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Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence.
In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing
in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of
Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our
results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time
delay and feedback strength.
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I. INTRODUCTION

Quantum coherent feedback control [1] has become an
increasing field of research in recent years [2]. In contrast
to measurement-based quantum control schemes, coherent
feedback control does not require quantum state projection
by a measurement and therefore fully preserves the quantum
coherence. This offers new and interesting possibilities for
the control of quantum systems. In particular, coherent time-
delayed feedback has been proposed as noninvasive Pyragas-
type [3–6] control scenarios [7,8], entanglement control in a
quantum node network [9,10], and enhancement of atomic
lifetimes by shaping the vacuum [11] or controlling atoms in
cavities in front of a mirror [8,12].

Squeezed states of light [13,14] have found important
application in a broad area of quantum optics and quantum
information processing, providing, for example, an entangle-
ment resource for many quantum information protocols such
as quantum key distribution schemes [15] or a signature of
quantum synchronization and quantum chimeras [16].

Much work has been done in the control of squeezing of
a degenerate parametric oscillator (DPO) in quantum optics.
An early attempt [17,18] used a measurement-based feedback
scheme to enhance the squeezing of a cavity mode. Recent
theoretical research in coherent feedback control introduces a
feedback loop through a beam splitter [19,20]. Experimental
verification in the instantaneous limit [21] and time-delayed
feedback [22] has shown the possibilities but also limitations
of coherent control of squeezing. Most of the recent work is
done in the instantaneous feedback limit. However, time delays
in quantum systems are often unavoidable.

In this paper, we study the squeezing spectrum of the output
field of a cavity containing a degenerate parametric oscillator
controlled by quantum coherent time-delayed feedback. We
focus on the specific situation of Pyragas control, where the
difference of instantaneous and time-delayed signal acts as a
control force and is fed back into the quantum system [7,23].
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Pyragas control has been used in classical systems to stabilize
unstable periodic orbits. An advantage is that in the case of
stabilization, the control force vanishes, making the control
scheme noninvasive. Another characteristic is that no detailed
model of the system dynamics has to be known, since it
is sufficient to measure an output signal to construct the
difference between instantaneous and time-delayed signal.

For our purpose we introduce a quantum mechanical
description of time-delayed quantum coherent feedback in
the framework of the input-output formalism introduced by
Gardiner and Collett [24]. The proposed scheme can be
realized in a number of ways, e.g., by a mirror or nanophotonic
devices such as photonic crystal waveguides [25–28].

The paper is organized as follows: First, we will introduce
our system and feedback scheme and derive the equations of
motion for the internal dynamics and the output fields using
input-output theory presented in the appendix. Second, to
achieve realistic control conditions we will make a stability
analysis to obtain the asymptotic behavior of the controlled
system. Third, we calculate the squeezing spectrum of the
output fields and discuss how the feedback scheme influences
the squeezing performance. In the appendix we will show thor-
oughly that the dynamics of a system coherently interacting
with itself through a feedback loop can be represented as a
cascaded system, where previous versions of the system drive
the present system, leading to time-delayed quantum Langevin
equations in the Heisenberg picture [24]. A key advantage of
this approach is that it allows physical insight on how feedback
coherently returns the out-coupled information back into the
system.

II. DEGENERATE PARAMETRIC OSCILLATORS

The degenerate parametric oscillator (DPO) is a well-
known nonlinear optical device which allows for squeezing of
externally applied light fields. We study the effect of feedback
on the steady-state squeezing spectrum of the output fields
quadrature phases.
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FIG. 1. Schematic of our physical setup and model. A degenerate
parametric oscillator (DPO) is embedded in a cavity and driven by a
laser with pumping strength |ε|. The cavity mirror M2 with loss rate γ2

is coupled to an external reservoir denoted by the input b2
in and output

b2
out. (a) The mirror M1 is coupled to a photonic waveguide terminated

by a mirror at a distance L/2 from the coupling point. The waveguide
mirror will introduce a phase shift φ = π for the reflected field and
time-delayed feedback into the system. For the case of imperfect
coupling to the waveguide, we additionally implement another loss
reservoir, graphically denoted by the blue cloud and coupling strength
γ3. (b) Instead of a waveguide, we let the outgoing radiation from M1

directly emit onto an external mirror.

The DPO, a second-order nonlinear crystal (susceptibility
χ (2)), is embedded in a two-sided cavity [29] and externally
pumped; see Fig. 1. The cavity mirrors M1 and M2 are
assumed to be lossy with different photon-decay loss rates,
but assumed to be transparent at the pump field frequency
ωp [30]. The output field of M1 is redirected back to M1,
becoming a new input. Such a setup will introduce time delay
in the equation of motion of the system operator (see below).
It can be realized in different ways, with two examples shown
in Figs. 1(a) and 1(b).

A. Case (a), feedback from a semi-infinite waveguide [Fig. 1(a)]

The first possibility is to introduce feedback to the DPO at
a distance L/2 from the end of a semi-infinite waveguide [31].
This setup is schematically shown in Fig. 1(a). Here, the
mirror at one end of the waveguide might also be realized
by an additional cavity [27]. The internal mode distribution in
the waveguide can be modeled by a structured reservoir with

a continuum of modes [7,26,32,33]. This will be the setup
discussed in this paper.

