. As alluded to in Eq. (10), at

low temperatures, the system behaves approximately as a
harmonic oscillator of frequency ω1, for which we define the
operators q,p, satisfying [q,p] = i�, via

q =
√

�

2mω1
(b1 + b

†
1), p = −i

√
�mω1

2
(b1 − b

†
1), (20)

with quantum fluctuations of the displacement being
negligible,

q ∼
√

�

mω1
∼ 0.1 fm. (21)

Its ground state |0〉ω1 is annihilated by b1. It is easily verified
that q defined in (20) is related to the displacement w via
Eq. (10) at time t = 0. Thus, assuming that the temperature
is low enough that other flexural modes are not excited, the
quantum state of the system lies in a reduced Hilbert space
generated by the creation operator b

†
1. Within this subspace,

the Hamiltonian simplifies to

Hreduced = p2

2m
+ 1

2
mω2

1q
2 = �ω1

(
b
†
1b1 + 1

2

)
. (22)

If we switch on a constant external potential, then the stable
equilibrium point, as implied by Eq. (13), is shifted to q = q̄,

near which small oscillations occur at frequency 
, given by
Eq. (14). Nonlinearities cause tunneling of the eigenstates of
this harmonic oscillator, that is, tunneling of the mechanical
degree of freedom in w. Although we are interested in
approaching the pull-in instability, we will assume that we
are sufficiently away from it so that tunneling effects can be
neglected over the duration of the experiment. Thus, with an
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applied voltage, the Hamiltonian in the Hilbert space of no
excitations of higher flexural modes becomes

Hreduced = p2

2m
+ 1

2
m
2(q − q̄)2 = �


(
a†a + 1

2

)
, (23)

where we defined the new annihilation operator

a = −α + 1√
2�m


[m
q + ip], α =
√

m


2�
q̄, (24)

instead of b1 given by Eq. (20). We have [a,a†] = 1 and the
ground state of the actuated system |0〉
 is annihilated as
a|0〉
 = 0. The Hamiltonian (23) reduces to (22) in the case of
vanishing voltage. Quantum fluctuations of the displacement
are found, using (21) and (24), to be ∼0.1

√
ω1/
 fm. Thus,

they diverge, as we approach the pull-in instability (since

 → 0). However, even with 
 = 10−6ω1, fluctuations are
∼100 fm, therefore still negligible compared to the position
of the electrode (g0 = 1 μm). From Eqs. (20) and (24) we
see that the modes in the two cases (with and without applied
voltage) are related through the Bogoliubov transformation:

b1 = cosh r(a + α) + sinh r(a† + α), e2r = ω1



> 1.

(25)
The ground state in the actuated system |0〉
 is a squeezed
coherent state in the system with no applied voltage, and r is the
squeezing parameter [30]. If the beam operates near the pull-in
instability, r is large. When operated as a sensor, in the presence
of an optical or molecular stimulus leading to photothermal or
photoacoustic and/or physi- or chemisorption, the beam in the
dynamic mode measurement exhibits a frequency shift or a
quasistatic displacement in the static mode measurement as a
result of a direct or an effective form of mass loading, surface
stress variation, asymmetric deformation or swelling (in the
case of multilayer beams such as coated microcantilevers), in-
cluding sensor-environment coupling. The detected frequency
shifts or static bending comprise the sensor signal [14,15,31].
Therefore, r can change dramatically, as the system moves
away from the pull-in instability.

