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Single-photon-level quantum frequency conversion has recently been demonstrated using silicon nitride
microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of
quantum states of light across wide frequency ranges at subwatt pump powers. We present a detailed theoretical
analysis of the conversion dynamics in these systems and show that they are capable of converting single- and
multiphoton quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability
density, and pump-power requirements are derived which are in good agreement with previous theoretical and
experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding
95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum
conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-topped peak, indicating
a range of insensitivity to the spectrum of a single-photon input. Two alternate theoretical approaches are presented
to study the conversion dynamics: a dressed-mode approach that yields a better intuitive picture of the conversion
process, and a study of the temporal dynamics of the participating modes in the resonator, which uncovers
a regime of Rabi-like coherent oscillations of single photons between two different frequency modes. This
oscillatory regime arises from the strong coupling of distinct frequency modes mediated by coherent pumps.
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I. INTRODUCTION

Reliable control over quantum states of light is an important
objective of the optics community. The ability to determin-
istically manipulate the degrees of freedom in each photon
of an optical state is of paramount importance for quantum
optical technologies. Strategies for achieving such control are
at the core of efforts to advance optical quantum information
processing and computing.

One crucial attribute of a photon is its frequency. This
degree of freedom can be used to encode information [1], can
serve as an entanglement resource [2–4], or may simply be
chosen through design considerations of source, transmission,
or detection: selecting a convenient frequency range for a
specific experiment may depend on the technology that already
exists. For example, it is often desirable to work in the
telecommunications band with frequencies near 193 THz
—corresponding to a wavelength of 1550 nm—where many
commercially available devices efficiently and accurately
operate. However, for quantum applications that require
single-photon detection, working in this band necessitates the
use of expensive cryogenically cooled superconducting single-
photon detectors. It is therefore desirable to construct a simple
and inexpensive device that translates quantum states of light
from the telecommunications band to the wavelength range of
600–800 nm, where inexpensive room-temperature-operated
silicon avalanche photodetectors work efficiently [5,6].

The process in which single photons (or, more generally,
quantum states of light) are translated in frequency is termed
quantum frequency conversion (QFC). Conventional high-
efficiency implementations of QFC rely on bulk nonlinear
optical elements [6,7] or long fibers [8,9], and typically require
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one or several watts of pump power to attain high conversion
efficiencies. QFC at mW-level powers has been achieved using
integrated nanowires [10], but obtaining high efficiencies using
such short interaction media remains challenging. A compact,
integrated-chip-based device that operates at subwatt pump
powers and attains near-unit conversion efficiency with low
noise would therefore represent an important advance in QFC
technology.

These needs can be met by integrated resonant microstruc-
tures. By taking advantage of the resonant field enhancement
offered by such systems, the input pump power needed to
achieve high conversion efficiency can be drastically lowered,
as proposed by Huang et al. [11]. This idea came to fruition in a
recent experiment carried out by Li et al. [12], wherein a silicon
nitride microring resonator was employed to convert a weak,
single-photon-level input signal near 1550 nm to near 980 nm
using less than 60 mW of pump power with a conversion
efficiency exceeding 60%. Diamond microresonators have also
been proposed as a system for converting single photons pro-
duced by silicon-vacancy color centers to telecommunications
bands [13].

In this paper, we present a theoretical study of the dynamics
of quantum frequency conversion in microresonators. While
we focus on single-photon input states in microring resonators,
we show that microresonator-based QFC devices are capable
of translating multiphoton quantum states across large
frequency ranges. As is required due to the large span of
wavelengths involved in QFC, our model includes the effects
of different coupling conditions, quality factors, and loss rates
across different modes. We develop our formalism for QFC
schemes that exploit four-wave mixing arising from the third-
order nonlinear optical response, but our techniques can easily
be extended to treat media with second-order nonlinearities,
such as aluminum nitride [14,15]. Our results indicate that
wideband QFC, with near-unit efficiency using under 100 mW
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FIG. 1. Schematic of ring-channel structure for quantum
frequency conversion. Input fields ψJ< interact with the modes J

in the ring and exit the system into the outgoing fields ψJ>. The
coupling rate associated with the ring-channel coupling is �J ; photons
in the ring can also be lost to scattering fields φJ , with associated
rates MJ . The FWHM linewidth �f FWHM

J of ring mode J is then
�f FWHM

J = (�J + MJ )/π = �J /π .

of pump power, is possible in silicon nitride microring
resonators close to the current state of the art. By studying
the strongly driven regime in this system, it is also possible to
identify effects that arise from the strong coupling of different
frequency modes. This enables the exploration of phenomena
in an all-photonic platform that are usually only observed in
driven fermionic systems, such as isolated atoms or quantum
dots coupled to optical resonators, and quantum wells.

In Sec. II, we begin with the full Hamiltonian that describes
the QFC process, including all linear and nonlinear terms,
as well as those which describe the effects of scattering
loss. In Sec. III, we then discuss the subtleties of device
design, including dispersion considerations and unwanted
effects that lead to noise in the device output. In Sec. IV,
we use a frequency-domain approach to calculate the spectral
conversion probability density, conversion probability, and
power requirements for QFC, comparing our predictions to the
experimental results of Li et al. We then develop two alternate
approaches to study the conversion dynamics: In Sec. V,
we construct a dressed-mode picture that yields a more
intuitive explanation for the qualitative behavior of the QFC
process, and in Sec. VI, we study the time evolution of the
intraring photon-number expectation values, confirming the
regime of Rabi-like oscillations as a single-photon input oscil-
lates between different frequency modes. Our results are sum-
marized and areas for future work are discussed in Sec. VII.

II. SYSTEM HAMILTONIAN

In this section, we lay out the Hamiltonian that describes
the microring-channel system. We begin with the linear terms,
for which the essential points are summarized; for a detailed
discussion of these, the reader is referred to our earlier work
[16,17] and other treatments of microresonator quantum optics
[18–21]. We then discuss in detail the nonlinear interaction that
yields the desired frequency-conversion process.

