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Photons mediate long-range optomechanical forces between atoms in high-finesse resonators, which can
induce the formation of ordered spatial patterns. When a transverse laser drives the atoms, the system undergoes
a second-order phase transition that separates a uniform spatial density from a Bragg grating maximizing scattering
into the cavity and is controlled by the laser intensity. Starting from a Fokker-Planck equation describing the
semiclassical dynamics of the N -atom distribution function, we systematically develop a mean-field model and
analyze its predictions for the equilibrium and out-of-equilibrium dynamics. The validity of the mean-field
model is tested by comparison with the numerical simulations of the N -body Fokker-Planck equation and by
means of a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The mean-field theory predictions
well reproduce several results of the N -body Fokker-Planck equation for sufficiently short times and are in good
agreement with existing theoretical approaches based on field-theoretical models. The mean field, on the other
hand, predicts thermalization time scales which are at least one order of magnitude shorter than the ones predicted
by the N -body dynamics. We attribute this discrepancy to the fact that the mean-field ansatz discards the effects
of the long-range incoherent forces due to cavity losses.
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I. INTRODUCTION

Optically dense atomic ensembles offer a formidable
framework to study collective effects induced by atom-photon
interactions [1–3]. Correlations are established by multiple-
photon scattering [4,5], which can give rise to phenomena such
as synchronization [6,7], optomechanical bistability [8,9], and
spontaneous spatial ordering [2,3,10–12]. Envisaged applica-
tions for these systems range from sensors [13] to quantum-
enhanced metrology [14] and quantum simulators [12,15].

Single-mode cavities, furthermore, mediate strong long-
range interactions between the atoms [16–18], similar to
gravitational and Coulomb potential in two or more dimen-
sions [19]. In view of this analogy, it is relevant to study the
dynamics of these systems at and out of equilibrium to test
in a laboratory conjectures and predictions, such as ensemble
inequivalence and the existence of quasistationary states [16].
The realization in quantum optical setups, like the one sketched
in Fig. 1(a), brings additional peculiar features. In fact, these
systems are intrinsically lossy, so that nontrivial dynamics
can be observed only in the presence of a pump. On the one
hand, the conservative potential mediated by the cavity photons
shares several analogies with the one of the Hamiltonian
Mean Field model [17,19–21], of which several features are
well reproduced by a mean-field description [19,20]. On the
other hand, cavity losses give rise to damping and diffusion,
which are characterized by a spatial structure, thus establishing
long-range correlations between the atoms [17,22]. These
correlations, in turn, cannot be captured by a mean-field
description.

In this work we systematically develop a mean-field model
for cold atoms in a standing-wave resonator in the setup
illustrated in Fig. 1(a) and test its validity by comparing its
predictions with the ones of the Fokker-Planck equation for
the N -atom distribution [22]. This work completes a series of
papers which analyze the equilibrium and out-of-equilibrium
dynamics of spatial self-organization of atomic ensembles in
a single-mode resonator. Our analysis is based on a semi-

classical treatment, specifically on a Fokker-Planck equation
(FPE) for the N -atom distribution, derived when the atoms
are classically polarizable particles and their center-of-mass
motion is confined to one dimension [22]. The cavity field,
instead, is a full quantum variable. This makes our treatment
applicable also in the shot-noise limit [22] and gives access to
regimes that are complementary to those based on the model
in Ref. [23], where the field is a semiclassical variable.

Our formalism permits us to consistently eliminate the
cavity variables from the equations of motion of the atoms
and to investigate the properties of the cavity field across
the self-organization threshold, where the intracavity field is
characterized by large fluctuations. Starting from this model
in Ref. [21] we analyzed the stationary state of the N -body
FPE and showed that (i) this is a thermal state whose
temperature is determined by the linewidth of the resonator
and (ii) the transition to self-organization is a Landau-type
second-order phase transition, as illustrated in Figs. 1(b)
and 1(c). In Ref. [21] we also determined the corresponding
phase diagram as a function of the physical parameters and
predicted the corresponding features in the light emitted by the
resonator. In Ref. [24] we investigated the dynamics following
sudden quenches across the phase transition and found that
the interplay between long-range conservative and dissipative
forces gives rise to prethermalization dynamics, where the
long-range nature of dissipation plays an essential role.

In this work we derive a mean-field treatment from our
N -atom FPE. We then benchmark the limits of validity of the
mean-field ansatz by means of numerical simulations using
the full N -body FPE and by means of a Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy. The results we
obtain are compared with existing literature on spatial self-
organization in single-mode cavities for both the semiclassical
treatment [25–28] and the case in which the atomic quantum
statistics is assumed to be relevant [15,28–33].

This work is organized as follows. In Sec. II the Fokker-
Planck equation at the basis of our analysis is reported,
and the corresponding mean-field equation is derived. In
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FIG. 1. (a) Atoms in a standing-wave cavity and driven by a
transverse laser can spontaneously form ordered patterns when the
amplitude of the laser coupling � exceeds a threshold value �c, which
depends on the rate of photon losses, here due to cavity decay at rate κ .
In this regime the system undergoes a second-order phase transition
which is characterized by the parameter �, indicating spatial ordering
of the atoms in Bragg gratings and defined in Eq. (4). Its expectation
value in the mean-field description is denoted as �MF. (b) and
(c) The thermodynamic potential below and above threshold. The
bottom panels are schematic pictures of the single-particle density
distribution f1(x,p) in phase space with x in units of the inverse
wave number k−1 and p in units of the width �p of the momentum
distribution. In (b) the atomic density is uniform; in (c) it is localized
at the even or odd sites of the cavity standing wave, [cos(kx) = 1 or
−1, respectively]. In this work we derive and discuss a mean-field
theory for the dynamics of f1(x,p).

Sec. III the stationary properties of the mean-field FPE
distribution function are analytically determined. The mean-
field predictions are compared with the ones of the N -body
FPE and with further existing theoretical works. In Sec. IV
the Vlasov equation, which describes the short-time dynamics
of the mean-field FPE, is derived. Its predictions are then
determined by means of a stability analysis, and the analytical
results are compared with the numerical simulations of the
mean-field FPE. Section V reports a critical analysis of
the limits of validity of the mean-field treatment. In Sec. VI the
conclusions are drawn, while in the Appendix calculations are
reported that complement the material presented in Sec. III.

II. DERIVATION OF THE MEAN-FIELD MODEL

In this section we derive the mean-field model starting from
the FPE describing the dynamics of an atomic ensemble in the
optical potential of a high-finesse resonator of Ref. [22]. The
atoms are N and have mass m, and their motion is assumed

to be confined along the x axis, which also coincides with
the axis of a high-finesse cavity within whose mirrors the
atoms are spatially trapped. In the following we denote their
canonically conjugated positions and momenta by xj and pj

(j = 1, . . . ,N). The atomic dipole strongly couples to one
cavity mode and is transversally driven by a laser, as sketched
in Fig. 1(a). The parameter regime is such that the atoms
coherently scatter photons into the cavity mode, and their
external motion is determined by the light forces associated
with these processes. The light forces are periodic, and their
period is determined by the cavity-mode standing wave, whose
spatial mode function is cos(kx), with k being the cavity-mode
wave number.

A. Basic assumptions

Before reporting the FPE which governs the dynamics of
the N -body distribution function, we summarize the main
approximations behind its derivation and the corresponding
physical parameters.