While characterization of the noise observed in experiments
using solid micro- and nanostructures is an on-going effort,
typically, temperature and damping effects play a role in the
measurement of the response of beam-based sensors. For such
sensors, while the exact form of a noise model may not be avail-
able without specific experimental verification, reasonable
assumptions can be made to account for the effect qualitatively.
Thus, in the absence of an applied voltage, if the beam is held
at temperature T , then it will be in the thermal state

ρ = (1 − β)
∞∑

n=0

βn|n〉〈n|, β = e
− �ω1

kB T , (26)

where the states |n〉 are created with b
†
1. The average number

of phonons of this mode in the system is

〈n〉 = 〈b†1b1〉 = Tr[b†1b1ρ]

Tr[ρ]
= β

1 − β
≈ kBT

�ω1
. (27)

For ω1/2π = 1 MHz, T = 10 mK, we have 〈n〉 ≈ 220.
We will now turn on a dc voltage and study the response of

the beam. It should be noted that, although we here assume the

oscillator to be in its first resonant flexural eigenmode, the same
scheme can be applied to any other resonance or off-resonance
deformation state of the oscillator with little additional effort.

IV. PREPARATION OF THE INITIAL STATE

To prepare the proposed system, we form a cavity by
invoking a suitable reflective surface of the beam, as depicted
in Fig. 4. To achieve high reflectivity, a segment of the
top (or bottom) surface of the beam can be appropriately
coated (depending on ω0), for example with a few (∼10) nm
of aluminum. The Hamiltonian for such an optomechanical
system was derived by Law [32] for the case where the internal
modes of the mechanical oscillator can be neglected. In light
of Eqs. (22) and (23) however, this Hamiltonian is valid for
our study.

We begin by cooling down the system to the mK range.
We then purify the thermal state of the system with short
laser beam pulses (of duration small compared to the period
∼1/ω1 ∼ 10 μs–fs pulses will do) as follows [35,36]. Thus,
at the outset, the beam is in the thermal state per Eq. (26). In
this state, for the quadratures:

X1 = 1√
2

(b†1 + b1) =
√

mω1

�
q,

X2 = i√
2

(b†1 − b1) = p√
�mω1

, (28)

we have

〈X1〉 = 〈X2〉 = 0,
〈
X2

1

〉 = 〈
X2

2

〉 = 1

2

1 + β

1 − β
≈ kBT

�ω1
, (29)

ω=ω

ω=ω

ω(0)=ω1 

ω( )=Ω

FIG. 4. Cavity optomechanical state preparation and readout of
the deformation state of the electrostatically actuated beam employing
homodyne detection. Geometric parameters annotated include the
distance between the fixed and oscillating mirrors Lc, the oscillator
length L, and displacement w. The source laser beam PL of frequency
ω0 and the beam splitter BS provide the local oscillator beam LO, and
the cavity input beam Pi. With no coupling to the cavity, the oscillator
frequency is ω1 (
) prior to (after) switching on V. The cavity output
beam Po and detectors D, generate the difference photocurrent S,
which is processed for data acquisition.
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with uncertainties

X1 = X2 =
√

1 + β

2(1 − β)
≈

√
kBT

�ω1
. (30)

Denoting the kth creation and annihilation operators of the
cavity field with aL,k and a

†
L,k , the nonlinear Hamiltonian

by Law [32] considers all optical modes �
∑

k ωc,kaL,ka
†
L,k .

Since in the studied system, shown in Fig. 4, the cavity
length is larger than the oscillator displacement, that is,
w(L/2,t) � Lc, our case meets the condition for use of the
linearized Hamiltonian [32]. Furthermore, since the oscillator
frequencies are smaller than the cavity mode spacing [ω(V ) �
kωck], the cavity field is dominated by a single mode [32],
which is taken to be closest to resonance with the driving
laser [3]. Thus, fixing k and denoting the cavity frequency
ωc,k = ωc, the interaction Hamiltonian in the frame rotating at
the laser frequency ωc ≈ ω0 is

Hint = −�ωca
†
LaL

q

Lc

, (31)

noting that the radiation force is given by the expectation value
of �ωca

†
LaL/Lc. The equation of motion of the optical cavity

mode including dissipative effects is given by the Langevin
equation

daL

dt
= iωc

q

Lc

aL − 1

τc

aL +
√

2

τc

θL, (32)

where τc is the decay time of the cavity (τc � 1/ω1), and the
operator θL, representing the input noise, obeys commutation
relations