A. Linear Hamiltonian

We consider a microring resonator with radius R side-
coupled to a single-channel waveguide, as illustrated in Fig. 1.
The full system Hamiltonian H is divided into constituent

components according to [16]

H = Hchannel + Hring + Hcoupling + Hloss, (1)

where Hchannel describes the fields propagating in the side
channel, Hring the resonator modes, and Hcoupling their coupling
to the channel fields. Finally, scattering modes into which ring
photons can be lost, as well as the couplings of those modes to
the ring modes, are described by Hloss. The ring accommodates
a comb of modes J with circular frequencies ωJ = 2πfJ and
wave numbers kJ that satisfy the resonance condition

kJ = 2πmJ

2πR
= mJ

R
, (2)

where mJ is a positive integer corresponding to the order of
the mode J . We assume the radius R is sufficiently small that
the free spectral range between neighboring modes greatly
exceeds each resonance linewidth within the entire mode
spectrum; that is, we are in the high-finesse regime at all
frequencies of interest. Each mode J is then represented by a
corresponding annihilation operator bJ , giving rise to a ring
Hamiltonian of the form

Hring =
∑

J

�ωJ b
†
J bJ + HNL, (3)

where HNL contains all the nonlinear interaction terms between
the ring modes. Using the ring resonances as reference
frequencies, we can write the channel Hamiltonian as a sum
over terms involving field operators ψJ (z) that only contain
modes with frequencies near ωJ . These fields then obey, to
very good approximation, the usual commutation relations

[ψJ (z),ψ†
J ′(z′)] = δJJ ′δ(z − z′),

[ψJ (z),ψJ ′(z′)] = 0, (4)

which allows us to write Hchannel as

Hchannel =
∑

J

{
�ωJ

∫
dzψ

†
J (z)ψJ (z)

+ i�vJ

2

∫
dz

[
dψ

†
J (z)

dz
ψJ (z) − H.c.

]}
, (5)

where vJ is the group velocity for channel modes with
frequencies near ωJ . Our model thus accounts for material
and modal dispersion between these frequencies, but assumes
that the group velocity does not vary significantly within the
linewidth of an individual ring resonance.

The Hamiltonian Hcoupling describing the coupling between
the ring and channel can be written as [22]

Hcoupling =
∑

J

[�γ ∗
J b

†
J ψJ (0) + H.c.], (6)

in which we have approximated the ring-channel coupling as
occurring at a single point z = 0. The coefficients γJ determine
the coupling strength between the channel fields and ring
modes, and can be controlled by fabricating structures with
different ring-channel coupling gaps, and by modifying the
effective length over which the evanescent fields from the
ring and channel overlap. These coefficients are related to
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the extrinsic quality factors Qext
J of the ring modes via

Qext
J = ωJ

2�J

, (7)

where �J = |γJ |2/2vJ is the rate associated with the ring-
channel coupling. These extrinsic quality factors differ from
the full quality factors QJ , which incorporate both Qext

J as
well as the intrinsic quality factors Qint

J that arise from the
effects of scattering losses in the ring [23]. A convenient way
to model such losses in this system [16] is to introduce a
fictitious “phantom channel,” identical to the physical channel,
accommodating fields φJ (z) with group velocities uJ that
couple to the ring in exactly the same manner as represented
in Hcoupling, but with coupling coefficients μJ in place of γJ .
The intrinsic quality factor is then given by

Qint
J = ωJ

2MJ

, (8)

where MJ = |μJ |2/2uJ is the coupling rate associated with
scattering. The full, loaded quality factor QJ of each mode
then obeys

1

QJ

= 1

Qext
J

+ 1

Qint
J

, (9)

which gives QJ = ωJ /(2�J ), with �J = �J + MJ the total
damping rate of mode J ; the FWHM linewidth �f FWHM

J of
mode J is then simply �J /π .

When studying the quantum statistics of photons generated
in the ring, it is crucial to distinguish between the extrinsic
and intrinsic quality factors, as the relative magnitudes
of the associated coupling rates have a drastic impact on
single-photon detection probabilities [16,24]. Indeed, as will
become apparent in Sec. IV, for the purposes of single-photon
frequency conversion, it is necessary to construct a strongly
overcoupled microring structure, in which Qint

J � Qext
J for all

relevant modes J , ensuring that single photons in the microring
predominantly couple out to the side channel rather than get
lost to scattering.

B. Nonlinear interaction

Here we consider a particular conversion scheme that
involves four different modes. The source photon centered
at the resonant frequency ωS is injected into the ring through
the channel, and is up-converted to the target photon centered
at resonant frequency ωT . The up-conversion results from the
third-order nonlinear interaction between source and target
photons mediated by two additional strong coherent beams
at resonant frequencies ωP (1) and ωP (2) . These are illustrated
in Fig. 2. The relevant term in the nonlinear part of the
Hamiltonian is [22]

HNL = −�
[bSbP (2)b
†
T b

†
P (1) + H.c.], (10)

where 
 is the nonlinear coupling strength parameter; this
can be estimated as 
 ≈ 2�ω2cn2/(n2Vring), where ω2 =√

ωSωP (1)ωT ωP (2) , n2 = √
n(ωS)n(ωP (1) )n(ωT )n(ωP (2) ) with

n(ω) the linear refractive index of the ring material at ω,
n2 the nonlinear refractive index of the ring material, and
Vring the volume of the ring mode [17,25]. Note that this
estimate for 
 takes into account the nondegenerate nature

1550 nm 775 nm

pump pumpsource target

FIG. 2. Schematic of frequency structure for quantum frequency
conversion. A single photon in the source mode centered at frequency
ωS is transferred to the target mode at ωT . This process is accompanied
by a photon from the strongly pumped mode P (2) at ωP (2) being
transferred to the strongly pumped mode P (1) at ωP (1) . Also illustrated
are frequencies ωX(1,2) , which must be at least several linewidths
away from any ring resonance to prevent spurious photons being
generated in the source and target modes (see Sec. III). Per Eq. (13),
the frequency separation between the two pumped modes must equal
that between the source and target for the process to conserve energy.
As expressed in Eq. (12), phase matching requires mode P (1) to be
separated from the source by the same number of mode orders as
the target is from P (2). Note that the wavelengths 1550 and 775 nm
are labeled here for illustrative purposes only; the conversion scheme
does not sensitively depend on the specific choice of wavelengths.

of the the four participating modes, leading to a factor of 2
difference compared to earlier work [17]. In this estimate,
we also assume near-perfect phase matching of the nonlinear
interaction, which requires the wave numbers of these modes
to satisfy

kP (2) − kP (1) = kT − kS, (11)

meaning the corresponding mode orders must obey

mP (2) − mP (1) = mT − mS. (12)

For this process to conserve energy, the frequency separa-
tion of the pumped modes must equal that between the source
and target,

ωP (2) − ωP (1) = ωT − ωS. (13)

The process described by (10) physically corresponds to a pho-
ton in P (2) being transferred to P (1), while the source photon
is simultaneously transferred to the target mode. The bright,
coherent nature of the energy in the pumped modes strongly
couples the source and target modes, mediating an effective
beam-splitter-like interaction that transfers photons from the
source to the target. This interaction is sometimes referred to
as Bragg scattering four-wave mixing (BS-FWM) [12,26].