One basic assumption of our model is that the only relevant
scattering processes are coherent. This regime can be reached
when the cavity mode and laser frequencies are tuned far off
resonance from the atomic transition [34,35]. We denote by
�a = ωL − ω0 the detuning between laser (ωL) and atomic
(ω0) frequencies and assume that this is the largest parameter of
the problem. It is thus larger than the coupling strengths for the
interaction between the dipole and fields. It is also larger than
the detuning �c = ωL − ωc between laser and cavity-mode
frequencies, whose wave numbers are, to good approximation,
denoted by the same parameter k. This allows us to eliminate
the internal degrees of freedom of the atoms by a perturbative
expansion in the lowest order of the small parameter 1/|�a|.

The cavity field is treated as a quantum-mechanical vari-
able, and the dynamics can be cast as an optomechanical
coupling between atomic motion and cavity field [10,23].
The parameter regime we assume gives rise to a time-scale
separation, such that the cavity degrees of freedom evolve on
a faster time scale than the motion. This is warranted when
the cavity linewidth κ , which determines the relaxation rate of
the resonator state, is much larger than the recoil frequency
ωr = �k2/(2m), which scales the exchange of mechanical
energy between light and atoms. In this limit the cavity field
is eliminated from the equations of motion of the atomic
external degrees of freedom in a perturbative expansion to first
order in the small parameter 1/κ , implementing a procedure
first applied in Ref. [36]. The hierarchy of time scales is set
by the inequalities |�a| � κ � ωr . This is also consistent
with a semiclassical treatment since the kinetic energy of the
atoms at steady state scales with �κ , thus warranting that the
width �p of the single-atom momentum distribution is large
in comparison to the linear momentum �k carried by each
photon [10,17,21].

B. Collective motion of N atoms in a cavity field

The approximations discussed above are at the basis of the
theoretical procedure which connects the master equation of
atoms in a quantized cavity field with the FPE for the Wigner
function fN = fN (x1, . . . ,xN ; p1, . . . ,pN ; t) describing the
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positions and momenta of the N atoms at time t . The derivation
is detailed in Ref. [22], and the resulting FPE reads

∂fN

∂t
= −

N∑
i=1

∂

∂xi

pi

m
fN + S2L[fN ], (1)

where the second summand on the right-hand side (RHS) is
due to mechanical effects of the cavity field on the atoms and
scales like S2. Here, S = �g/�a is the scattering amplitude
between the laser and cavity mode, and it is proportional to the
laser strength � and to the cavity vacuum Rabi frequency g,
which scale the interaction between the dipole and laser and
between the dipole and cavity, respectively. Operator L[fN ]
takes the form

S2L[fN ] = ∂fN

∂pi

∂V (x1, . . . ,xN )

∂xi

(2a)

− S2
∑
i,j

∂

∂pi

�0 sin(kxi) sin(kxj )pjfN (2b)

+ S2
∑
i,j

∂2

∂pi∂pj

D0 sin(kxi) sin(kxj )fN (2c)

+ S2
∑
i,j

∂2

∂pj∂xi

η0 sin(kxi) sin(kxj )fN . (2d)

Each line on the RHS of Eq. (2) has a physical meaning.
The first term describes the dynamics due to the conservative
potential

V (x1, . . . ,xN ) = ��c

κ2 + �2
c

S2N2�(x1, . . . ,xN )2, (3)

where

�(x1, . . . ,xN ) = 1

N

N∑
j=1

cos(kxj ), (4)

so that the potential mediates long-range interactions between
the atoms. Parameter 〈|�|〉N is the order parameter of
self-organization, where 〈·〉N denotes the expectation value
taken over the normalized distribution fN . Specifically, when
the atoms form Bragg grating, then 〈|�|〉N → 1, and the
potential depth is maximal. When the atoms are instead
uniformly distributed in space, then 〈|�|〉N � 0, and the
potential vanishes. We note that the Bragg gratings minimize
the potential when �c < 0; otherwise, the uniform distribution
is energetically favored. We will here denote 〈|�|〉N by
magnetization due to the mapping of the self-organization
transition to a ferromagnetic model [21].

For later convenience, we define the parameter

F0 = (�k)
2�c

κ2 + �2
c

, (5)

such that V = F0(NS�)2/(2k).
The second term on the RHS [Eq. (2b)] describes a

dissipative force and is scaled by the coefficient �0:

�0 = ωr

8�cκ(
κ2 + �2

c

)2 . (6)

This term is due to nonadiabatic corrections in the dynamics
of the cavity field.

The term in (2c) corresponds to diffusion due to fluctuations
of the cavity field associated with losses. The diffusion matrix
is the dyadic product of the vector (sin(kx1), . . . , sin(kxN ))
with itself and scales with the coefficient

D0 = (�k)2 κ

κ2 + �2
c

. (7)

Therefore, besides the diffusion due to the diagonal elements,
which is a single-particle effect, we also expect that term (2c)
establishes long-range correlations.

The last line, (2d), contains cross derivatives and scales
with the coefficient

η0 = 2�ωr

κ2 − �2
c(

κ2 + �2
c

)2 , (8)

whose sign depends on whether the ratio |�c/κ| is smaller
or larger than unity, while it vanishes for |�c/κ| = 1. An
analogous term has also been reported in the semiclassical
description of cold atoms in optical lattices [36], where it
has been neglected under the assumption of uniform spatial
densities. Such an assumption cannot be applied in the self-
organized regime; nevertheless, we will show that this term
can be consistently discarded in the thermodynamic limit we
apply, which warrants Kac’s scaling [19].

C. Mean-field ansatz

To derive a mean-field FPE we assume that the Wigner
function is factorized into single-particle distribution functions
according to the prescription

fN (x1, . . . ,xN ; p1, . . . ,pN ; t) =
N∏

i=1

f1(xi,pi ; t), (9)

where f1(xi,pi ; t) denotes the distribution for particle i at time
t and is thus defined on the phase space of this particle. We
use then Eq. (9) in the FPE (1) and integrate out all particles’
variables but one. In this way we derive the mean-field FPE,
which reads

∂f1

∂t
= − ∂

∂x

p

m
f1 + S2L[f1] (10)

and has same structure as the FPE in Eq. (1). Operator L

describes, as L, the mechanical effects of light. However, it is
now a nonlinear operator of f1 and takes the form

L[f1] = − ∂

∂p
F0{cos(kx) + (N − 1)�MF[f1]} sin(kx)f1

(11a)

− ∂

∂p
�0{sin(kx)p + (N − 1)
MF[f1]} sin(kx)f1

(11b)

+ ∂2

∂2p
D0 sin2(kx)f1 (11c)

+ ∂2

∂p∂x
η0 sin2(kx)f1, (11d)
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where we have introduced the functionals

�MF[f1] = 1

λ

∫ λ

0
dx

∫ ∞

−∞
dp cos(kx)f1, (12)


MF[f1] = 1

λ

∫ λ

0
dx

∫ ∞

−∞
dp sin(kx)pf1. (13)

The mean-field order parameter �MF is the expectation value
〈cos(kx)〉, where 〈·〉 indicates the average taken over the
single-particle distribution function f1(x,p). The terms on the
RHS in (11a) and (11b) have a different origin but a similar
structure, which can be recognized by analyzing the form of
the two summands within the respective inner brackets. The
first summand in each line describes the interaction of the atom
with itself, mediated by the cavity field. The second summand
in each line emerges from the interaction between the atom
and all other N − 1 atoms.