[θL(t) , θ
†
L(t ′)] = δ(t − t ′), (33)

with correlation functions

〈θL(t)θ †
L(t ′)〉 = δ(t − t ′). (34)

For maximal measurement strength we choose input drive

〈θL〉 =
√

NL

τc

e−|t |/τc , (35)

where NL is the mean number of photons in the pulse. Noting
that q does not change appreciably during τc since ω1τc � 1,
the equation of motion yields

d〈aL〉
dt

= − 1

τc

〈aL〉 +
√

2

τc

〈θL〉, (36)

we deduce

〈aL(t)〉 =
√

NL

[
1√
2

+
√

2
t

τc

θL(t)

]
e−|t |/τc . (37)

From the input-output formulation of cavities [33], relating
the far field amplitude outside to the internal cavity field, the
output is

aL,out =
√

2

τc

aL − θL. (38)

For the phase quadrature

PL,out = i√
2

(a†
L,out − aL,out) (39)

we obtain for large t ,

PL,out ≈
√

2ωc

q

L

√
2

τc

e−t/τc

∫ t

−∞
dt ′et ′/τc〈aL(t ′)〉

+ 2

τc

e−t/τc

∫ t

−∞
dt ′et ′/τc θL(t ′) − θL(t). (40)

This is measured via homodyne detection, i.e.,

PL =
√

2
∫ t

−∞
dt ′αLO(t ′)PL,out(t

′), (41)

where the local oscillator αLO envelope is chosen to match the
time dependence of the coefficient of q in the expression for
PL,out, as

αLO(t) = Ce−t/τc

∫ t

−∞
dt ′et ′/τc 〈aL(t ′)〉, (42)

where C is determined by the normalization condition∫ +∞

−∞
dtα2

LO(t) = 1.

The effect of the measurement, described by the nonunitary
operator:

Y = 1

π1/4
ei

3NL
2 τcωcq/Lc− 1

2 (PL−√
10NLτcωcq/Lc)2

, (43)

is a change of the state of the beam as

ρ → YρY †. (44)

We apply two pulses and corresponding homodyne measure-
ments at times t1 = π

2ω1
and t2 = 2t1. To find the resulting state,

it is convenient to express the thermal state Eq. (26) in terms
of coherent states |α〉 as [34]

ρ = 1 − β

πβ

∫
d2αe

− 1−β

β
|α|2 |α〉〈α|, (45)

and the operator Y in terms of the quadrature X1 given by
Eq. (28)

Y = 1

π1/4
eiP̄LX1− 1

2 (PL−χX1)2
, (46)

where we introduced the dimensionless parameters

P̄L = 3NL

2
ωcτc

√
�

mω1L2
c

, χ = ωcτc

√
10�NL

mω1L2
c

. (47)

The average value of an operator O can be written as

〈O〉 = 1

Z

∫
d2αe

− 1−β

β
|α|2〈α|Y †OY |α〉, (48)

where

Z =
∫

d2αe
− 1−β

β
|α|2 ||Y |α〉||2. (49)
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For explicit calculations we express the states in one of the
two quadrature representations. In the X1 representation X2 =
−i d

dX1
, and

〈X1|α〉 = 1

π1/4
e− 1

2 (X1−
√

2α)2+√
2i�αX1 , (50)

whereas in the X2 representation X1 = i d
dX2

, and

〈X2|α〉 = 1

π1/4
e− 1

2 (X2−
√

2�α)2−√
2iαX2 . (51)

The first homodyne measurement with outcome PL,1 is
described by the operator

Y1 = 1

π1/4
eiP̄LX2− 1

2 (PL,1−χX2)2
. (52)

For the quadrature X1 we readily obtain 〈X1〉 = 0. For the
other quadrature we expect 〈X2〉 ∝ PL,1. Taking derivatives
and setting PL,1 = 0, we obtain

〈X2〉 = − d log Z

dχ2

∣∣∣∣
PL,1=0

2χPL,1 = χPL,1

χ2 + 1−β

1+β

. (53)