B. Case (b), feedback from an external mirror [Fig. 1(b)]

However, there are other setups in which time-delayed
feedback, and therefore the discussed effects, may appear.
For example, the DPO might emit radiation onto a mirror
at distance L/2, which then projects this radiation back
into the DPO with a time delay. Let us therefore briefly
consider the DPO emitting directly into modes of an external
mirror [12,34,35]; see Fig. 1(b). This setup is often used
for semiclassical models of a laser in front of a mirror
and is referred to as the Lang-Kobayashi model in laser
physics [36,37]. In our case, however, the description is fully
quantum mechanical.

In both setups, the emitted signal interacts with the system
again after a delay τ , which is why we can model them on equal
footing. In the appendix, we show their equivalence (A 3); the
difference is that for the first setup [Fig. 1(a)] there are two
output fields accessible by measurement (at the waveguide
and the mirror M2), in contrast to the second setup [Fig. 1(b)],
where only the output field from mirror M2 is accessible.

Importantly, we consider the realistic case where dissipation
is included, i.e., a fraction of the light emitted by the system
through the mirror M1 couples with strength γ1 to the
structured feedback reservoir, which we introduce via the
input operator b1

in [cf. Figs. 1(a) and 1(b)]. The remaining
part of radiation which does not interact with the system
again is modeled via another Markovian loss through a
reservoir described with its input operator b3

in, and the coupling
strength of the system is expressed by γ3. A similar approach
considering an atom in front of a mirror is found in Ref. [12].
Moreover, the losses at the second cavity mirror M2 are
described through the operator b2

in with coupling strength γ2.
The system Hamiltonian of the pumped DPO is [30]

Hsys = �ω0c
†c + i�

2
(εe−iωpt c†2 − ε∗eiωpt c2) (1)

where

ε = |ε|ei	 (2)

denotes the effective complex valued strength of the pump
intensity and is proportional to the second-order nonlinearity
χ (2). The operator c is the photon annihilation operator of
the cavity mode. The cavity mode frequency and the laser
pump frequency are ω0 and ωp, respectively. The inclusion of
only one cavity mode in the calculations is a well established
approximation [29,30] as long as the combined losses of the
cavity are much smaller than the frequency difference between
adjacent cavity modes.

The following derivation of the feedback-controlled DPO
is in analogy to the seminal work of Collett and Gardiner [29],
in which a DPO without feedback control is discussed. In
particular, in Ref. [29] it is shown that a driven DPO in a
cavity can exhibit different squeezing behavior depending on
the cavity mirror reflectivities. The effects of time-delayed
feedback discussed in this paper can also be interpreted via a
frequency-dependent reflectivity of one of the cavity mirrors,
as we will show below.
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In the appendix, Sec. A 1, it is shown that from (A4) the
equation of motion of the operator c subject to time-delayed
feedback is

ċ(t) = − iω0c + εe−iωpt c†(t) − Gc(t) + γ1c(t − τ )

− √
γ1 b1

in(t) + √
γ1 b1

in(t − τ )

− √
γ2 b2

in(t) − √
γ3 b3

in(t), (3)

with G = (2γ1 + γ2 + γ3)/2, and the input operators bk
in(t) =

1/
√

2π
∫ ∞
−∞ dω bk

0(ω)e−iωt , which only depend on the initial
reservoir operator bk

t=0(ω) (k = 1,2,3).
We have set the phase-shift φ introduced by the mirror in

the feedback loop in (A4) to φ = π [cf. Fig. 1]. We neglect
here any frequency dependence of the phase shift within the
waveguide. Moreover, we consider that no losses occur for the
fields when reflected by the external mirror. This is modeled by
choosing γf = γ1 in Eq. (A4). The delay τ is the time needed
by the field emitted at M1 to return back to M1; therefore
τ = L/c0 with L/2 being the system-mirror distance and c0

being the speed of light in the vacuum or in the waveguide.
At this point, it is interesting to compare the delay times

τ to the round trip time τcav within the cavity containing the
nonlinear medium. As we pointed out above, we need the
cavity mode separation δω0 to be much larger than the loss
rate G of the cavity: δω0 � G. The cavity round trip time τcav

is directly related to the mode separation via τcav = 2π/(δω0).
For feedback delay times comparable with G−1, this leads
to the condition τcav � τ . This means that our analysis is
especially suited for small DPO cavities, e.g., in microcavity-
based implementations [38,39].

We choose the pump frequency ωp to be 2ω0 and move to
a rotating frame of frequency ω0. In the rotating frame, the
equations become in matrix form

ċ(t) = Ac(t) + γ1Bc(t − τ )

− √
γ1 b1

in(t) + √
γ1 Bb1

in(t − τ )

− √
γ2 b2

in(t) − √
γ3 b3

in(t), (4)

where

A =
(−G ε

ε∗ −G

)
and B =

(
eiω0τ 0

0 e−iω0τ

)
(5)

and using the operator vector notation,

c(t) =
(

c(t)
c†(t)

)
and bk

in(t) =
(

bk
in(t)

b
k†
in (t)

)
, (6)

with k ∈ {1,2,3}. Note that due to the transformation to the
rotating frame, the matrix A has no dependence on ω0.