Note that many additional terms besides (10) appear in HNL,
including terms that describe self-phase modulation, cross-
phase modulation, and various four-wave mixing processes
which transfer photons between other ring modes. However,
we show in the Appendix that the effects of self- and cross-
phase modulation can be easily canceled by suitably adjusting
the frequencies and intensities of the pump input beams. The
frequencies ωJ in this work are thus understood to include the
effects of self- and cross-phase modulation, which usually lead
to modest frequency offsets at the powers considered. Further-
more, as detailed in the following section, by taking advantage
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of the significant dispersion, it is possible to find a specific pair
of pump modes that will suppress any other competing four-
wave mixing processes that influence the source and target
modes. Keeping in mind these considerations, it is justified to
study the desired interaction (10) in isolation, neglecting the
other terms that appear in the full nonlinear Hamiltonian.

We choose to study quantum frequency conversion using
this particular nonlinear interaction due to its ability to translate
single- and multiphoton states across large frequency ranges
using modest input powers and with noise limited only by
technical rather than fundamental considerations. As will
become clear in the following section, this interaction also
enables the strong coupling of photonic modes with very
different frequencies.

III. STRUCTURE DESIGN

While in principle any two modes satisfying (13) and (11)
can be chosen for the pumps, in practice they should be selected
to lie as far as possible in frequency from the source and target.
This criterion is important for minimizing the contamination of
the source and target modes with spurious photons generated
via spontaneous Raman scattering of photons from the pumped
modes. By selecting P (1) to have lower frequency than the
source and P (2) to have lower frequency than the target, the
Stokes contribution to noise in the source and target modes
can be eliminated, leaving only the anti-Stokes contribution,
which is minimized by separating the pumped modes from the
source and target. The P (1) mode must be separated from the
source by exactly the same number of mode orders as P (2) is
from the target to satisfy the phase-matching constraint (11);
simultaneously satisfying energy conservation (13) therefore
requires the parameters of the waveguide structure out of which
the microring is formed to be designed such that the free
spectral range near the source mode equals that near the target.

An additional restriction on the choice of pumped modes
arises from undesired four-wave mixing processes. Apart from
being unaffected by noise from spontaneous Raman scattering,
the source and target modes must also remain uncontaminated
by any χ(3) process that results in a photon emitted into
those modes, other than the desired interaction (10). Two such
possible processes can be identified:

(1) Two P (1) photons may produce a pair of photons, one of
which may be at the source frequency (2ωP (1) → ωS + ωX(1)

where X(1) is a possible unwanted ring mode).
(2) Two P (2) photons may produce a pair of photons, one of

which may be at the target frequency (2ωP (2) → ωT + ωX(2) ,
where X(2) is a possible unwanted ring mode).

Were the free spectral range of the ring resonator modes
uniform over its entire span, eliminating these parasitic effects
would be impossible: there would always exist modes at the
undesired frequencies ωX(1,2) . However, the modal and material
dispersion can impose a significant variation in the mode
spacing in different regions of the mode comb. The local free
spectral range between neighboring modes J and J ′ is given by

�f FSR
J = 1

2π
[ω(kJ ′) − ω(kJ )]

≈ 1

2π

[
ω(mJ /R) + dω

dk

∣∣∣∣
k=kJ

(
mJ + 1

R
− mJ

R

)]

− 1

2π
ω(mJ /R)

= v
ring
J

2πR
, (14)

where v
ring
J is the group velocity in the ring associated with

mode J . The free spectral range is thus proportional to the
local (in frequency space) group velocity. While the microring
must be engineered to have equal group velocities near the
source and target modes, it is important to ensure that the group
velocities near those modes do vary by an amount sufficient
to ensure the absence at the undesired frequencies ωX(1,2) . This
effect is evident in the experimental data reported by Li et al.
[12], wherein output photons were observed at sidebands
situated symmetrically about the pump modes and displaced in
frequency opposite the source and target modes. The amount of
generated power in these sidebands was observed to decrease
as the source photon frequency was translated farther from
the corresponding pump; this can be attributed to the growing
frequency mismatch that arises from dispersion in the ring.

With a properly designed structure, either simulated or from
an experimentally characterized microring, it is possible to
find a pair of pump modes which satisfy the desired energy-
conserving relation (13) and are separated from the source and
target modes by an equal number of mode orders, but for which
no modes at the undesired frequencies ωX(1,2) exist [12]. Of
course, for realistic mode structures, these conditions cannot
be perfectly satisfied; however, it suffices that (13) holds to a
precision within the linewidth of the resonator modes and that
no modes exist at frequencies within several linewidths of the
undesired frequencies ωX(1,2) .

IV. CONVERSION DYNAMICS

To calculate the properties of the QFC device, such as the
probability of a source photon being successfully transferred
to the target mode, we solve the relevant Heisenberg equations
of motion for the slowly varying ring operators bJ (t) =
bJ (t)eiωJ t , treating the pumps classically while retaining the
quantum-mechanical nature of the source and target modes. By
introducing incoming and outgoing slowly varying channel
field operators ψJ<(z,t) and ψJ>(z,t) that, respectively,
correspond to the channel fields before and after the ring-
channel coupling point [16], the fields immediately to the right
of the coupling point can be calculated via

ψJ>(0,t) = ψJ<(0,t) − iγJ

vJ

bJ (t). (15)

The source and target mode operators in the ring then satisfy
a simple set of coupled ordinary differential equations,

(
d

dt
+ �S

)
bS(t) = −iγ ∗

S ψS<(0,t) − iμ∗
SφS<(0,t)

+ i
β
∗
P (2)βP (1)bT (t), (16a)(

d

dt
+ �T

)
bT (t) = −iγ ∗

T ψT <(0,t) − iμ∗
T φT <(0,t)

+ i
βP (2)β
∗
P (1)bS(t), (16b)
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where βP (2) and βP (1) are the amplitudes of the pumped modes
in the ring. We assume these pumped modes are driven by
classical, resonant cw beams and have reached a constant
steady-state amplitude in the ring; these amplitudes are then
given by

βJ = −iγ ∗
J eiξJ

�J

√
P in

J

�ωJ vJ

, (17)

where P in
J is the input power in mode J (either P (1) or P (2))

and ξJ is the (constant) phase of the associated beam in the
channel.

Equations (16) can easily be solved in the frequency
domain. Defining for any slowly varying operator O(t) the
Fourier amplitude Ô(�),

Ô(�) =
∫

dt√
2π

O(t)ei�t , (18)

we obtain, for the ring operators,

(−i� + �S)b̂S(�) = −iγ ∗
S âS(�)

− iμ∗
Sd̂S(�) + igb̂T (�), (19a)

(−i� + �T )b̂T (�) = −iγ ∗
T âT (�)

− iμ∗
T d̂T (�) + ig∗b̂S(�), (19b)

where g = 
β
∗
P (2)βP (1) is the source-target coupling parameter.