For the variances we may set PL,1 = 0, as they are not affected
by the outcome of the measurement. We obtain

(X2)2 = − d log Z

dχ2

∣∣∣∣
PL,1=0

= 1

2
(
χ2 + 1−β

1+β

) . (54)

The calculation of the other variance X1 is somewhat
involved. Working in the second quadrature representation,
after some algebra, we obtain

(X1)2 = 1

2

(
χ2 + 1 + β

2(1 − β)

)
. (55)

Without the coupling (χ = 0), we recover our earlier re-
sult (30). For χ > 1, the measurement has resulted in squeez-
ing of the X2 quadrature below the ground state noise. The
wave function is now much closer to a minimum uncertainty
wave packet. For large χ , X2 approaches zero, whereas X1

diverges, while

X1X2 ≈ 1
2 , (56)

which is independent of the temperature (for sufficiently
high χ ), to be compared with X1X2 = 1+β

2(1−β) before the
measurement.

At time t2 = π
ω1

we perform a second homodyne detection
with outcome PL,2. The state of the system becomes

ρ0 ∝ Y2Y1ρY
†
1 Y

†
2 , (57)

where

Y2 = 1

π1/4
eiP̄LX1− 1

2 (PL,2−χX1)2
. (58)

For the variance of the first quadrature we have

(X1)2 =
∫

d2αe
− 1−β

β
|α|2 ||X1e

− 1
2 χ2X2

2 e− 1
2 χ2X2

1 |α〉||2∫
d2αe

− 1−β

β
|α|2 ||e− 1

2 χ2X2
2 e− 1

2 χ2X2
1 |α〉||2

. (59)

Using

〈X1|e− 1
2 χ2X2

2 |α〉 = 1

π1/4
e
−

1
2 (X1−√

2α)2+√
2i�αX2+χ2�α2

1+χ2 , (60)

we obtain

(X1)2 =
χ2 + 1+β

1−β

2
(
1 + 1+β

1−β
χ2 + χ4

) . (61)

Similarly, for the second quadrature, we obtain

(X2)2 =
1 + 1−β

1+β
χ2 + χ4

2
(
χ2 + 1−β

1+β

) . (62)

The average of the second quadrature 〈X2〉 remains the same,
whereas for the other quadrature, working as before, we obtain

〈X1〉 =
χ2 + 1+β

1−β

1 + 1+β

1−β
χ2 + χ4

χPL,2. (63)

For large χ , the wave function approaches a minimum
uncertainty wave packet, as was the case after the first
measurement. The advantage of the second measurement is
that the system is close to minimum uncertainly even with
moderate coupling (χ ∼ 1).

For example, for ω1/(2π ) = 1 MHz, T = 10 mK, and
χ = 1.5, before the measurements, we have X1 = X2 =
14.8. After the first measurement we obtain X1 = 14.9
and X2 = 0.47, whereas after the second measurement
X1 = 0.47 and X2 = 1.16. Notice that X1X2 = 0.55,
which is within 10% of the minimum 0.5. A moderate increase
in the coupling to χ = 3.5 squeezes the first quadrature
to X1 = 0.2 and X1X2 = 0.502. Details are shown in
Fig. 5.

The above discussion ignores thermal noise between the
two measurements. This can be safely done as long as the
average number of phonons 〈n〉 ≈ kBT

�ω1
is small compared with

the mechanical quality factor kBT
�ω1

� Q. For Q ∼ 104, this is

indeed the case, because kBT
�ω1

≈ 220.

V. QUANTUM EVOLUTION

Now switch on a dc voltage V = V0. In the sudden
approximation, the initial state of the system will be as
discussed above, built on the ground state |0〉ω1 . The latter,
however, is not annihilated by a [Eq. (24)]. Instead, it is a
squeezed state.