Since Eq. (4) is linear, we can solve it using Fourier
transform techniques. We define the Fourier transform of an
arbitrary field operator O(t) as

Õ(w) = 1√
2π

∫ ∞

−∞
dt e−iωtO(t). (7)

Note that

[Õ(ω)]† =
[

1√
2π

∫ ∞

−∞
dt e−iωtO(t)

]†
= Õ†(−ω) (8)

so that Õ(ω) = ( Õ(ω)
Õ†(−ω)).

The solution to Eq. (4) reads

c̃(w) = M
−1

[
−√

γ1

(
s(ω) 0

0 s∗(−ω)

)
b̃1

in(w)

− √
γ2b̃2

in(ω) − √
γ3b̃3

in(ω)

]
, (9)

where s(ω) and M are given by

s(ω) = 1 − e−i(ω−ω0)τ , (10)

M =
(

iω + γ2+γ3

2 + γ1s(ω) −ε

−ε∗ iω + γ2+γ3

2 + γ1s
∗(−ω)

)
.

(11)

The function s(ω) describes a frequency dependence of the
loss through the channel described by γ1. As it appears both in
the matrix M and as the coupling strength for the field b1

in, we
can already expect important frequency-dependent features in
the squeezing spectra. We introduce Z as an abbreviation for
the matrix elements of M: M ≡ (Z(ω) −ε

−ε∗ Z∗(−ω)).

After inverting M we find for the internal cavity mode

c̃(ω) = A−
1 (ω)b̃1

in(ω) + A+
1 (ω)b̃1†

in (−ω)

+A−
2 (ω)b̃2

in(ω) + A+
2 (ω)b̃2†

in (−ω)

+A−
3 (ω)b̃3

in(ω) + A+
3 (ω)b̃3†

in (−ω), (12)

with

A−
1 (ω) = −√

γ1s(ω)Z∗(−ω)

�(ω)
, A+

1 (ω) = −√
γ1s

∗(−ω)ε

�(ω)
,

A−
2 (ω) = −√

γ2Z
∗(−ω)

�(ω)
, A+

2 (ω) = −√
γ2ε

�(ω)
,

A−
3 (ω) = −√

γ3Z
∗(−ω)

�(ω)
, A+

3 (ω) = −√
γ3ε

�(ω)
, (13)

where

�(ω) = det(M) = Z(ω)Z∗(−ω) − |ε|2. (14)

Equation (12) describes the internal field dynamics, pro-
vided the input fields are known. The next step is to calculate
the output fields, since these determine the squeezing spectrum
in an experiment [22].

III. THE OUTPUT FIELDS

So far we have determined the dynamics of the internal
mode in terms of the input fields. The output is determined
by the input-output relations (A5) and (A10) and relies on the
input fields from mirror and waveguide, respectively. There
are two detectable output fields, b1

out and b2
out, accessible by

measurement in the case covered by Fig. 1(a). However, when
the feedback is realized by a mirror [Fig. 1(b)], the input and
output fields b1

in/out cannot be accessed by measurement in a
straightforward way. They model the reservoir in which the
so-called in-loop excitation is lost after one round trip. In that
case, only b2

out can be measured.
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In the appendix (Sec. A 4) it is shown that in frequency
space, the output fields take the general form

b̃i
out(ω) = Xi(ω)b̃i

in(ω) + Yi(ω)c̃(ω). (15)

where Xi and Yi are defined in Eq. (A14).
For the direct input-output connection at M2 we sim-

ply have X2 = 1 and Y2 = √
γ2 reducing the above ex-

pression to the standard input-output relation b̃2
out(ω) =

b̃2
in(ω) + √

γ2c̃(ω) [30]. At the waveguide output, Eq. (A10)
applies. We find after transformation in the rotating
frame and in frequency space X1(ω) = −e−i(ω−ω0)τ and
Y1(ω) = √

γ1 − √
γ1e

−i(ω−ω0)τ = √
γ1s(ω).

The relation (15) can be rewritten with (12) as

b̃i
out(ω) =

∑
j

S−
ij (ω)b̃j

in(ω) (16)

+
∑

j

S+
ij (ω)b̃j†

in (−ω), (17)

where

S−
ij (ω) = Yi(ω)A−

j (ω) + Xi(ω)δij , (18)

S+
ij (ω) = Yi(ω)A+

j (ω). (19)

So far we have algebraically eliminated the in-loop field and
the internal mode by re-expressing the output fields in terms of
the input fields. That was straightforward since the equations
are linear in frequency space. Similar approaches in linear
quantum networks are found in Refs. [19,20]. Identifying Xi

and Yi from expression (15) allows us to compute S∓
ij .