The âJ (�) are the annihilation operators for modes with
frequencies ωJ + � in the incoming channel field J , and
d̂J (�) are similar annihilation operators for the phantom
channel fields; since the fast optical frequencies have been
removed from the barred operators, the variable � now
represents a frequency offset from the relevant ring mode
reference frequency. While the channel operators satisfy the
commutation relations

[âJ (�),âJ ′ (�′)] = 0,
(20)

[âJ (�),â†
J ′ (�′)] = v−1

J δJJ ′δ(� − �′),

and similar for d̂J (�), the frequency-domain ring operators
b̂J (�) do not satisfy any such simple commutation relations.

We are primarily interested in the contribution to b̂T (�)
from âS(�); solving this system of algebraic equations, we
obtain, for the target,

b̂T (�) = γ ∗
S g∗

(−i� + �T )(−i� + �S) + |g|2 âS(�), (21)

in which we have neglected all terms involving the other chan-
nel fields, since those terms will not contribute to the quantities
of interest in this work. Using the channel input-output relation
(15), for the outgoing target mode annihilation operators in the
channel ĉT (�) [keeping only the term involving âS(�)], we
obtain

ĉT (�) = iγT γ ∗
S g∗/vT

(−i� + �T )(−i� + �S) + |g|2 âS(�). (22)

The omission of terms involving other channel field ampli-
tudes, such as âT (�), is justified provided we restrict ourselves
to using (22) only to calculate physical quantities relating to the
outgoing target field for inputs that are confined to frequencies

close to the source mode. This relation enables the calculation
of properties of the outgoing target field for any quantum state
input of the source field, not merely single-photon states: QFC
can be used to convert N-photon Fock states, squeezed states, or
other multiphoton quantum optical inputs. For an arbitrary in-
put state |�S〉 with frequency support confined to a bandwidth
near the the source mode frequency, the expectation value
of an arbitrary normal-ordered operator product of the form
O(ν1, . . . ,νN ) = ∏M

j=1 ĉ
†
T (νj )

∏N
k=M+1 ĉT (νk) is given by

〈O(ν1, . . . ,νN )〉 = 〈�S |
M∏

j=1

ĉ
†
T (νj )

N∏
k=M+1

ĉT (νk)|�S〉

=
M∏

j ′=1

−iγ ∗
T γSg/vT

(iνj ′ + �T )(iνj ′ + �S) + |g|2

×
N∏

k′=M+1

iγT γ ∗
S g∗/vT

(−iνk′+�T )(−iνk′+�S)+|g|2

×〈�S |
M∏

j=1

â
†
S(νj )

N∏
k=M+1

âS(νk)|�S〉. (23)

Provided |�S〉 describes a state containing photons at
frequencies well within one linewidth of ωS , we can set
νj ′ = νk′ = 0 in the denominators of the first two products in
this expression, giving

〈O(ν1, . . . ,νN )〉 = (−iγ ∗
T γSg/vT )M (iγT γ ∗

S g∗/vT )N−M

(�T �S + |g|2)N

×〈�S |
M∏

j=1

â
†
S(νj )

N∏
k=M+1

âS(νk)|�S〉,

(24)

which is, up to a frequency-independent proportionality factor,
precisely the same function of (ν1, . . . ,νN ) that the expectation
value of 〈O(ν1, . . . ,νN )〉 would be were it calculated using
the source operators âS instead of ĉT . Provided the system is
strongly overcoupled so that �J ≈ �J for J = S,T , making
loss negligible, and the group velocities near the source and
target frequencies are equal (vS ≈ vT ), the proportionality
factor has unit magnitude when |g| =

√
�S�T . In such a

system, all measurable quantities relating to the input state of
the source are effectively “transplanted” into the target field:
the device converts arbitrary inputs to the target frequency, not
merely single-photon states. However, for definiteness, in what
follows we return to the case of a single-photon input state.

A. Spectral conversion probability

Since the microring system has a finite bandwidth, respond-
ing only to inputs in a narrow frequency range about the source
resonance, it is instructive to study the form of the spectral
conversion probability density C(�), which we take to be the
expectation value of outgoing target photon number density as
a function of frequency,

C(�) = vT 〈ĉ†T (�)ĉT (�)〉. (25)
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Computing this for a single-photon source input state |�S〉
with spectral profile f̂0(�),

|�S〉 = √
vS

∫
f̂0(�)â†

S(�)|vac〉, (26)

in which f̂0(�) is normalized according to
∫

d�|f̂0(�)|2 = 1,
we obtain

C(�) = 4�S�T |f̂0(�)|2p(�), (27)

where

p(�) = |g|2
|(−i� + �T )(−i� + �S) + |g|2|2 . (28)

The spectral conversion probability density is thus propor-
tional to the product of the power spectrum of the input
source photon with the factor p(�), which is independent
of the source photon input and describes the sensitivity of the
response of the device as a function of the input frequency.
As exhibited in Fig. 3, plotting p(�) with �S = �T ≡ �

for different values of the source-target coupling strength |g|
reveals that the spectral response of the device is singly peaked
when |g| is smaller than the damping rate �, splitting into two
peaks separated by approximately 2|g| when |g| exceeds �,
indicating the strong coupling of the source and target modes.
At a critical driving strength when |g| = �, p(�) exhibits a
broad, flat-topped peak, indicating that the spectral response
is nearly frequency independent in a significant spectral range
about resonance; the FWHM of this peak is 2

√
2 �, which is√

2 times that of the ring resonance itself. The first three, and
the fifth through seventh, derivatives of p(�) at � = 0 are all
precisely zero, indicating that the device spectrum (a smooth

FIG. 3. Device spectral sensitivity function p(�) (28) scaled to
unit maximum plotted vs � in units of � (taken to be equal for
the source and target modes, �S = �T ≡ �) for different nonlinear
coupling strengths |g|. Below a critical strength |g| = �, the spectrum
is singly peaked at a frequency corresponding to the source mode
resonance ωS (solid curve). Above this critical |g|, when the source
and target modes are strongly coupled, the spectrum is doubly peaked
at frequencies approximately corresponding to ωS ± |g| (dot-dashed
curve). When |g| = �, the spectrum exhibits a single, flat-topped peak
that is significantly broadened (dashed curve), indicating a range of
insensitivity to source photon input frequency.

function) is extremely insensitive to frequency near � = 0 at
this special |g|. As we demonstrate in the following section,
this critical value of |g| that gives rise to the flat spectral
response is precisely the coupling strength that maximizes the
probability of successfully converting the source photon.