After we switch on the voltage, for the quadratures

X′
1 = 1√

2
(a† + a) = e−rX1,

X′
2 = i√

2
(a† − a) = erX2, (64)

we have

(X1)2 = e−2r
χ2 + 1+β

1−β

2
(
1 + 1+β

1−β
χ2 + χ4

) ,

(X2)2 = e2r
1 + 1−β

1+β
χ2 + χ4

2
(
χ2 + 1−β

1+β

) . (65)

As the voltage is tuned to its value near (but below) the pull-in
instability, we have 
 → 0, therefore, X1 can be made
very small and X2 very large with the product X1X2
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FIG. 5. Initial state uncertainties X1 (upper), X2 (middle),
and their product X1X2 (lower), vs coupling χ , before any
measurements, after the first homodyne measurement, and after
the second homodyne measurement, for frequency 1 MHz and
temperature 10 mK. Close to minimum uncertainty (X1X2 ≈ 0.5)
is attained after the second homodyne measurement even at moderate
coupling.

remaining near minimum uncertainty. It is worthy to note that
for the typical values of quality factor Q here, the oscillator
may exhibit transient oscillation when switching time is
considerably smaller than the dominant mode’s relaxation
time. In Fig. 6 we characterize the ring-down effect for a
beam for various finite switching times t0. As can be seen
for an oscillator with the fundamental frequency ≈1 MHz,
the oscillatory response is negligible for switching times
t0 � 0.3 μs. Therefore, for a more realistic application of the

FIG. 6. Characterization of the transient response of the oscillator
to the applied bias in a range of switching times. The oscillation
period of ≈1 μs for the midpoint displacement w(L/2) observed for
switching time t0 � 0.3 μs indicates the response (decaying after a
few tens of μs) is primarily dominated by the fundamental mode of
the oscillator.

voltage, let t0 be the time over which the voltage is switched
on, i.e.,

V 2(t) = V 2
0

1 + e−t/t0
, (66)

so that V switches from 0, for large negative t , say, t � −T ,
to V0, for large positive t � +T , with the switch occurring
over an interval t0 at t = 0. We would like to choose a
large enough T so that damping effects can be ignored. As
shown in Fig. 2, for a microbeam it is possible to observe
ω1 ∼ 1 MHz, and the quality factor can be Q ∼ 104 [13,37],
therefore, we may choose T � τ , where τ = Q/ω1 ∼ 10 ms
is the relaxation time of the system. A fast switch of t0 � μs
will then ensure that damping effects can be safely ignored.
We note that while design and fabrication of higher Q micro-
and nano-oscillators continue to be explored, values of 104

and higher have been reported for a variety of material
and geometric considerations [38–42]. From the Heisenberg
equations of motion:

dq

dt
= 1

i�
[q,�
a†a],

dp

dt
= 1

i�
[p,�
a†a], (67)

we deduce for q, measured from its stable equilibrium point q̄

(i.e., letting q → q − q̄),

d2q

dt2
+ 
̄2(t)q = 0, 
̄2(t) = ω2

1 − δ2

1 + e−t/t0
, (68)

where δ is the constant voltage shift in frequency defined
in (14). The time-dependent frequency 
̄(t) smoothly interpo-
lates between ω1 for t → −∞ and 
 � ω1 for t → +∞. We
obtain two linearly independent solutions, Q and Q∗, where

Q(t) = e−iω1t
2F1(a+,a−; 1 + a+ + a−; −et/t0 ), (69)

with a± = −i(ω1 ± 
)t0. Therefore,

q(t) = ReAQ(t), p(t) = mq̇(t). (70)

To determine the coefficient A, notice that for large negative
time q(t) ≈ ReAe−iω1t therefore, A = q(0) + ip(0)/(mω1),
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i.e., the system is described in terms of creation operators
b
†
1 [Eq. (20)]. To find q(t) for large positive t , we use the

hypergeometric identity:

2F1(a+,a−; 1 + a+ + a−; −et/t0 )

= a−�(1 + a− + a+)�(1 + a− − a+)

(a− − a+)2�2(1 + a−)
(1 + et/t0 )−a+

× 2F1

(
a+,1 + a−; 1 + a+ − a−;

1

1 + et/t0

)
+ (a+ ↔ a−).