Given that the input fields are in the vacuum state, only
antinormally ordered correlations are nonvanishing, that is,〈

b̃i
in(ω)b̃j†

in (−ω′)
〉 = δij δ(ω + ω′), (20)

and all other correlations of the input fields are zero.
In this case we find for the reservoir output fields〈

b̃i
out(ω)b̃i†

out(−ω′)
〉 = Ni(ω)δ(ω + ω′),〈

b̃i
out(ω)b̃i

out(ω
′)
〉 = Mi(ω)δ(ω + ω′), (21)

where

Ni(ω) =
∑

j

|S−
ij (ω)|2,

Mi(ω) =
∑

j

S−
ij (ω)S+

ij (−ω), (22)

where S±
ij are defined in Eqs. (18) and (19).

Furthermore we have the identity∑
j

|S−
ij (ω)|2 − |S+

ij (ω)|2 = 1. (23)

This ensures that the output fields satisfy the usual
bosonic commutator relation. Considering the single-
input case (b1

in = 0 or b2
in = 0) this relation simplifies to

|S−
ii (ω)|2 − |S+

ii (ω)|2 = 1. Then the output is simply a Bo-
goliubov transformation of the input [19,20].

The system described by Eq. (4) is an open linear system.
Energy is not conserved since there are loss and pump
channels. We therefore need to analyze whether the system

equilibrates at finite values; otherwise, a static analysis for
t → ∞ is not reliable. To do so we carry out a stability analysis
in the next section.

IV. STABILITY ANALYSIS

Asymptotic stability requires that all the roots s of the
characteristic equation of Eq. (4),

det[s1 − A − γ1Be−τs] = 0, (24)

lie in the complex open left half-plane [40,41]. Since the
transcendental equation (24) is difficult to solve, we use both
a method using the Lambert W function and an analytical
treatment for delay-independent stability based on the
Routh-Hurwitz criterion [40] to determine the asymptotic
stability of our system.

We can dramatically reduce the complexity of the stability
analysis by restricting the treatment to two important special
cases where the coherent part of the field b1

out,1(t) and the
time-delayed and phase shifted in-loop field −b1

out,1(t − τ ) are
constructively or destructively interfering at the edge of mirror
M1. We obtain constructive interference when the condition

ω0τ = (2n − 1)π (25)

is matched and destructive interferences for

ω0τ = 2nπ, (26)

where n ∈ N is any natural number. In the following we restrict
the stability analysis to these two cases.

We express the stability condition using a Lambert W

function approach. For the two special cases (25) and (26),
the characteristic equation (24) can be factorized into the
form (s − α1 − βe−τs)(s − α2 − βe−τs) = 0 with α1 = |ε| −
G, α2 = −|ε| − G, and β = ±γ1, where + results from the
condition ω0τ = 2nπ and − results from ω0τ = (2n − 1)π .

In this case the complex roots of Eq. (24) are given by

si = 1

τ
W0(τβe−ταi ) + αi, i = 1,2, (27)

where W0 is the principal branch of the Lambert W func-
tion [42,43].

It follows that the system described by Eq. (4) is stable if
and only if [41]

Si
W (αi,β,τ ) := Re[si] < 0, i = 1,2. (28)

We found that S1
W � S2

W , and it is therefore sufficient to
consider only S1

W . Furthermore we can express S1
W in terms of

dimensionless parameters as

S1
W = 1

τ
Re[W0(±γ1τe±γ1τ (α̃−1)) + (α̃ − 1)], (29)

where again + or − result from the conditions (26) and (25),
respectively, and

α̃ = |ε| − (γ2 + γ3)/2

γ1
. (30)

This term represents the difference between the pump
strength |ε| and losses γ2 and γ3 normalized by the feedback
strength γ1.
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FIG. 2. Stability analysis in the case of constructive (a) and
destructive (b) interference as a function of γ1τ and the effective pump
strength α̃ = [|ε| − 0.5(γ2 + γ3)]/γ1, Eq. (30). The stable regions are
the blue (shaded) ones, where S1

W < 0. (a) Constructive interference
[ω0τ = (2n − 1)π ]. The boundary line between the stable and unsta-
ble region is first constant with α̃ = 2 for γ1τ < 1. At γ1τ = 1 there is
a stability change. From that point, the stability boundary decreases
with growing γ1τ > 1 toward α̃ → 0. This means that for longer
delays the stability becomes independent of the coupling γ1 and of the
delay time τ . We call the region where γ1τ < 1 the short-delay regime
and the region γ1τ > 1 the long-delay regime. The dashed line marks
the boundary between the short and long feedback regions. The point
P represents a fixed value of |ε| − (γ2 + γ3)/2, which is investigated
in Fig. 4. (b) Destructive interference [ω0τ = (2n − 1)π ]. The dotted
line marks the stability boundary given by Eq. (33), below which the
system is guaranteed to be stable independent of delayed feedback
effects. We observe that as long α̃ < 0, i.e., |ε| < (γ2 + γ3)/2, the
system is stable.

We plot S1
W in dependence of the dimensionless parameters

γ1τ and α̃. The results for constructive and destructive
interference are shown in Figs. 2(a) and 2(b), respectively.