B. Conversion probability

Having calculated C(�), it is a straightforward matter to
obtain the probability PT of successful conversion of a source
photon to the target mode. This is simply

PT =
∫

C(�)d�. (29)

Provided the spectrum |f̂0(�)|2 of the incoming photon is
centered on frequency �in (corresponding to a source photon
with central frequency ωS + �in) and significantly narrower
than the width of the device spectral response function p(�),
we obtain

PT = 4�S�T |g|2
|(−i�in + �T )(−i�in + �S) + |g|2|2 . (30)

When the source photon central frequency is exactly ωS , i.e.,
�in = 0, this becomes

PT = 4�S�T |g|2
(�S�T + |g|2)2

. (31)

This probability is plotted as a function of |g| in Fig. 4, and
is maximum when the coupling strength reaches the critical
value of |g| =

√
�S�T ; this maximum is precisely

Pmax
T = �S�T

�S�T

= QSQT

Qext
S Qext

T

. (32)

The maximum achievable success probability is limited only
by the ratio between the scattering and ring-channel coupling

FIG. 4. Probability of successful conversionPT (30) as a function
of coupling strength |g| for devices with different coupling specifica-
tions. The coupling rates for the source and target were taken to be
equal (�S = �T ≡ � and �S = �T ≡ �). The maximum achievable
conversion probability is limited only by loss, and tends to unity as
the channel-ring coupling � is increased.
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rates: When the ring system is strongly overcoupled with
�S ≈ �S and �T ≈ �T , so that QS ≈ Qext

S and QT ≈ Qext
T ,

the maximum success probability is unity. The input power
necessary to achieve this maximum conversion probability can
be found by relating the coupling strength |g| that maximizes
PT to P in

P (1) and P in
P (2) ; we find that the maximum conversion

probability occurs when

P in
P (1)P

in
P (2) = (�ωP (1) )(�ωP (2) )

�S�T �
2
P (1)�

2
P (2)

4
2�P (1)�P (2)
. (33)

Obtaining near-unit conversion probability in a realistic
microring system requires a number of conditions to be
satisfied. An ideal system would be strongly overcoupled
for the source and target modes, but critically coupled for
the pumped modes (�P (1) = 2�P (1) and �P (2) = 2�P (2) ). This
is difficult to achieve in practice, for typical devices are
usually fabricated to obtain the desired channel-ring coupling
at one resonance. As demonstrated by Li et al. [12], it is
possible to use a pulley-coupling scheme to achieve fairly
similar quality factors across a wide spectral range while
maintaining the overcoupling of the source and target modes.
Yet this comes at the cost of overcoupling the pumped
modes, manifesting the trade-off between power efficiency and
conversion probability: as described by Eq. (33), increasing
the channel-ring coupling necessitates higher input power
required to reach the coupling strength that yields maximum
conversion probability. This trade-off is analogous to that
which arises between the heralding efficiency and heralding
rate in microresonator-based heralded single-photon sources
[24,27–30].

Despite these limitations, Li et al. [12] have reported a
conversion efficiency of over 60% from a weak coherent
source beam at 1550 nm to a target mode at 980 nm in
silicon nitride microrings using less than 60 mW of input pump
power, validating such systems as very promising candidates
for integrated QFC. Comparison of those experimental results
with estimates made using the calculations developed in this
paper shows good agreement between theory and experiment
(see Table I). While the efficiency of 60% reported by Li
et al. slightly exceeds our calculated maximum of 49% based
on their reported quality factors, the inherent uncertainty
involved in experimentally determining the system parameters,
especially the insertion losses, leaves a fairly wide margin

for error. With this in mind, we also explored other possible
parameter values: excitingly, the parameters needed to obtain
a success probability exceeding 95% with less than 100 mW
of input power are not far from the current state of the art.

C. Phase stability

While the conversion probability depends on the modulus
of the coupling strength g, it is important to note that the phase
of g is relevant for certain applications. This phase, which is
completely determined by the phases of the pump fields in the
ring, must be stable on a time scale greater than the lifetimes

�
−1
J of the ring modes for conversion to efficiently take place.

While this phase can be adjusted by suitably modulating the
input beams, in practice it is difficult to achieve a definite
phase relationship between two pumps produced by separate
lasers. However, for the scheme considered in which the target
frequency is approximately double the source frequency, it is
possible to use a frequency-doubled version of P (1) for the
second pump P (2), eliminating the need to actively control
each pump phase separately.

Still, even if a stable relative phase between the two pumps
is achieved, the absolute phase stability of the pumps may be
important. If it is crucial for a specific application to maintain
the phase coherence between different photons injected and
converted at different times in one experimental run, the
pump phases must be stable over the entire duration between
those times; an unstable pump would destroy any such phase
coherence.

V. DRESSED MODES

The simple frequency-domain approach used in the previ-
ous section is sufficient to calculate the conversion probability,
which is the primary figure of merit for a microring QFC
device. However, several qualitative aspects of the conversion
dynamics, such as the dependence of PT on the coupling
strength |g| shown in Fig. 4, can be better understood using an
alternate approach. For example, in contrast to conventional
nonresonant QFC schemes, wherein the conversion probability
oscillates as a function of pump power [9], the microresonator-
based QFC system attains a single maximum conversion
probability at one specific coupling strength, and declines
asymptotically to zero as the input power exceeds this value. As

TABLE I. Table of approximate input power P in = √
P in

P (1)P
in
P (2) required in the pump input fields to achieve maximum conversion probability

P max
T for several combinations of intrinsic (full) quality factors Qint

S,P (1) (QS,P (1) ) for the source and P (1) and Qint
S,P (2) (QS,P (2) ) for the target and

P (2). Quality factors for nearby modes are assumed to be equal, and material parameters used correspond to those for typical silicon nitride
microrings. The first row corresponds to an idealized structure in which the quality factor at all relevant frequencies is 5 × 106. This value is
not far from what can be achieved in SiN rings (e.g., [31]), demonstrating that very high-efficiency QFC at subwatt input power is possible with
only modest improvement to the current state of the art. The second row corresponds to more realistic parameters, which take into account the
dependence of the quality factor on the resonance frequency. These values are close to the state of the art [12,31,32]. The last row corresponds
to our estimates using parameters reported by Li et al. [12]; these estimates for input power and conversion probabilities are in agreement with
those reported experimental results.