We further notice that the term in (11a) can be cast in terms
of a conservative force originating from the potential

V1[f1](x) =F0

2k
S2[cos2(kx) + 2(N − 1)�MF[f1] cos(kx)]

+ �0

k
(N − 1)S2
MF[f1] cos(kx) (14)

and contains a term whose corresponding term in Eq. (1) has
dissipative nature [see (2b)]. Using this result, we can rewrite
Eq. (11) in the compact form

L[f1] = ∂V1

∂x

∂f1

∂p
− ∂

∂p

(
�0p − ∂

∂p
D0 − ∂

∂x
η0

)
sin2(kx)f1,

which allows us to simply read out the physical meaning of
the other terms; they are, in fact, the diagonal component of
friction, diffusion, and the cross-derivative term in Eq. (1).

III. STATIONARY STATE OF THE MEAN-FIELD
EQUATION

The stationary properties of the mean-field distribution are
analyzed by means of the single-particle distribution fst(x,p)
that solves Eq. (10) with

∂tfst(x,p) = 0. (15)

In the following we determine fst(x,p) and then analyze its
predictions for relevant physical quantities.

A. Derivation of the steady-state solution

In order to solve Eq. (15) we consider the ansatz

fst(x,p) = f0 exp[a(x) + b(p)],

where a(x) and b(p) are functions which depend only on
position and momentum, respectively, and f0 is the normal-
ization constant. Using this ansatz in Eq. (10), we obtain
differential equations for a(x) and b(p), whose solutions read
b(p) = −βp2/(2m) and

a(x) = (Y/2 − 1) ln[1 + Z sin2(kx)] − (N − 1)Y�MF[fst]

×
√

Z

1 + Z
arctanh

(√
Z

1 + Z
cos(kx)

)
, (16)

with Y = F0/(kη0), Z = βη0S
2, and

β = −�0m

D0
= −4�c

�
(
κ2 + �2

c

) . (17)

Therefore,

fst(x,p) = F(cos kx) exp

(
− β

p2

2m

)
, (18)

withF(cos kx) = f0 exp[a(x)]. Equation (18) describes a ther-
mal distribution provided that �c < 0: In this limit parameter
β, Eq. (17), plays the role of an inverse temperature at steady
state. This temperature coincides with the value found by
solving the steady state of the N -body FPE, Eq. (1), as shown
in Refs. [17,21].

We note that the function F(cos kx) depends on �MF[fst],
which leads to the fixed-point equation

�MF ≡ 〈cos(kx)〉 =
√

2πm

β

1

λ

∫ λ

0
dx cos(kx)F(cos kx).

(19)

Its solution is, in general, not transparent, but it gets simpler in
an appropriately defined thermodynamic limit. This consists
of scaling the coupling strength g ∼ 1/

√
N as the number

of atoms is increased, leading to the scaling relation S ∝
1/

√
N [37,38]. In this limit function a(x), Eq. (16), can be

cast into the form

a(x) = 2
n̄

n̄c

�MF cos(kx), (20)

with

n̄ = NS2

κ2 + �2
c

(21)

and

n̄c = κ2 + �2
c

4�2
c

. (22)

This leads to a compact form of the stationary distribution in
the mean-field limit:

fst(x,p) = f0 exp

[
− β

(
p2

2m
+ ��cn̄�MF cos(kx)

)]
, (23)

with

f −1
0 =

√
2mπ

β
I0

(
2

n̄

n̄c

�MF

)
,

where Ij is the modified Bessel function of j th order [39].
We thus see that in the thermodynamic limit the effect of

the cross derivatives vanishes. For finite N , parameter η0 is
small but finite, and in the stationary state it gives rise to a
correction to the effective potential term, as seen in Eq. (16).

B. Stationary properties in the thermodynamic limit

The mean-field distribution, Eq. (23), allows one to an-
alytically determine several properties of the steady state.
First, functional �MF in the exponent has to be determined
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FIG. 2. Plot of q(2n̄ζ/n̄c), Eq. (25), as a function of ζ and for
different values of n̄. The intersection points with the curve y = ζ

(dashed line) give the solutions of Eq. (24). Stable points are at the
crossing where q ′ < n̄c/(2n̄) and are the equilibrium values of the
order parameter �MF. Inset: The resulting stable solution �̄ � 0 as a
function of n̄ (in units of n̄c).

self-consistently. Using Eq. (20) in Eq. (19) gives the relation

�MF = q

(
2

n̄

n̄c

�MF

)
, (24)

where q is a function of the form

q

(
2

n̄

n̄c

ζ

)
=

I1
(
2 n̄

n̄c
ζ
)

I0
(
2 n̄

n̄c
ζ
) (25)

and is plotted in Fig. 2 for values of n̄ below, at, and above
n̄c. The solutions of Eq. (24) are the crossing between the
curve y = ζ and y = q(2n̄ζ/n̄c) [see Eq. (25)]. For n̄ < n̄c this
equation allows for one solution, corresponding to �MF = 0.
For n̄ > n̄c, there are three solutions, two of which are stable
and one of which is unstable. The stable solutions give �MF =
±�̄, with 0 � �̄ < 1, and correspond to the self-organized
state. Close to, but above, the critical point the value �̄ can be
analytically determined and reads

�̄ =
√

2(n̄/n̄c − 1). (26)

The value n̄ = n̄c, with n̄c defined in Eq. (22), hence
determines a critical point at which the transition to self-
organization occurs and that is controlled by the detuning from
the cavity field and the cavity loss rate for the thermodynamic
limit we chose. The results we have obtained so far for
the stationary mean-field distribution are in full agreement
with the ones found for the stationary distribution of Eq. (1)
(see Ref. [21]). The stationary mean-field distribution in
Eq. (23) corresponds to the one that is found from the
stationary N -particle distribution after integrating out the other
N − 1 position and momentum variables and then taking the
thermodynamic limit. The equation for the order parameter,
Eq. (24), agrees with the one obtained for the N -particle case
and obtained by means of a saddle-point approximation. This
agreement is found also for the critical value of Eq. (22) and

for the temperature of Eq. (17). Hence, the mean-field model
predicts the same phase diagram as the N -body FPE.

It is also instructive to consider the value of the bunching
parameter B as a function of n̄. This is defined as

B = 〈cos2(kx)〉 (27)

and gives a measure of localization of the particles at the
minima of the mechanical potential [21,25]. Using Eq. (20),
we obtain

B =
{

1/2, n̄ � n̄c,

1 − n̄c/(2n̄), n̄ > n̄c,
(28)

in the stationary state. Therefore, below threshold the atoms are
uniformly distributed, while above threshold they increasingly
localize at the minima of the Bragg potential. In particular,
when the atoms are tightly bound at the minima, the above-
threshold expression in Eq. (28) delivers the amplitude of the
fluctuations, namely,

k2〈x2〉 ≈ n̄c

2n̄
, (29)

showing that these are inversely proportional to the laser
intensity.

C. Comparison with existing literature

The results obtained so far by means of the mean-field
model show a remarkable agreement with the predictions of
the stationary solution of the N -particle FPE, Eq. (1). It is
further worthwhile to compare the results derived here with
the results obtained in the literature by means of different
approaches.

We first discuss Ref. [25], where, among other studies,
a mean-field approach is developed based on plausible con-
jectures. Here, the mean-field potential is calculated, and the
threshold of self-organization is determined by (i) assuming
that the stationary state is thermal, with temperature given
by the linewidth of the cavity, and (ii) performing a stability
analysis of the uniform density distribution. By means of
this study a threshold value for self-organization is identified,
which agrees with the prediction in Eq. (22), which becomes
evident after defining the threshold amplitude Sc such that

NS2
c

�2
c + κ2

≡ n̄c.