A. Constructive interference, Fig. 2(a)

We find that the stability region is dependent on γ1τ and the
parameter α̃. For γ1τ < 1, the boundary line between unstable
and stable regions is constant with α̃ = 2, corresponding to a
pump strength |ε| = 2γ1 + (γ2 + γ3)/2.

For γ1τ > 1 there is a stability change, and the boundary
line between unstable and stable region decreases slowly with
γ1τ . For sufficiently large γ1τ the boundary line approaches
α̃ → 0, i.e., |ε| → (γ2 + γ3)/2. The stability then becomes
independent of the coupling to the feedback reservoir and the
delay time τ .

We use this boundary line to define what we call the short-
and the long-delay regime: We define the short-delay regime
for feedback times and strengths satisfying

γ1τ < 1, (31)

and for the long-delay regime

γ1τ > 1. (32)

B. Destructive interference, Fig. 2(b)

In the case of destructive interference, we find that the sys-
tem is stable for all γ1τ whenever α̃ < 0, i.e., |ε|<(γ2+γ3)/2.

The stability is independent of the coupling to the feedback
reservoir and of the delay time.

Using a fully analytical method we can also give a lower
limit where the system remains stable independently of the
delay time τ . From the Routh-Hurwitz criterion [40] it follows
that the system (3) is asymptotically stable over the whole
range of possible delays τ if and only if the two following
conditions are fulfilled:

(1) The matrix A + γ1B is of Hurwitz type
(2) The auxiliary equation det[s1 − A − γ1B( 1−T s

1+T s
)2] = 0

has no roots on the imaginary axis for any T � 0.
For both cases we find analytically that stability is guaran-

teed for all delays τ [as long as Eqs. (25) or (26) hold] as long as

γ2 + γ3

2
> |ε|. (33)

In the case of destructive interference [Eq. (26)] the system
is stable if and only if Eq. (33) is fulfilled. In contrast,
for constructive interference [Eq. (25)] our analysis above
[cf. Fig. 2(a)] shows that there can be stable regions in which
Eq. (33) is not fulfilled. For long delays τ , however, Eq. (33) is
recovered. In particular, this means that the threshold between
stable and unstable behavior will always lie in the area of
α̃ � 0. The stability condition given in Eq. (33) is independent
of γ1 and therefore the same as if there was no out-coupling
via the feedback channel, i.e., γ1 = 0. This means that at least
in the two cases of destructive and constructive interference
the presence of a channel with time-delayed feedback (γ1 �= 0)
can only make the system more stable, but never destabilizes it.

In summary, we find that the DPO losses dissipated into
nonfeedback reservoirs must be greater than the pump for
the system to be stable. For constructive interference there
exist additional losses created by the feedback, which are
particularly dominant in the short feedback range γ1τ < 1
as depicted in Fig. 2(a). For destructive interference only
nonfeedback terms contribute.

V. SQUEEZING SPECTRUM

We define observables called the output quadratures in
Fourier space by [19]

Xi
out(ω,θ ) = e−iθ bi

out(ω) + eiθbi†
out(−ω), (34)

for fixed phases θ . We calculate the variance of the quadratures
at the output i as〈

Xi
out(ω,θ ),Xi

out(ω
′,θ )

〉 = Pi(ω,θ )δ(ω + ω′), (35)

where 〈a,b〉 = 〈ab〉 − 〈a〉〈b〉 denotes the variance, where
〈Xi

out(ω,θ )〉 = 0, since the quadrature is simply a linear
combination of the input fields which are in the vacuum state.

The power spectral densityPi is referred to as the squeezing
spectrum [19,21] and takes the form [cf. Eq. (21)]

Pi(ω,θ ) = 2 Re[e−i2θMi(ω)] + Ni(ω) + Ni(−ω) − 1, (36)

with Mi and Ni as defined in Eq. (22).
In particular for an (unsqueezed) coherent state or an

(unsqueezed) vacuum state the variance in the quadratures,
Eq. (34), is equal to 1. This limit is referred to as the quantum
noise limit. In contrast, a squeezed state is a nonclassical state
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FIG. 3. Long-delay regime. Maximal squeezing spectra (in a
frame rotating with ω0) at the M2 output with and without feedback
at threshold (in the feedback case) |ε| = γ2/2 in the cases ω0τ =
2nπ and ω0τ = (2n − 1)π for τ �= 0. The parameters are S = 0.5,
γ1 = γ2 = 2 ns−1, |ε| = 1 ns−1, and γ3 = 0 (ideal feedback coupling).
The spectrum is highly structured as a function of ω and τ . For the
case of destructive interference (ω0τ = 2nπ ) maximal squeezing is
achievable at threshold at the central frequency ω0 (ω = 0 in the
plots). On the other hand, constructive interference cannot enhance
the squeezing at ω0. The side peaks show that the feedback scheme
shifts the frequencies where squeezing occurs; however, it is never
maximal for other frequencies than ω0. The case without feedback
corresponds to a double-sided lossy cavity as discussed in Ref. [29]
with respective loss rates γ1 = γ2 = 2 ns−1 pumped below threshold
at |ε| = 1 ns−1.

of light with the characteristic that for a certain phase θ the
variance goes below the quantum noise limit.