We obtain q(t) ≈ ReBei
t , where

B = A
(
 − ω1)�(1 − 2iω1t0)�(1 + 2i
t0)

2
�2[1 − i(ω1 − 
)t0]

+ (ω1 → −ω1).

For small switch time t0 � 1/ω1,1/
, we have B ≈ q(0) +
ip(0)/(m
), i.e., the system is now described by creation
operators a† [Eq. (24)], as expected. The quadratures

X1 =
√

m

2�
̄
Re[q̇Q − qQ̇], X2 =

√
m

2�
̄
Im[q̇Q − qQ̇]

(71)

smoothly interpolate between the initial and final values of
their counterparts in Eqs. (28) and (64), respectively, as the
system evolves.

VI. DETECTION OF THE SQUEEZED STATE

To detect the state of the beam, we apply short pulses and
perform homodyne detection. Thus, we obtain the probability
distribution of the outcomes

P(PL) = Tr[YρY †]

Tr[Y †Y ]
. (72)

If we apply a sequence of pulses at times nπ



(n = 0,1,2, . . . ),
then all measurements commute with each other because each
one measures the quadrature X1. The duration of each pulse is
short, so that evolution of the beam during each pulse can be
neglected. We obtain

P(PL) = Tr[ρe−(PL−erχX1)2
]

Tr[e−(PL−erχX1)2 ]
, (73)

from which the state ρ can be reconstructed. Notice that the
effective coupling erχ is now strong so the distribution of PL

should closely resemble that of X1.
For comparison, one can perform similar measurements of

the beam before the switching on of the voltage (spaced by
shorter time intervals π

ω1
). In this case, the distribution of the

measurement outcomes is

P(PL) = Tr[ρ0e
−(PL−χX1)2

]

Tr[e−(PL−χX1)2 ]
, (74)

where ρ0 is the initial state of the beam (57). As can be seen in
Fig. 7, in comparison with the results in Fig. 5 (middle panel),
one achieves, after measuring the initial state, high levels of
squeezing even with moderate to weak coupling by fine tuning
the voltage V .
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FIG. 7. Uncertainty X1 before turning on the voltage V (t), and
after, for 
 = 10 kHz and 
 = 1 kHz vs coupling χ . Initial frequency
is ω1 = 1 MHz, and temperature is 10 mK.