In particular, the quantity η∗ in [25] is in our notations Sc�a/g

calculated for the case �c = −κ .
The stationary state of self-organization was first derived in

Refs. [26,27] by means of a FPE as a function of the atomic
and field variables. This description assumes that the field
fluctuations are small and thus cannot reliably reproduce the
field correlation functions below and at threshold. It predicts,
nevertheless, that the atoms’ steady state is thermal and its
temperature coincides with the inverse of Eq. (17), apart from
corrections of the order ωr/κ that are systematically neglected
in our approach because they are of higher order. It further
predicts the same behavior of the order parameter as in Eq. (26)
above, but close to, the threshold.

It is also interesting to compare our results with a series of
other theoretical studies which focus on self-organization of
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ultracold atomic ensembles in cavities but discard retardation
effects: In these works only the conservative part of the cavity
potential is considered, while the temperature at steady state
is due to the coupling to an external heat bath [15,28–33].
Even though the conditions seem quite different from our
case, remarkable agreement is found in the appropriate limits.
References [15,29] analyze the self-organization transition of
an ultracold gas of bosonic atoms and derive the mapping to
the Dicke model. Here, the recoil energy plays a role analogous
to the temperature, and the threshold which is derived agrees
with the threshold in Eq. (22) after setting

NS2
c = 1

β

κ2 + �2
c

−�c

, (30)

with β = 4/�ωr . By means of this prescription, the threshold
also agrees with the one calculated in Ref. [28]. Furthermore,
it also coincides with the one evaluated in Ref. [33] when using
the Boltzmann distribution for the atoms statistics.

Another quantity which has been determined in these works
is the photon flux, which corresponds to the intracavity photon
number in our treatment. In Refs. [28–31] the photon flux
scales as 1/|n̄ − n̄c| below threshold, while at threshold it
diverges as

√
N . These predictions are in perfect agreement

with the results we find when taking the stationary distribution
of Eq. (1) [see Eqs. (A4) and (A5)]. In particular, the intracavity
photon number at threshold, Eq. (A5), coincides with the
one calculated in Ref. [28] after substituting in their equation
ωz = (ω2

0 + κ2)/ω0 for the temperature, with ω0 = −�c. The
result for the intensity-intensity correlations at zero time delay
and below threshold, Eq. (A11), further agrees with the result
derived in Refs. [30,31].

IV. MEAN-FIELD DYNAMICS

We now study the dynamics predicted by the mean-field
FPE. We focus on the Vlasov equation, which we derive from
Eq. (10) by taking the thermodynamic limit, according to our
prescription. The Vlasov equation for our problem reads

∂f1

∂t
+ p

m

∂f1

∂x1
− ∂V0[f1](x)

∂x

∂f1

∂p
= 0, (31)

with

V0[f1](x) = 2��cn̄ cos(kx)�MF[f1]

− �
2k

m
n̄βκ cos(kx)
MF[f1], (32)

and it corresponds to the potential in Eq. (14) after neglecting
the self-reaction term, which is of order 1/N . Therefore,
the validity of the predictions we will extract is limited to
sufficiently short time scales for which the corrections can be
discarded. We will quantify this statement in the next section.

A. Preliminary considerations: Energy conservation

We first analyze whether Eq. (31) warrants energy conserva-
tion. We consider a class of functions for which 
MF[f1] = 0.
This includes the stationary solution of Eq. (23). For these
solutions, the energy of one particle takes the form

ε(t) = 〈p2〉
2m

+ ��cn̄�2
MF. (33)

In order to determine ε̇(t) we thus calculate �̇MF and ˙〈p2〉.
This gives

�̇MF = − k

m

MF,

˙〈p2〉
2m

= 2
�

m
n̄(k�c�MF − ωrκβ
MF)
MF,

and therefore, we get for the derivative of the energy

ε̇ = −2
�

m
n̄ωrκβ
2

MF.

These derivatives hence vanish when 
MF = 0, and thus, for
the class of distribution fulfilling this condition, energy, with
the potential term given in Eq. (33), is conserved. Fluctuations,
on the other hand, can give rise to finite values of 
MF. The
purpose of the next section is to analyze the stability and short-
time dynamics of solutions of the Vlasov equation, Eq. (31),
after quenches of the laser parameters.

B. Stability analysis of spatially homogeneous distributions

We now analyze the short-time dynamics described by
Eq. (31), assuming that at t = 0 the distribution is thermal
and has uniform spatial density; thus, f1(x,p,0) = f1(p,0)
and �MF|t=0− = 0, with

f1(p,0) =
(

2mπ

β0

)− 1
2

exp

(
− β0

p2

2m

)
, (34)

where β0 is the inverse temperature. This distribution is a
stable solution of the Vlasov equation after setting n̄ = 0.
At t = 0 the laser strength is quenched above threshold, so
that parameter n̄ takes a finite value larger than n̄c. We then
let evolve the distribution of Eq. (34) by taking this value
n̄ in Eq. (31). Figure 3 shows the results of the numerical
integration of Eq. (31) for different values of n̄. We analyze
these results, keeping in mind that they are strictly valid for
short times since the Vlasov equation discards effects, such
as diffusion, which are crucial in determining the stationary
state. In Fig. 3(a) the order parameter evolves from zero to a
finite value, about which it oscillates. This value is smaller than
the one predicted by the stationary solution of the mean-field
FPE. It is reached after an initial dynamics characterized by
an exponential increase, whose slope is steeper the larger n̄

is. Figures 3(b) and 3(c) display the corresponding evolution
of the quantities 
2

MF [see Eq. (13)]. This quantity emerges
from the retardation effects of the dynamics; it is thus a
signature of memory effects and mathematically corresponds
to the buildup correlations between momentum and position
that cannot be factorized. The initial distribution, Eq. (34), is
chosen so that 
MF = 0, and we observe that the dynamics give
rise to a buildup of a finite value of 
2

MF, with an exponential
increase that leads to a maximum where the curve for �MF

reaches the plateau. Then, it oscillates like �MF (one can
well understand the behavior of these oscillations observing
that 
MF is proportional to the time derivative of �MF) and
is exponentially damped to zero. In the initial phase, the
exponential growth of 
2

MF increases with n̄; as in the second
phase of the dynamics, where �MF oscillates about a finite
mean value, the amplitude of the oscillations of 
2

MF is also
larger the larger n̄ is.
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FIG. 3. Time evolution of (a) the order parameter �MF, Eq. (12), and (b) and (c) parameter 
2
MF, Eq. (13), calculated by numerical integration

of the Vlasov equation (31) for different values of n̄ and for �c = −κ . The initial distribution is given in Eq. (34) with β0 = 2/(�κ).