VI. RESULTS

To understand the delay dependence of the spectrum it is
instructive to look at the expression (10) and the matrix (11).
The term s(ω) represents a frequency dependence of the
loss through the channel described by γ1. Compared to the
uncontrolled scenario, it will cause a frequency-dependent
self-energy of the spectrum. We expect that the Lorentzian

form of the spectrum for the uncontrolled system becomes
multipeaked, depending on the phase of the in-loop field. Since
the influence of s(ω) scales with the feedback strength γ1, the
frequency-dependent effects increase with growing γ1. We will
proceed to analyze this behavior for different parameters.

For the numerical evaluation we choose the parameters
2θ = 	 + π with 	 = arg(ε) [cf. Eq. (2)], ω0 = 1 fs−1 and

τ = (S + 10−6δ)π ns. (37)

Here, we divide τ into two contributions: First, the scaling
parameter S determines the length of the feedback time in
π ns and is chosen such that Sω0 ns is a natural number.
Second, the tuning parameter δ ∈ {0,1} is such that either
the condition ω0τ = (2n − 1)π (destructive interference) or
ω0τ = 2nπ (constructive interference) is fulfilled. We do
focus on these two regimes of destructive and constructive
interference to study the highest and lowest possible squeezing
performance.

In the following the scaling parameter S is within {0.1, 0.5}
so that the system-mirror distances (see Fig. 1) are in the range
of few centimeters.

The other parameters |ε| (pump), γ1 (feedback coupling),
and γ2/3 (loss) are varied to address the experimental feasibility
of the following numerical results. In the following plots the
quantum noise limit is equal to 1. Whenever the values of
the spectrum get below the quantum noise limit we have a
squeezed quadrature. Perfect squeezing, i.e., maximal noise
reduction, is obtained when the variance in the quadrature is
zero.

To obtain a detailed analysis of the spectrum at the two
output channels b1

out and b2
out we will investigate them for two

different parameter sets, representing short- and long-delay
times, defined in Eqs. (31) and (32) as γ1τ < 1 and γ1τ > 1,
respectively. For each output, we will start with the analysis
of long-delay times, where we will find strongly frequency-
modulated squeezing spectra. Second, we will investigate
the short-delay regime for parameters at which time-delayed
feedback is crucial for the stabilization of the system. The
results are plotted in Figs. 3–5: Figure 3 shows the spectrum
for long-delay times at the mirror M2, Fig. 4 shows the
spectrum for short-delay times at the mirror M2 as well as

FIG. 4. Short-delay regime. Comparison of the squeezing spectra P1 and P2 (in a frame rotating with ω0) in the case of constructive
interference, i.e., ω0τ = (2n − 1)π for τ �= 0. The parameters are S = 0.1, γ1 = 2.75 ns−1,γ2 ∈ {0.5,3,9} ns−1, and a fixed loss-pump strength
|ε| − γ2/2 = 5 ns−1. The situation corresponds to the stable point denoted by P1 in Fig. 2(a). We see that while γ2 increases, the squeezing in
the output of the waveguide is diminished, whereas the squeezing at the mirror M2 output is enhanced. Note that for the present parameters
the uncontrolled case (γ1 = 0) is not stable and therefore cannot be shown (stability would require |ε| < γ2/2).
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FIG. 5. Long-delay regime. Maximal squeezing spectra (in a
frame rotating with ω0) at the waveguide output with and without
feedback at threshold |ε| = γ2/2 in the cases ω0τ = 2nπ and ω0τ =
(2n − 1)π for τ �= 0. The parameters are S = 0.5, γ1 = γ2 = 2 ns−1,
|ε| = 1 ns−1, and γ3 = 0 (ideal feedback coupling). The spectrum is
highly structured as a function of ω and τ . For the case of destructive
interference (ω0τ = 2nπ ) only noise remains as an output at threshold
at the central frequency ω0 (ω = 0 in the plots), and thus P1(ω0) = 1
corresponding to the quantum noise limit and no squeezing is
achieved. On the other hand, for constructive interference we observe
squeezing of the output field at ω0. However, for long delays τ

in both cases γ2/2 > |ε| is required for stability, which decreases
squeezing below 50%. For comparison, the green dashed line marks
the squeezing spectrum for the case in which the feedback channel is
replaced by a Markovian reservoir with loss rates γ1 = γ2 = 2 ns−1

pumped below threshold at |ε| = 1 ns−1.

at the waveguide output, and Fig. 5 shows the spectrum for
long feedback delay at the waveguide output.

A. Output spectrum at b2
out

In this section, we discuss the squeezing spectrum for the
output channel located at mirror M2, i.e., b2

out.