Qint
S,P (1) (QS,P (1) ) Qint

T ,P (2) (QT,P (2) ) P in (mW) Pmax
T

Ideal 5 × 106 (1 × 105) 5 × 106 (1 × 105) 65 0.96
Realistic 3 × 106 (3 × 105) 1 × 106 (1 × 105) 23 0.81
Li et al. [12] 4.5 × 105 (1.5 × 105) 9.0 × 105 (2.4 × 105) 28 0.49
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suggested by Huang et al. [11,33,34], this can be understood
as a consequence of an effective shift in the resonance of ring
modes that are coupled via the pumped modes. To fully explain
this, here we develop a dressed-mode picture for the conversion
dynamics, identifying new modes in the ring which are linear
combinations of the original source and target modes. These
new modes are uncoupled, and represent new energy-shifted
eigenmodes that couple to similar linear combinations of
the source and target fields in the channel. The conversion
dynamics, including the behavior of the conversion probability
as a function of coupling strength, can then be understood as
a consequence of the phase shift imposed on incident source
photons.

For the sake of clarity, in this section we develop our
results for a system with equal coupling coefficients and group
velocities for the source and target modes: �S = �T ≡ �,
γS = γT ≡ γ , μS = μT ≡ μ, and vS = vT ≡ v. The gener-
alization to arbitrary coefficients is straightforward and our
conclusions do not depend sensitively on these assumptions.

The coupled system (16) can be written in matrix form,

db(t)

dt
= Qb(t) + D(t), (34)

where b(t) = [bS(t),bT (t)]T ,

Q =
(

−� ig

ig∗ −�

)
, (35)

and

D(t) =
(

−iγ ∗ψS<(t) − iμ∗φS<(t)

−iγ ∗ψT <(t) − iμ∗φT <(t)

)
. (36)

As is often done when solving coupled harmonic-oscillator
equations of motion [35], this system can be decoupled by
diagonalizing Q, resulting in the system of equations

db′(t)
dt

= Q′b′(t) + D′(t), (37)

where

Q′ =
(−� + i|g| 0

0 −� − i|g|
)

(38)

and

b′(t) = 1√
2

(
e−iθ bS(t) + bT (t)
e−iθ bS(t) − bT (t)

)
≡

(
b+(t)
b−(t)

)
. (39)

The transformed channel terms become

D′(t) = 1√
2

(
e−iθ [−iγ ∗ψS<(t) − iμ∗φS<(t)] + [−iγ ∗ψT <(t) − iμ∗φT <(t)]

e−iθ [−iγ ∗ψS<(t) − iμ∗φS<(t)] − [−iγ ∗ψT <(t) − iμ∗φT <(t)]

)

≡
(

−iγ ∗ψ+<(t) − iμ∗φ+<(t)

−iγ ∗ψ−<(t) − iμ∗φ−<(t)

)
, (40)

where we have introduced new channel fields ψ±<(t) =
2−1/2[e−iθψS<(t) ± ψT <(t)], and similar for φ±<(t). As
pointed out in Sec. IV C, the phase eiθ = g/|g| that arises
from the pump input beam phases is not especially relevant to
our discussion; we thus assume the pump beams have been set
such that θ = 0.

The diagonalized source-target mode system gives rise to
new modes b±(t), which can be understood as equal symmetric
and antisymmetric superpositions of the original source and
target modes. These modes are shifted in energy by ∓�|g| from
the original modes, and couple to similar equal symmetric and
antisymmetric superpositions of the source and target channel
fields as described by ψ±<(t). The form of these new channel
fields is a feature inherited from the dressed modes in the ring,
which determines the most natural combination of the channel
fields to be used in writing the dressed-mode dynamics. The
response of the ring system to photons in these ψ±< fields
incident from the side channel can be understood in the usual
way one analyzes a passive linear microring filter. Rewriting
the channel input-output relation (15) in terms of the ψ±<

fields, we obtain

ψ±>(t) = ψ±<(t) − iγ

v
b±(t), (41)

which becomes, in the frequency domain,

ĉ±(�) = â±(�) − iγ

v
b̂±(�), (42)

where ĉ±(�) and â±(�) are, respectively, the annihilation
operators associated with the outgoing and incoming ψ±
channel fields. These operators do not correspond to channel
modes with a definite optical frequency offset of � from
any single ring resonance, but rather to equal superpositions
of channel modes offset by � from the source and target
frequencies. Solving the transformed system of Eqs. (37) in
the frequency domain and substituting the resultant amplitudes
b̂±(�) into (42), we obtain

ĉ±(�) =
[

1 − 2�

−i(� ± |g|) + �

]
â±(�)

−
[
μ∗γ
v

1

−i(� ± |g|) + �

]
d̂±(�). (43)

For a strongly overcoupled system with � � M so that � ≈ �

(as is required to achieve high-efficiency QFC), we can neglect
the contribution from loss, giving

ĉ±(�) = −i(� ± |g|) − �

−i(� ± |g|) + �
â±(�). (44)

The factor multiplying â±(�) in this expression has unit
modulus, serving only to impose a frequency-dependent phase
on an incident photon in the ψ±< field that passes the ring to
the outgoing ψ±> field. This phase shift is plotted in Fig. 5
as a function of frequency, and ranges between 0 and 2π over
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FIG. 5. Phase shift ε± (47) imposed on incident photons in the
ψ± field as a function of frequency for coupling strength |g| = �. At
� = 0, corresponding to an incident source photon with frequency
ωS , the total phase shift ε+ − ε− = π , yielding complete frequency
conversion to the target.

a frequency range determined by � centered on � = ∓|g|, at
which the phase shift is precisely π .

The input state |�S〉 (26), which represents a photon
with support in the frequency domain only near the source
frequency, can be written in terms of the new channel
fields,

|�S〉 = √
v

∫
d�f̂0(�)

1√
2

[â†
+(�) + â

†
−(�)]|vac〉. (45)

After interacting with the microring, this state is transformed
to the output state |�T 〉,

|�T 〉 = √
v

∫
d�f̂0(�)

1√
2

[â†
+(�)eiε+ + â

†
−(�)eiε−]|vac〉,

(46)

where

eiε± = −i(� ± |g|) − �

−i(� ± |g|) + �
. (47)

As illustrated in Fig. 5, when the coupling strength equals
the cavity damping rate, |g| = �, and for an input photon
spectral profile f̂0(�) much narrower in extent than �, we have
ε+ = 3π/2 and ε− = π/2, yielding an overall phase shift of
π between the + and − modes. The output state is then, up to
an overall phase factor,

|�T 〉 = √
v

∫
d�f̂0(�)

1√
2

[â†
+(�) − â

†
−(�)]|vac〉

= √
v

∫
d�f̂0(�)â†

T (�)|vac〉, (48)

precisely the input state up-converted to the target mode.
The dressed-mode pictures give a clear explanation for the

behavior of the conversion probability as a function of the
coupling strength |g| shown in Fig. 4. The phase shift incurred
between the + and − components of an incoming source
photon at ωS is precisely π only when |g| = �, at which

point each of the + and − modes incur a π/2 phase shift.
As |g| increases past �, the frequencies of the dressed ring
modes shift such that neither of them efficiently couples to the
frequency range of the incoming source photon. The incoming
photon is then entirely off resonance with all of the ring modes,
and continues past the coupling point without the phase shift
necessary to convert it to the target field.