We now analyze the initial exponential increase, which
is in the regime where the Vlasov equation is a reliable
approximation of the full dynamics, as we also verified in
Ref. [24]. In order to do so, we use a standard procedure,
which is also detailed in Refs. [19,40]. For short times t after
the quench, we write the distribution as

f1(x,p,t) = f1(p,0) + δf1(x,p,t), (35)

where δf1 describes small fluctuations which can be due to
the finite size of the system and thus scale with 1/

√
N . Using

Eq. (35) in the Vlasov equation (31) and neglecting the terms
of order 1/N , we obtain the linearized Vlasov equation

∂δf1

∂t
+ p

m

∂δf1

∂x
− ∂δV

∂x

∂f1(p,0)

∂p
= 0, (36)

where δV = V [δf1(x,p,t)] and we dropped the argument of
function δf1. We look for solutions of Eq. (36) by means of the
ansatz of Fourier waves with frequency ω and wave number k:

δf1 = g1(p)ei(ωt−kx) + g−1(p)ei(ωt+kx), (37)

δV = 2A cos(kx)eiωt , (38)

where A ∝ 1/
√

N is some constant and the amplitudes
g1(p) and g−1(p) are sole functions of the momentum p.
The dispersion relation ω = ω(k) can be derived after using
Eqs. (37) and (38) in the linearized Vlasov equation (36). By
equating the coefficients of exp(ikx) and exp(−ikx) we get
expressions for the functions g1(p) and g−1(p). With those
expressions one finds the dispersion relation by using the
definition δV = V [δf1] and Eqs. (32) and (38):

0 = 1 +
(

��c + i
�κ

2
�ωβ

)
n̄

1

2

×
∫ ∞

−∞
dp

(
−k

pk

m
+ ω

+ −k
pk

m
− ω

)
∂pf1(p,0). (39)

This relation holds for any initial distribution that describes a
uniform spatial density. We now use the Gaussian distribution
in Eq. (34) and obtain

0 = 1 +
(

��c + i
�κ

2
�ωβ

)
n̄β0

×
[

1 − ā exp(−ā2)

(
i
√

π − 2
∫ ā

0
du exp(u2)

)]
, (40)

where we defined ā = √
β0/(2m)(mω/k). We then introduce

b̄ = iā and

γ = iω

and cast Eq. (40) in the form

0 = 1 +
(

��c + �κ

2
�γβ

)
n̄β0

×
[

1 − b̄ exp(b̄2)

(
√

π −
∫ b̄

−b̄

du exp(−u2)

)]
, (41)

where b̄ ∝ γ . It can be shown that parameter γ , which solves
Eq. (41), is a real number. Therefore, ω is an imaginary number.
In particular, if γ < 0, both Eqs. (37) and (38) describe
fluctuations which are exponentially damped, and therefore,
f1(x,p,t) will tend to the initial distribution, which is stable.
If, instead, the solution of Eq. (40) gives γ > 0, the initial
distribution is unstable against fluctuations. The value γ = 0
separates the two regimes. After setting γ = 0 in Eq. (41), we
thus get the critical condition

1 = −��cn̄β0, (42)

which connects �c, n̄, and the initial temperature 1/β0, which
is an external parameter. If β0 coincides with the value in
Eq. (17), then Eq. (42) corresponds to the same relation as
in Eq. (22), which defines the critical value of n̄ for self-
organization. For the values of the parameters for which γ > 0,
the uniform distribution is unstable and tends to form a grating
at the wave vector k of the resonator with exponential increase,
giving rise to a violent relaxation. Parameter γ gives the rate
at which the amplitude of this density modulation grows.

Figure 4 compares the value of γ extracted by fitting the
exponential increase of �MF in the first phase of the dynamics
of Fig. 3 and for different values of n̄ with the one determined
by Eq. (41), showing very good agreement. In particular, we
note that in the limit |�c| � |γ |, Eq. (41) can be reduced to
the form [41]

γ = ω0(1 − pχ )
ln

(
χ

1.135

) − ln(1 − pχ )

1.4(1 − pχ ) + �κβω0/(2|�c|) , (43)

with χ = �|�c|n̄β0 = (n̄/n̄c)(β0/β), ω0 = √
2ωr/(�β0), and

p = 27/227.
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FIG. 4. Slope γ of the initial increase of �MF. The dots are
extracted by fitting the curve obtained from the numerical simulations
in Fig. 3, the dashed line is the value predicted by Eq. (43), which
agrees well with Eq. (41) (solid line). For these parameters the
threshold for the Vlasov stability, Eq. (42), reads 1 = n̄/n̄c.

V. VALIDITY OF THE MEAN-FIELD ANSATZ

The mean-field treatment is based on the assumption
that the distribution function for the N particles can be
approximated by the product of the single-particle distribution.
This ansatz thus discards interparticle correlations which
emerge from the photon-mediated interactions: the factorized
ansatz is very different from the form of the distributions one
obtains from the full N -particle FPE [17,21]. Nevertheless,
the assumption still captures essential features of the short-
time dynamics of distributions, which initially have the
form of Eq. (9). We will follow the procedure illustrated
in Refs. [19,42] and study the validity of the mean-field
ansatz within a BBGKY hierarchy, which we derive from
the N -particle FPE, Eq. (1). We will particularly focus on
the dynamics of two-particle correlations and determine the
characteristic time scale of their dynamics.

For convenience, we introduce the vectors x =
(x1, . . . ,xN )T and p = (p1, . . . ,pN )T , and define fN (x; p; t) ≡
fN (x1, . . . ,xN ; p1, . . . ,pN ; t).

A. BBGKY hierarchy of the photon-mediated
Fokker-Planck equation

For the derivation of the BBGKY hierarchy we assume that
the energy of the system is finite. This corresponds to assuming
that the following limit holds,

lim
|p|→∞

fN (x; p; t) = 0, (44)

where |p| =
√∑N

i=1 p2
i , and that expectation values of all

moments exist. Furthermore, fN is periodic with wavelength
λ in every xi , which implies

fN (x + λz; p; t) = fN (x; p; t) (45)

for every z ∈ ZN . The distribution function fN is invariant
under particle exchange, which we can express by means of
the permutation matrix P, such that

fN (Px; Pp; t) = fN (x; p; t), (46)

where each row and column of P contain only one entry
different from zero and equal to 1.

In order to derive the BBGKY hierarchy of the FPE in
Eq. (1) we first define the l-particle distribution function:

fl =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 · · ·

∫ λ

0

dxN

λ

∫ ∞

−∞
dpNfN, (47)

where fl inherits the three properties in Eqs. (44), (45), and (46)
from fN . Index l takes the value l = 1, . . . ,N , such that for l =
1 the distribution fl is the single-particle phase-space function,
and for l = N it describes the N -particle state. The evolution
of fl is found from Eq. (1) after integrating out the other N − l

particle variables and can be cast in the form

∂fl

∂t
=

l∑
j=1

(
L(l)

j fl + G(l)
j [fl+1]

)
, (48)

where the first operator on the RHS solely depends on the
variables of the l particles and reads

L(l)
j fl = − ∂

∂xj

pj

m
fl

− S2 ∂

∂pj

l∑
i=1

[F0 cos(kxi) + �0 sin(kxi)pi] sin(kxj )fl

+ S2 ∂

∂pj

l∑
i=1

(
D0

∂

∂pi

+ η0
∂

∂xi

)
sin(kxi) sin(kxj )fl.