1. Long-delay regime

First, we consider ideal feedback (γ3 = 0) in the long-delay
regime. Nonideal feedback (γ3 �= 0) is discussed further below.
Because of the parameter set in this case, we are able to
discuss both constructive interference, i.e., condition (25), and
destructive interference, i.e., condition (26), at mirror M1.
The stability analysis, Sec. IV, shows that the system is stable
for |ε| < γ2/2 over the whole range of τ values, if Eqs. (25)
or (26) are fulfilled. The used parameters are S = 0.5 and
γ1 = γ2 = 2 ns−1. We evaluate the squeezing spectrum P2

at the threshold value |ε| → γ2/2. The spectrum is shown
in Fig. 3. For comparison, we also plot the spectrum for
a system in which the feedback decay channel is replaced
by a Markovian reservoir (dashed line). In contrast to the
free evolving spectrum without feedback, we observe that
the spectrum is highly structured as a function of ω. The
frequency modulation is on the order of O(π/τ ), and therefore
we observe that for longer delays the number of peaks increases
within the frequency bandwidth. For long delays, the peak
separation can be well approximated by 2π/τ , while for

shorter delays the overall Lorentzian envelope of the spectrum
additionally modifies the peak separation. In particular, we find
a strong enhancement of squeezing for specific frequencies
ω compared to the uncontrolled case. Most importantly, for
the case of destructive interference (ω0τ = 2nπ ) maximal
squeezing (P2 = 0) is attained at threshold at the central
frequency ω = ω0 (ω = 0 in the rotating frame in Fig. 3). Here,
because of the destructive interference, the feedback channel
is closed so that effectively the system behaves like a single-
ended cavity [29,44]. The case of constructive interference
(ω0τ = (2n − 1)π ) shows a good squeezing performance for
the first side peaks, whereas no noise reduction is observed
at ω0.

2. Short-delay regime

Let us now reduce the delay time such that γ1τ < 1. We
will analyze the system for parameters where time-delayed
feedback with constructive interference [condition (25)] is
crucial for the stability of the system. In particular, we will
use the parameters marked as P in Fig. 2(a). We set the
delay scaling parameter S [Eq. (37)] to be 0.1 and analyze the
squeezing properties for a set of fixed loss-pump differences
|ε| − γ2/2 = 5 ns−1, in which we vary γ2 ∈ {0.5,3,9} ns−1 and
choose the feedback coupling strength to be γ1 = 2.75 ns−1,
which corresponds to γ1τ � 0.864. Again we put γ3 = 0 for
simplicity. We can only discuss the case for constructive
interference, since destructive interference as well as no
feedback at all would make the system unstable. The calculated
spectra (short delay, constructive interference) are shown in
Fig. 4 (solid line). We observe again that the spectrum P2

is structured as a function of ω, with two main side peaks.
We find that while γ2 increases the squeezing at the mirror
M2 output is enhanced, but the qualitative behavior does not
change. However, it can only be maximal (P2 → 0) in the
limit situation γ2 → ∞ (not shown). In this case the feedback
mechanism can be neglected compared to the losses occurring
at the mirror M2 output. Below we will analyze the waveguide
output spectrum b1

out for the same parameters to get a direct
comparison with b2

out. For both cases, i.e., long and short
feedback times, we have also investigated the case γ3 �= 0 (not
shown). The only effect of γ3 �= 0 is to reduce the squeezing in
the spectra, while it does not change the qualitative frequency
behavior.

B. Output spectrum at b1
out

Next we address the question of whether the output
spectrum depends on the channel of observation, b1

out or b2
out;

cf. Fig. 1. For this we discuss the waveguide signal, Fig. 1(a).

1. Long-delay regime

For the discussion of the long-delay situation we evaluate
the squeezing spectrum of the b1

out for the same set of param-
eters as in the long-delay analysis of the b2

out output spectrum.
The spectrum is shown in Fig. 5. In the case of long delays
for both cases of destructive and constructive interference,
γ2/2 > |ε| is required for stability, which decreases squeezing
below 50%. In the case of destructive interference we observe
P1 = 1 at the central frequency ω = ω0 (ω = 0 in the rotating
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frame). In this case only vacuum noise remains at the output
of the waveguide, since all the radiation from the cavity is
canceled out by its time-delayed counterpart. For comparison,
we again also plot the squeezing spectrum without feedback,
i.e., when replacing the feedback channel by a Markovian
reservoir.

2. Short-delay regime

We first discuss the spectrum at the output of the waveguide
in the short feedback regime in the case of constructive
interference, i.e., condition (25) for the same set of parameters
as in the short-delay analysis of the b2

out output spectrum. The
spectra are shown in Fig. 4 (dashed line). Similar to the b2

out
spectrum, the spectra are highly structured as a function of ω

with one main peak at the central frequency ω = ω0 (ω = 0 in
the rotating frame) and two side peaks. We find that for small γ2

values, i.e., small losses at the mirror M2, the squeezing in the
b1

out output at the central frequency ω0 is very high (P1 → 0
for γ2 → 0). For increasing γ2 the squeezing in the output
of the waveguide (M1) is reduced, whereas the squeezing
at the mirror M2 output is enhanced. In this case there are
two independent inputs which cannot interfere to cancel the
fluctuations and increase the squeezing in the quadrature.