VI. TEMPORAL DYNAMICS

The temporal behavior of the source and target modes in the
ring can reveal interesting features of the conversion dynamics
that are not immediately apparent in the frequency domain.
Indeed, it is only in the time domain that an oscillatory regime
is clearly demonstrated, in which the single-photon input
undergoes coherent oscillations between the source and target
modes in a manner closely resembling Rabi oscillations [36].

For clarity, we again assume equal coupling constants,
coupling rates, and group velocities for different modes. The
matrix equation of motion (34) for the source and target
mode operators can be solved exactly by introducing a Green
function G(t,t ′), which takes the form of a 2 × 2 matrix, such
that the solution b(t) is

b(t) =
∫ t

−∞
dt ′G(t,t ′)D(t ′). (49)

The Green function must satisfy

d

dt
G(t,t ′) = QG(t,t ′) (50)

for t > t ′ subject to the initial condition G(t ′,t ′) = I , where
I is the 2 × 2 identity matrix. Since the nonlinear coupling
strength |g| is constant for cw pumps, this equation has a
simple solution,

G(t,t ′) = exp{(t − t ′)Q}, (51)

which can be written explicitly as

G(t,t ′) = e−(t−t ′)�

(
cos

[
(t − t ′)|g|]ieiθ sin[(t − t ′)|g|]

ie−iθ sin[(t − t ′)|g|] cos[(t − t ′)|g|]

)
.

(52)

For simplicity, in the following we assume the pumps have
been set such that the phase eiθ = g/|g| = 1. The elements
Gij of G serve as temporal response functions that describe
the evolution of the source and target modes as they couple to
the channel fields and to each other. With an explicit expression
for G(t,t ′), the solutions for the source and target operators can
be directly calculated using (49), giving

bS(t) =
∫ t

−∞
dt ′{G11(t,t ′)[−iγ ∗

S ψS<(0,t ′) − iμ∗
SφS<(0,t ′)]

+G12(t,t ′)[−iγ ∗
T ψT <(0,t ′) − iμ∗

T φT <(0,t ′)]},
(53a)

bT (t) =
∫ t

−∞
dt ′{G21(t,t ′)[−iγ ∗

S ψS<(0,t ′) − iμ∗
SφS<(0,t ′)]

+G22(t,t ′)[−iγ ∗
T ψT <(0,t ′) − iμ∗

T φT <(0,t ′)]}.
(53b)
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A single-photon source input state |�S〉 (26) can be
expressed in terms of its temporal profile f0(t) as

|�S〉 = √
v

∫
dt ′f0(t ′)ψ

†
S<(0,t ′)|vac〉, (54)

where f0(t) is normalized according to
∫

dt ′|f0(t ′)|2 = 1. The
photon-number expectation values for the source and target
modes can then be calculated explicitly for this state, giving

NS(t) = 〈b†S(t)bS(t)〉

= 2�

∣∣∣∣
∫ t

−∞
dt ′e−(t−t ′)� cos[(t − t ′)|g|]f0(t ′)

∣∣∣∣
2

(55)

and

NT (t) = 〈b†T (t)bT (t)〉

= 2�

∣∣∣∣
∫ t

−∞
dt ′e−(t−t ′)� sin[(t − t ′)|g|]f0(t ′)

∣∣∣∣
2

. (56)

The photon number is therefore calculated as the input photon
temporal profile integrated against a response function that
decays at the rate determined by the ring resonance linewidth
and oscillates at the coupling frequency |g|. Since at most
one photon is ever present in the source and target modes,
the functions NS(t) and NT (t) can be interpreted as the
instantaneous probability at time t for there to be a single
photon in the source and target ring mode, respectively. As
illustrated in Fig. 6, for an input source photon having a
Gaussian temporal profile with duration greatly exceeding the

ring mode lifetime �
−1

(and bandwidth much narrower than
�), and with the coupling strength tuned to yield maximal
conversion probability (|g| = �), NS(t) and NT (t) smoothly
rise and fall as the source photon couples into the ring and is
transferred to the target mode.

The behavior of the photon probabilities in the ring is quite
different for input source photons with shorter durations and
when the modes are more strongly coupled with |g| > �. As

FIG. 6. Photon-number expectation values NS(t) and NT (t) of
source and target modes for input source photon with Gaussian
temporal profile f0(t) ∝ e−t2/τ2

(plotted in lower panel) having long

duration τ = 100�
−1

. The coupling strength was taken to maximize
the conversion probability, |g| = �, as discussed in Sec. IV B.

FIG. 7. Photon-number expectation values NS(t) and NT (t) of
source and target modes for input source photon with Gaussian
temporal profile f0(t) ∝ e−t2/τ2

(plotted in lower panel) having short

duration τ = 0.1�
−1

. When the coupling strength |g| is sufficiently
large compared to the damping rate (|g| = 15� in this plot), the source
and target photon numbers oscillate with frequency |g| and are out of
phase by π .

plotted in Fig. 7, in this regime, NS(t) and NT (t) oscillate out
of phase by π as the input photon is transferred back and forth
between the source and target modes. This behavior is strongly
reminiscent of the Rabi oscillations that are displayed by two-
level systems driven near resonance. Indeed, an analogy can
be drawn between such systems and the QFC device: one
can identify a ground state |g〉 = b

†
S |vac〉 and an excited state

|e〉 = b
†
T |vac〉. These states have well-defined energies of �ωS

and �ωT , up to the precision permitted by the linewidths of the
ring modes. Transitions between these states are driven by the
pump beams, yielding Rabi oscillations at the frequency |g|. A
similar perspective can be used to view these two optical states
as comprising a qubit, in which 0 is represented by the presence
of a photon in the source mode, and 1 by the presence of a
photon in the target mode; such an approach has been taken by
Clemmen et al. in a nonresonant fiber-optic implementation
[1]. The QFC process can then be interpreted as implementing
a rotation of the input qubit on the Bloch sphere. We intend to
study this oscillatory regime in more detail in the near future.

VII. CONCLUSION

We have studied the dynamics of quantum frequency con-
version using four-wave mixing in microresonators, focusing
especially on silicon nitride microrings. Three approaches
were used: (i) a frequency-domain solution to the conversion
dynamics enabled the calculation of the conversion probability,
spectral conversion probability density, and power require-
ments; (ii) a dressed-mode formalism provided a clear intuitive
explanation for the qualitative features of the conversion
process; and (iii) a temporal analysis of the photon-number
expectation values revealed a regime of Rabi-like oscillations.