(49)

The second operator, instead, depends nonlinearly on the (l +
1)-particle distribution function. This term vanishes when l =
N , while for l < N it describes the dynamics of correlations,
which are established by the interparticle potential. It reads

G(l)
j [fl+1] = −S2(N − l)

∂

∂pj

sin(kxj )

× (F0�l[fl+1] + �0
l[fl+1]), (50)

where

�l[fl+1] =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 cos(kxl+1)fl+1, (51)


l[fl+1] =
∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 sin(kxl+1)pl+1fl+1, (52)

while �0[f1] = �MF and 
0[f1] = 
MF. Note that when the
factorization ansatz of Eq. (9) holds, �1[f2] = �MFf1 and

1[f2] = 
MFf1. A closed set of equations for fl can thus be
strictly obtained for l = N , giving Eq. (1), or for S = 0, hence
in the absence of the cavity field.
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B. The Lenard-Balescu equation

For l = 2 we can generally decompose the distribution
function into two terms:

f2(x1,x2,p1,p2) = f1(x1,p1)f1(x2,p2) + g2(x1,x2,p1,p2),

(53)

where the first term on the RHS is the mean-field term
and the second term describes all corrections beyond mean
field. When at t = 0 the distribution function is factorized
in a form like Eq. (9), the dynamics beyond mean field
will tend to build correlations which are described by g2.
We obtain the mean-field FPE, Eq. (10), by performing the
approximation G(1)

1 [f2] → G(0)
1 [f1]f1. In the following we

analyze the regime in which this approximation is justified by
studying the equation describing the evolution of the function
g2 under some approximation, which permits us to truncate the
BBGKY hierarchy to second order. This equation is known
in the literature as the Lenard-Balescu equation [19], and it
will allow us to identify a time scale where the mean-field

treatment provides reliable predictions. In order to derive the
Lenard-Balescu equation we first consider the distribution
function for l = 3. Using the same type of decomposition as
in Eq. (53), this can be written as

f3(x1,x2,x3,p1,p2,p3)

= f1(x1,p1)f1(x2,p2)f1(x3,p3)

+
3∑

i,j,k=1

|εijk|f1(xi,pi)g2(xj ,pj ,xk,pk)

+ g3(x1,x2,x3,p1,p2,p3),

where εijk is the Levi-Civita tensor and g3 describes all three-
body correlations which cannot be written as a function of f1

and/or f2. We assume now that g3 is of higher order (from
the treatment below we will see that g3 ∝ 1/N2) and drop g3

in the equation describing the dynamics of f2, Eq. (48). By
means of this assumption we obtain two coupled equations
for f1 and f2, which can then be cast into the Lenard-Balescu
equations for f1 and g2 using Eq. (53) and read

∂f1

∂t
= L(1)f1 + G(1)[f1]f1 + G(1)[g2], (54a)

∂g2

∂t
= − ∂

∂x1

p1

m
g2 − ∂

∂x2

p2

m
g2 − S2

2∑
j=1

∑
i �=j

∂

∂pj

F0 sin(kxj ){cos(kxi) − �MF[f1]}f1f1

− S2
2∑

j=1

∑
i �=j

∂

∂pj

�0 sin(kxj ){sin(kxi)pi − 
MF[f1]}f1f1 + S2
2∑

j=1

∑
i �=j

∂

∂pj

sin(kxj )

(
D0

∂

∂pi

+ η0
∂

∂xi

)
sin(kxi)f1f1

−NS2F0

2∑
j=1

∑
i �=j

∂

∂pj

sin(kxj ){�1[g2]if1(xj ,pj ) + �MF[f1]g2} − NS2�0

2∑
j=1

∑
i �=j

∂

∂pj

sin(kxj ){
1[g2]if1(xj ,pj )

+
MF[f1]g2}, (54b)

where we specified the arguments when necessary and intro-
duced the notation �1[g2]i and 
1[g2]i to indicate that these
are functions of (xi,pi).

The validity of the mean-field FPE, Eq. (10), relies on
whether one can discard the term G(1)[g2] on the RHS of
Eq. (54a). Let us recall the thermodynamic limit for which
S2 ∼ 1/N . If we now assume that g2 is of order 1/N with
respect to f1, then the termG(1)[g2] is of order 1/N with respect
to G(1)[f1]f1. A detailed analysis of Eq. (54b) shows that, if
g2 ∼ 1/N at t = 0, this scaling is preserved by the dynamics.
In fact, (i) the first two terms on the RHS of Eq. (54b) give a
scaling with 1/N because they are proportional to g2, while all
other quantities are independent of N ; (ii) the last term in the
first line and the terms in the second line are all proportional
to S2 ∼ 1/N , and (iii) the last two lines scale with NS2g2 ∼
1/N . Therefore, for sufficiently short times the contribution
of g2 to the dynamics in the mean-field equation can be
neglected.

We note that in Eq. (54a) the term L(1)f1 also has
components which scale with 1/N . If one consistently neglects
all terms scaling with 1/N , then Eq. (54a) reduces to the

Vlasov equation (31) and therefore also neglects the diffusion
processes leading to equilibrium. Figure 5 illustrates the
order of magnitude of the corrections to the Vlasov and
Lenard-Balescu equations, as well as the types of correlations
that these describe.

FIG. 5. Illustration of the order of magnitude of the corrections
of the Vlasov and of the Lenard-Balescu equations and of which type
of correlations they include.
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FIG. 6. Time evolution of the squared order parameter evaluated
by numerically simulating the mean-field FPE, Eq. (10) (dash-dotted
lines), and the N -particle FPE of Eq. (1) (solid lines). The curves
correspond to different particle numbers N = 20 (top two brown
curves), N = 50 (middle two green curves), and N = 200 (bottom
two blue curves) and are calculated taking �c = −κ and n̄ = 2n̄c.
The number T of trajectories taken for the N -body FPE is T = 1000
for N = 20, T = 500 for N = 50, and T = 100 for N = 200 (see
Refs. [21,22] for details on the simulations). The horizontal dotted
line indicates the asymptotic value of the squared order parameter.
The inset shows the curves of the onset with the time axis rescaled
by N . Note that the initial distribution of the full N -body FPE is the
one which statistically corresponds to a spatially uniform distribution
with the same temperature as the asymptotic one. Therefore, the value
of 〈�2〉N at t = 0 does not vanish due to finite-size effects. In order to
compare these dynamics with the mean-field FPE, we have taken into
account these finite-size effects in the initial mean-field distribution
given by f̃0(x,p) = [1 + δN cos(kx)]f1(p,0), where f1 is given in
Eq. (34) and δN is a spatial modulation depending on N .

C. Mean-field versus full N-atom dynamics

In order to complete our analysis of the limits of validity of
the mean-field ansatz, we now compare its predictions with the
ones obtained by numerical simulations of the N -particle FPE
of Eq. (1). The latter are performed by means of stochastic
differential equations (see Refs. [21,22] for details). We focus
now on the evolution of the expectation value of �2, which
explicitly depends on two-particle correlations and scales the
strength of the conservative many-body potential. We recall
the definition 〈·〉N in order to indicate the mean value of an N -
particle observable taken over the N -particle distribution fN .

Figure 6 compares the N -particle description where
the evolution of fN is governed by FPE (1) (solid
line) and the mean-field description, where fN (x; p; t) =
f1(x1,p1; t) · · · f1(xN,pN ; t) and the evolution of f1 is gov-
erned by the mean-field FPE (10) (dash-dotted line). The
curves are plotted as a function of time and for different particle
numbers, N = 20,50,200, where the parameter S2 has been
rescaled according to our thermodynamic limit to warrant
a threshold n̄c which is independent of N . The parameters
have been fixed so that, initially, the distribution is spatially
uniform, while the momentum distribution is a Gaussian
whose width coincides with the asymptotic temperature of

the dynamics, Eq. (17). The strength of the field is such that
n̄ = 2n̄c; therefore, the asymptotic spatial distribution is a
Bragg grating with |�MF| ∼ 0.83. The dynamics we observe
is the one which leads to the formation of the Bragg gratings
starting from a uniform spatial distribution and exhibit three
stages, which have been extensively discussed in Ref. [24]:
a violent relaxation, a prethermalized phase, and a slow
approach to equilibrium. The solid lines are simulations of
the full FPE, and the dash-dotted lines are the corresponding
mean-field prediction, which indeed qualitatively reproduces
the three-stage dynamics.