VII. CONCLUSIONS AND OUTLOOK

In summary, the obtained analytical results, suggesting
plausible nonclassical behavior encoded in a single degree
of freedom of the studied beam near an electrostatically
induced instability point, predict strong squeezing in the
transversal displacement w. The predicted squeezed states
from the presented quantization scheme suggest potential use
in devising new sensing capabilities where the pull-in action
itself may be utilized as the basis for the signal transduction. In
particular, the electrostatically induced nonlinearity that may
cause tunneling of the eigenstates near the stable equilibrium
point may be proposed as a design route to structures that
optimally respond to given field distribution. The possibility
of employing such tunneling may lead to new measurement
technologies where the actuation mechanism is based on
the transition probability among the relevant states. In such
instances, one would advantageously employ the squeezed
states to better assess the transition of the stable to unstable
oscillations. Following the presentation here, one may further
consider the possibility of an entangled state where the oscilla-
tor is prepared to oscillate at two quantized flexural eignmodes,
for example by amplitude modulation of V (t) to achieve
the needed Fourier content. The preliminary computational
solutions of the classical model for the studied capacitive
microbridge proved useful by providing the oscillation eigen-
frequency spectrum {ωn} and the corresponding eigenmodes
{Xn}, the stationary response w and capacitance C as functions
of the applied voltage V with the prediction of a threshold value
for the pull-in instability. We may conclude that, for design and
implementation purposes, a trade-off between the material
type, oscillator dimensions, and gap size seems reasonable.
For example, fabrication employing graphitic materials with
high Young moduli of up to 10 times that of the polysilicon
considered here, shorter beams, and narrower gaps will not
only affect the spectral positions of the resonances of the
system but also greatly impact the threshold voltage. As
shown, a material with greater E, “blueshifts” the spectrum
but also increases the instability threshold voltage. Whereas,
for the quantized case, we obtained an analytical expression
to account for the contribution of the system’s capacitance to
the potential energy, in principle, the presented computational
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results can be extended to acquire, for a given applied potential
V , the capacitance as a function of the deformation state
w. Furthermore, although the classical computational model
neglected the stochastic cantilever oscillations, in the quantum
calculations, the random noise of the system was taken into
account, leading to squeezing when read out by coupling to
a cavity. The introduced nonlinearity in the dynamics of the
system via imposition of the potential difference V , allowed for
preparing the oscillator near the pull-in instability where strong
squeezing was predicted when read out from cavity-based
measurements. The presented approach can readily be adopted
to explore the quantum states of other solid and MEMS
oscillators. Indeed, with the exception of a modification to
Eq. (4), the calculation may be repeated to characterize the
squeezed states of cantilevers. One may have then to resort
to higher resonances (n) of the system since typically for
the same materials and dimensions, the spectrum {ωn} of a
cantilever (fixed-free beam) is down-shifted when compared to
a bridge (fixed-fixed beam), and consequently, a significantly
lower threshold voltage would be required to reach a pull-in
instability. Furthermore, the results suggest squeezed displace-
ment in other degrees of freedom may provide a significantly
more versatile dynamics since the frequencies of the torsional,
longitudinal, and lateral oscillation eigenmodes are not only
sufficiently well separated but also typically higher than those
of the transversal motion. Advanced fabrication will then
have to be employed to create MEMS with nonuniform or
asymmetric geometries to allow electrostatic access to the
nontransversal modes. Lastly, as a potential application of

the studied system we propose a sensitive photon detection
scheme. When V �= 0, subjecting the system to incoming pho-
tons (Fig. 1) can result in highly sensitive static and dynamic
mechanical actuation. For a photon contacting the surface at
x0 at time t0, inducing a photoacoustic effect of magnitude C,
a total force f (x,t) = Fdrive + Cδ(x − x0)δ(t − t0) is engen-
dered by a number of processes [43] such as carrier generation,
plasmon excitation and nonradiative decay, and photothermal
absorption depending upon the physical characteristics of
the oscillator, for example whether the structure is stratified
as a in metal-dielectric thin film or nanoparticle multilayer
composite with asymmetric thermal response [14,15]. Without
elaborating on the underlying mechanism, it can be shown that
the oscillator then undergoes the transient deformation [13]
w(x,t) = ∑∞

n=1 In(t)Xn(x)/ωn, with

In(t) =
∫ 1

0
Xn(u) du

∫ 1

0
f (u,τ )e−η(t−τ ) sin ωn(t − τ ) dτ,

where η represents a damping factor.
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[20] C. Höhberger Metzger and K. Karrai, Nature (London) 432,
1002 (2004).

[21] D. Kleckner and D. Bouwmeester, Nature (London) 444, 75
(2006).

[22] I. Favero and K. Karrai, Nat. Photon. 3, 201 (2009).
[23] J. S. Peng, L. Yang, and J. Yang, Smart Mater. Struct. 23, 065023

(2014).
[24] L. P. Grishchuk and M. V. Sazhin, Zh. Eksp. Teor. Fiz. 84, 1937

(1983).
[25] M. P. Blencowe and M. N. Wybourne, Physica B 280, 555

(2000).
[26] A. Kolkiran and G. S. Agarwal, arXiv:cond-mat/0608621.
[27] The computational results are obtained from the finite el-

ements method. The model was developed using Comsol,
http://www.comsol.com/.

[28] A. Fargas-Marques, J. Casals-Terré, and A. M. Shkel, JMEMS
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