By suitably engineering the dispersion of the resonator
and selecting appropriate pump frequencies and input powers,
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high-efficiency wideband frequency translation of arbitrary
quantum states with low noise was shown to be achievable
with less than 100 mW of pump power; efficiencies exceeding
95% using only 65 mW of power were predicted to be
achievable with only modest improvement to the current state
of the art. The maximum probability of successful conversion
is limited only by loss, and is given by the product (32)
of the ratios between the extrinsic and full, loaded quality
factors of the resonator for the source and target modes;
this maximum tends to unity as the microresonator-channel
system is more strongly overcoupled. A simple expression
(33) for the required input power to achieve this maximum
was derived, and the conversion probability as a function of
coupling strength was shown to exhibit a single maximum
followed by an asymptotic decay to zero for large input powers.
These results are in good agreement with both previously
developed theory [11] and experiment [12]. The spectral
conversion probability density that describes the conversion
bandwidth of the device was calculated, and was found to
exhibit a broad, flat-topped peak at the source mode frequency,
indicating a spectral range where the device is very insensitive
to source input frequency. This enables efficient conversion of
source photons even with complicated spectral profiles over a
wider bandwidth than might naively be expected based on the
unperturbed resonance linewidths.

The dressed-mode picture was developed to better explain
the qualitative features of QFC in microresonators. In this
model, the system of equations of motion for the source
and target mode annihilation operators in the resonator was
diagonalized, yielding new, uncoupled, and energy-shifted
dressed modes that are linear combinations of the original
modes. These couple to similar linear combinations of the
channel fields, which obey an input-output relation formally
identical to that of a passive linear microring filter. The
frequency-conversion process can then be understood as a
consequence of the phase shift imposed between the different
components of the incoming source photon to be converted.
The magnitude of this phase shift is dependent on the coupling
strength |g|, and reaches the necessary value required for unit
conversion probability only for |g| = �, where � is the full
damping rate of the resonator.

By directly studying the temporal evolution of the intraring
photon-number expectation values for the source and target
modes, an oscillatory regime was revealed in which a single-
photon input oscillates between the two frequency modes at
a rate determined by the coupling strength. This behavior
strongly resembles Rabi oscillations that are observed in a
coherently driven two-level atom.

Fabrication techniques for microresonators are rapidly ad-
vancing, with new record quality factors, better dispersion en-
gineering, and more extensive control over coupling conditions
being routinely reported. With such progress, we expect that
microresonators will play an important role in future efforts to
develop integrated quantum frequency-conversion devices.
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APPENDIX: SELF- AND CROSS-PHASE MODULATION

In addition to the interaction (10) that gives rise to the
desired QFC process, the full nonlinear Hamiltonian contains
terms that correspond to self-phase modulation (SPM) of the
pumped modes and cross-phase modulation (XPM) between
the pumped modes and the source and target modes [16,17,19–
21]. The Hamiltonian describing SPM is given by [22]

HSPM = −�ηP (2)b
†
P (2)bP (2)b

†
P (2)bP (2)

− �ηP (1)b
†
P (1)bP (1)b

†
P (1)bP (1) , (A1)

where ηP (2) and ηP (1) are the coefficients associated with SPM.
Cross-phase modulation is described by

HXPM = −�ζP (2)Sb
†
P (2)bP (2)b

†
SbS − �ζP (2)T b

†
P (2)bP (2)b

†
T bT

− �ζP (1)Sb
†
P (1)bP (1)b

†
SbS − �ζP (1)T b

†
P (1)bP (1)b

†
T bT

− �ζP (2)P (1)b
†
P (2)bP (2)b

†
P (1)bP (1) , (A2)

where ζJJ ′ is the coefficient associated with XPM between
modes J and J ′. In these expressions, we have neglected terms
that lead to SPM of the source and target modes, as well as
XPM between those modes, since they never contain enough
energy for these effects to be significant.

When the system is driven by cw pump beams, the effect
of SPM and XPM is simply to shift the effective resonance
frequencies of the ring modes by an amount determined by
the number of photons present in those modes. The frequency
shifts δJ of the ring resonances are given by [17]

δS = −ζP (1)SNP (1) − ζP (2)SNP (2) ,

δT = −ζP (1)T NP (1) − ζP (2)T NP (2) ,
(A3)

δP (1) = −ζP (2)P (1)NP (2) − ηP (1)NP (1) ,

δP (2) = −ζP (2)P (1)NP (1) − ηP (2)NP (2) ,

where NJ is the steady-state photon-number expectation value
of mode J in the ring; these are given by NJ = |βJ |2, where
βJ is the amplitude of pumped ring mode J (either P (1)

or P (2)) (17). By slowly tuning the frequency of the pump
beams as their intensity is increased, the pumps can stay on
resonance and continue to efficiently couple to the ring [17].
The ring mode reference frequencies ωJ in this work can then
be understood to include the effect of SPM and XPM. However,
it is necessary to ensure that the energy-conservation relation
(13) remains satisfied for the shifted resonances. We therefore
require

δT − δS = δP (2) − δP (1) , (A4)

which reduces to

(ζP (1)S − ζP (1)T )NP (1) + (ζP (2)S − ζP (2)T )NP (2)

= (ηP (1) − ζP (2)P (1) )NP (1) + (ζP (2)P (1) − ηP (2) )NP (2) .

(A5)

The XPM coefficient between the target and P (1) is very
close to that between P (2) and P (1) since the target and
P (2) are close in frequency, giving ζP (1)T ≈ ζP (2)P (1) ; similarly,
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ζP (2)S ≈ ζP (2)P (1) . The relation (A4) then becomes

ζP (1)SNP (1) − ζP (2)T NP (2) ≈ ηP (1)NP (1) − ηP (2)NP (2) . (A6)

To maintain energy conservation, we must therefore have

NP (1)

NP (2)
= ζP (2)T − ηP (2)

ζP (1)S − ηP (1)
. (A7)

The ratio between the SPM and XPM coefficients for nearby
modes is independent of frequency [17,25], so this condition

reduces to
NP (1)

NP (2)
= ηP (2)

ηP (1)
. (A8)

This can easily be achieved by adjusting the input power to
the pump modes: using (17), we obtain, for the required input
power in those modes,

P in
P (1)

P in
P (2)

≈ ηP (1)

ηP (2)

Q2
P (2)Q

ext
P (1)

Q2
P (1)Q

ext
P (2)

. (A9)
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