The violent relaxation is a stage of the dynamics where
there is good agreement between the mean-field and N -body
FPEs. This is the short-time regime where the Vlasov equation,
Eq. (31), is valid, and the behavior of the N -body FPE is
reproduced by the one observed by numerically integrating
the Vlasov equation [see Fig. 3(a)]. This has also been verified
in Ref. [24]. The prethermalized regime is also predicted
by the Vlasov equation [see Fig. 3(a)]. The mean-field
FPE, however, provides a more accurate description and
qualitatively reproduces the N -body FPE. Nevertheless, a clear
difference between mean-field and N -body dynamics is found
at the onset of the prethermalized stage: In fact, the oscillations
are damped at a faster rate in the N -body FPE. Apart from
this difference, there is a qualitative agreement between the
mean-field and N -body FPEs also for this stage.

While both mean-field and N -body FPEs agree in the
asymptotic value, we observe a striking difference between
the two results in the relaxation to equilibrium after prether-
malization. This is the stage where the role of dissipation
and diffusion becomes relevant, as shown in Ref. [24] by
comparing this behavior with the one where the dynamics is
due to only the Hamiltonian term. In particular, the relaxation
time scale predicted by the full simulation is about one
order of magnitude larger than the corresponding mean-field
prediction. This becomes even more evident by plotting the
curves rescaling the time axis with N , which is visible in the
inset. The curves of the mean-field FPE collapse to one curve,
whereas the ones of the N -body FPE collapse to a significantly
different curve.

Let us now summarize these results. First, the short-time
behavior of the fluctuations of the order parameter are well de-
scribed by the mean-field equation, in particular by the Vlasov
equation. This is well understood in terms of the typical contri-
butions to the dynamics: For short times the dominant contribu-
tions are indeed the terms of Eq. (31), and interparticle correla-
tions are small, as we argued in the previous section. Discrep-
ancies are due to finite-size effects. The prethermalized regime,
moreover, exhibits good agreement between mean-field and
full dynamics. This regime is dominated by the Hamiltonian
dynamics, and the results show that Hamiltonian dynamics
with long-range interactions is well reproduced by the mean-
field description. Big deviations instead appear for long times,
where the mean-field ansatz is expected to fail, and at the time
scales dominated by relaxation to the stationary state.

VI. CONCLUSIONS

In this work we have systematically developed a mean-field
description of the self-organization dynamics of atoms in a
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high-finesse cavity. The predictions of the mean-field model
have been explored at equilibrium and out of equilibrium;
its limits of validity have been tested by comparing them
with those of the N -body FPE. We have found that the
mean-field equation provides an excellent description of the
dynamics when the latter is prevailingly Hamiltonian. It
further describes the equilibrium properties of single-particle
observables, including the asymptotic temperature and the
order parameter. It fails, however, to reproduce the long-time
out-of-equilibrium dynamics.

Despite these differences, this analysis shows that from
the mean-field model one can analytically extract several
predictions of the system dynamics. It is, indeed, remarkable
that several predictions reproduce in the corresponding limits
the ones obtained by means of other theoretical treatments,
some of which start from a fully quantum mechanical treatment
of the atoms. This, on the one hand, leads us to conjecture
that quantum fluctuations play a marginal role in determining
the steady-state properties of the cavity field. It further urges
one to develop a full quantum kinetic theory, analogous to
the full N -body semiclassical theory, which will overcome all
limitations of simplifying theoretical assumptions performed
so far. Only such a model, in fact, can give full access to the
dynamical interplay between matter waves and cavity photons.

ACKNOWLEDGMENTS

The authors are grateful to G. Manfredi, C. Nardini, S.
Gupta, and S. Ruffo for insightful discussions. This work was
supported by the German Research Foundation (DFG, DACH
project “Quantum crystals of matter and light”).

APPENDIX: CAVITY-FIELD CORRELATION FUNCTION
AT STEADY STATE

Experimentally accessible quantities are the correlation
functions of the field at the cavity output, which allows
one to monitor the atoms’ state and is proportional to the
intracavity field. In our formalism, the intracavity field is
closely connected to the atomic state by the relation Ecav ∝√

Nn̄�; therefore, the correlation functions of the cavity
field are proportional to the correlation functions of the
magnetization � [21,22]. In the following we determine the
autocorrelation function of the magnetization, which can be
detected by means of the first-order correlation function of
the field and the fourth-moment of the magnetization 〈�4〉N .
As we showed in Ref. [21], in fact, 〈�4〉N delivers the value
of the intensity-intensity correlation of the field at zero-time
delay and at zero order in the retardation effects.

1. Field intensity across the transition

We first determine the intracavity photon number ncav at
steady state for n̄ below, at, and above threshold. For this
purpose we use the relation [21,22]

ncav = Nn̄〈�2〉N, (A1)

which, by introducing α = n̄/n̄c, can be cast in the form (see
also the Sec. A 3)

ncav = 1

2
n̄c + n̄

∂

∂α
G(α), (A2)

where

G(α) = ln

(∫ ∞

−∞
dy exp {− N{αy2 − ln[I0(2αy)]}}

)
. (A3)

We then analyze the prediction of this expression close to
threshold for n̄ ∼ n̄c and thus α ∼ 1. For this purpose we
expand the exponent of G(α) about the value y = 0 and
consider the behavior of ncav for α → 1− and hence for n̄ < n̄c

but sufficiently close to the transition point that the truncation
of the expansion is valid. In this limit we find

ncav ≈ n̄2
c/2

n̄c − n̄
, (A4)

where the details of the derivation are reported in Sec. A 3.
The value at the transition point is reported at leading order in
N and reads (see Sec. A 3)

ncav ≈ 2
√

Nn̄c

�
[

3
4

]
�

[
1
4

] , (A5)

where �[x] denotes the gamma function [39].
The value of the intracavity photon number above threshold

is found after observing that the exponent of function G(α) has
two minima that are given by the nonvanishing solutions of the
fixed-point equation (24), which we denote by �MF = ±�̄,
with �̄ given in Eq. (26). Therefore, it holds that

ncav = Nn̄�̄2 ≈ 2N (n̄ − n̄c),

sufficiently close to the critical point. In particular, the mean
number of photons increases linearly with n̄. We analyze now
some properties of the first-order correlation function of the
intracavity field, g(1)(τ ) = limt→∞ Re〈Ecav(t + τ )Ecav(t)〉N .
This function has been extensively studied in Ref. [21] by
numerically solving the N -particle FPE. Here, we will use
the mean-field ansatz in order to better understand the two
sidebands of its Fourier transform, at which it exhibits maxima
above threshold. For this purpose we first notice that the
correlation function is proportional to the autocorrelation
function C(τ ) of the magnetization by the relation g(1)(τ ) =
Nn̄C(τ ) and

C(τ ) = lim
t→∞〈�(t)�(t + τ )〉N . (A6)

We want to derive C(τ ) in the mean field, and hence, the mean
value now has to be taken over the factorized distribution as
in Eq. (9) with the stationary mean-field distribution given in
Eq. (23). We calculate C(τ ) by solving the equations of the
mathematical pendulum

ẋ = p

m
,

(A7)
ṗ = 2�k�cn̄�̄ sin(kx),

with initial conditions x(0) = x0 and p(0) = p0. The value �̄

is here the positive stable solution of Eq. (24). In the limit of
small oscillations, these equations describe harmonic motion
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JÄGER, SCHÜTZ, AND MORIGI PHYSICAL REVIEW A 94, 023807 (2016)

FIG. 7. Contour plot of the spectrum of the autocorrelation
function S̃(ω) as a function of n̄ and of the frequency (in units of
κ) evaluated from the numerical data of �(x1, . . . ,xN ), Eq. (4), by
integrating the N -particle FPE, Eq. (1), for 100 trajectories of N = 50
atoms, �c = −κ , and evolution time ttot = 104κ−1 (see Ref. [21]).
The lines are analytical estimates of the spectrum maximum for n̄ >

n̄c. The dashed line corresponds to the frequency of the corresponding
harmonic oscillator in Eq. (A8). The solid line is at the frequency
extracted by solving Eq. (A7) for a mathematical pendulum and in
good agreement with the peak position of the numerically evaluated
spectra.

at the frequency

ω0 =
√

−4ωr�cn̄�̄. (A8)

The mean frequency, however, is the result of the possible
trajectories of the mathematical pendulum weighted by the
probability density function fst(x0,p0). For x0 �= 0 and p0 �= 0
the oscillation period turns out to be larger than 2π/ω0, and
this prediction fits quite well the maximum found numerically
by integrating the coupled equations of N particles, as shown
in Fig. 7.

2. Intensity-intensity correlations at zero time delay

The intensity-intensity correlation function at zero time
delay g(2)(0) provides a direct measurement of the fourth
moment of the magnetization when retardation effects are
sufficiently small [21]:

g(2)(0) = 〈�4〉N/〈�2〉2
N . (A9)

Above threshold 〈�n〉N = �̄n + O(1/N ), with �̄ being the
solution of Eq. (24). Therefore, for n̄ > n̄c we obtain

g(2)(0)n̄>n̄c
= 1, (A10)

which corresponds to coherent light and is valid at leading
order, with an error that scales with 1/N . In the mean field for
the factorized distribution, Eq. (9), we get

〈�2〉N = 1

N
B + N − 1

N
�̄2

and

〈�4〉N =N (N − 1)(N − 2)(N − 3)

N4
�̄4

+ 6N (N − 1)(N − 2)

N4
�̄2B + 3N (N − 1)

N4
B2

+ 4N (N − 1)

N4
�̄〈cos3(x)〉 + N

N4
〈cos4(x)〉.

Notice that above threshold for �̄ �= 0 we can again write
〈�4〉N = �̄4 + O(1/N ). Hence, we get the same value for
g(2)(0) = 1 (above threshold) in the thermodynamic limit
N → ∞. Below threshold, in Sec. A 3 we show that the
expression takes the value

g(2)(0)n̄<n̄c
= 3, (A11)

which corresponds to super-Poissonian light. Corrections
scale with 1/N . This also holds for the calculation with the
factorized ansatz. Below threshold we get

〈�2〉N = 1

N
B

and

〈�4〉N = 3

N2
B2 + O

(
1

N

)

and therefore the same value of g(2)(0) = 3 (below threshold)
as for the N -particle description. Finally, at threshold we obtain

g(2)(0)n̄=n̄c
≈ 1

4

(
�

[
1
4

]
�

[
3
4

]
)2

, (A12)

with corrections scaling with 1/
√

N , thus giving a slower
convergence than the one found for the values above and
below threshold. We want to mention here that the mean-
field description cannot reproduce the value in Eq. (A12).
Figure 8 displays the mean-field predictions for g(2)(0) at the
thermodynamic limit and as a function of n̄. These curves are
compared with the mean-field calculation at finite N and with
the corresponding one of the N -particle FPE. Even though
the mean-field curve at finite N is tendentially closer to the
thermodynamic limit than the N -particle FPE prediction, they
both converge to the values of Eqs. (A10), (A12), and (A11),
depending on whether n̄ < , = , > n̄c for N → ∞.

3. Useful relations

In order to demonstrate Eq. (A2) we first consider the
relation

∫ ∞

−∞
dy exp

⎡
⎣−αN

(
y − 1

N

N∑
i=1

cos(kxi)

)2
⎤
⎦ =

√
π

αN

and cast it into the form∫ ∞

−∞
dye−αNy2

exp

(
2αNy

1

N

N∑
i=1

cos(kxi)

)

=
√

π

αN
exp[αN�(x)2].
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FIG. 8. Intensity-intensity correlation function at zero time delay
g(2)(0), Eq. (A9), as a function of n̄ for (a) N = 50 atoms and
(b) N = 200 atoms. The solid blue lines are the curves evaluated
using in Eq. (A9) the mean-field steady state (23). The dashed
lines are calculated for the corresponding full N -particle distribution
given in [17]. The horizontal black solid lines are the values
at the thermodynamic limit given at n̄ < n̄c by Eq. (A11) and
at n̄ > n̄c by Eq. (A10). The point at n̄ = n̄c is at the value
of Eq. (A12). The discrepancy between the mean-field curve
and the full N -particle predictions decreases as N → ∞, where
they both converge to the value given by the thermodynamic
limit.

From these relations, it follows

ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= 1

2
ln

(
N

π
α

)

+ ln

(∫ ∞

−∞
dy exp {−N{αy2 − ln[I0(2αy)]}}

)
.

We use it for evaluating expression (A1) and obtain

ncav = n̄
∂

∂α
ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= n̄

(
1

2α
+

∂
∂α

∫ ∞
−∞ dy exp {−N{αy2 − ln[I0(2αy)]}}∫ ∞

−∞ dy exp {−N{αy2 − ln[I0(2αy)]}}

)
,

(A13)

which leads to Eq. (A2) by using definition (A3).
In order to determine the intracavity photon number close

to threshold, we expand the exponent of Eq. (A3) about y = 0
to fourth order:

αy2 − ln[I0(2αy)] = α(1 − α)y2 + α4

4
y4 + O(y6).

For n̄ < n̄c, the coefficient of the quadratic term is positive,
and we thus discard the fourth-order term. Expression (A2)
takes the form

ncav ≈ n̄

(
1

2α
+

∂
∂α

∫ ∞
−∞ dy exp

[−Nα(1 − α)y2
]

∫ ∞
−∞ dy exp

[−Nα(1 − α)y2
]

)

= n̄

(
1

2α
+ 2α − 1

2α(1 − α)

)
= n̄

2(1 − α)
.

Using the explicit value of α,

ncav = n̄n̄c

2(n̄c − n̄)
≈ n̄2

c/2

n̄c − n̄
, (A14)

which thus gives Eq. (A4).
At the transition point n̄ = n̄c the integral in Eq. (A2)

diverges in the limit N → ∞. We determine its value for finite
N and keep the leading order. Moreover, since the coefficient
of the quadratic term in the expansion in y vanishes, we include
the fourth order and evaluate the integral at α = 1, obtaining

ncav ≈ n̄c

(
1

2
+

∫ ∞
−∞ dy(Ny2 − Ny4) exp

[ − N
4 y4

]
∫ ∞
−∞ dy exp

[ − N
4 y4

]
)

≈ n̄c

2
√

N�
[

3
4

]
�

[
1
4

] ,

which is the expression in Eq. (A5).
To calculate g(2)(0) below and at threshold we notice that

N2〈�4〉N − N2〈�2〉2
N = ∂2

∂α2
ln

{
1

λN

∫
dx exp[αN�(x)2]

}

= N
∂

∂α
〈�2〉N

holds. Below threshold for α < 1 we calculated in leading
order that

∂

∂α

1

2(1 − α)
= 1

2(1 − α)2
,

023807-13
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which then delivers the expression

g(2)(0)n̄<n̄c
=

1
2(1−α)2 + 1

4(1−α)2

1
4(1−α)2

= 3

and thus Eq. (A11). In order to calculate the value at threshold
we use

N2〈�4〉N − N2〈�2〉2
N ≈N − 4N

(
�

[
3
4

]
�

[
1
4

]
)2

, (A15)

which is valid in leading order and which gives Eq. (A12).
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