As outlined in the stability analysis, additional losses are
generated by the feedback in the case of constructive interfer-
ence, and thereby the system remains stable. The spectrum is
broadened around ω0 so that the squeezing is maximal over
a large frequency region. In the lossless case (γ2 = 0, not
shown here) we find perfect squeezing at the threshold curve
(boundary between stable and unstable region). Furthermore,
we observe a frequency region of constant squeezing in the
spectrum for stable points in the short delay regime as P [cf.
Fig. 2(a)]. On the other hand, when passing the border between
the short- and long-delay regimes, the spectra have a dip at
ω0 (not shown) which grows with the value of the feedback
coupling strength γ1.

VII. CONCLUSION

We have shown how quantum coherent time-delayed feed-
back of Pyragas type [3] can be used to control and enhance the
squeezing performance at the output of a cavity containing a
degenerate parametric oscillator. We proposed two physically
different setups to introduce feedback. Both could be modeled
on equal footing. Our main result is that coherent feedback
causes a frequency-dependent modification of the power
spectral density of the output field quadratures, compared
to the uncontrolled case. For the application of control,
the Lorentzian form of the uncontrolled squeezing spectrum
becomes sharply multipeaked due to frequency-dependent
interferences within the feedback loop. In particular, we
find a strong enhancement of squeezing for specific delay
times. A thorough stability analysis shows that in the case
of constructively interfering signals within the feedback loop,
new loss channels are created, meaning that the pump intensity
of the laser can be increased while the system remains stable.
This becomes particularly important in the short-delay regime
as this allows enhancement of the squeezing in one of the
system’s output channels far below the quantum noise limit.

Note added. Recently we became aware that a closely
related work was posted on Ref. [45].
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APPENDIX: DESCRIPTION OF QUANTUM-COHERENT
TIME-DELAYED FEEDBACK

In this Appendix we present a method to describe quan-
tum coherent time-delayed feedback using the input-output
theory [24,30]. Starting from the well-known description of
quantum cascaded systems, we will show how the formalism
can be used to describe quantum coherent feedback, where
previous versions of the system drive the present one. Note
that the input-output theory uses a Markov approximation that
is only valid for a weak system-reservoir coupling. Therefore,
it is important to ensure that the feedback setup does not alter
the coupling of the system to a continuum of reservoir modes.
A principal difficulty lies in the fact that no master equation
exists since the system becomes highly non-Markovian in the
presence of feedback. An attempt following the precedent
idea to solve the nonlinear system by embedding the feedback
system in a larger space is found in Ref. [23]. Also Pyragas-
type feedback control schemes can be realized where the
system is driven towards a desired steady state [8].

1. Coherent feedback as a quantum cascaded system

In what follows we want to investigate the problem
of a system driven coherently by a past version of itself.
We shall use the input-output theory applied to cascaded
systems [24,30].

To begin, let us consider the textbook case of a bipartite
quantum system with total Hamiltonian Hsys that can be
decomposed into two subsystems A and B with Hamiltonian
HA and HB respectively. We will later modify the system
such that it represents time-delayed self-feedback. The total
system is interacting with the modes of an external reservoir
with Hamiltonian H 1

R = �
∫ ∞
−∞ dω ωb†(ω)b(ω), where b(†)(ω)

are bosonic field modes satisfying [b(ω), b†(ω′)] = δ(ω − ω′).
The systems A and B interact with the reservoir through their
respective operators cA and cB .

In terms of the input-output theory, we now drive the
input of the first system A with the bosonic field induced
by the external reservoir modes. The interaction Hamiltonian
of A with the reservoir is therefore (within the rotating-wave
approximation)

HInt,1 = i�

√
γ1

2π

∫ ∞

−∞
dω [b†(ω)cA − H.c.]. (A1)

Furthermore we assume that the second system B is driven
by the time-delayed and phase-shifted output field of the first
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one so that the interaction Hamiltonian takes the form

HInt,2 = i�

√
γf

2π

∫ ∞

−∞
dω [b†(ω)eiωτ eiφcB − H.c.], (A2)

where γ1 and γf are the coupling elements, which are constant.
This is the result of a standard approximation often called the
first Markov approximation [24], which holds true when all
coupling from the system to the reservoir is within a narrow
bandwidth of frequency [30]. The term ωτ is such that τc0 is
the distance between the two systems, with c0 being the speed
of light. Furthermore, we consider an additional phase-shift φ

of the field, which may be induced by an external boundary
condition, e.g., by a mirror. The f in the coupling constant
γf stands for feedback and points out that the system B is
coupled to the time-delayed light field emitted by A. We extend
the treatment by additionally coupling A to another reservoir
Hk

R , k ∈ {2,3, . . . } independent of H 1
B in the form (A1). We

distinguish the reservoirs via the superscript in Hk
R . Figure 6

shows schematically the cascaded system. From the standard
input-output theory we derive the following Langevin equation
for an arbitrary operator X of the systems A or B [46]:

FIG. 6. Our feedback scheme. Top: A system is coherently driven
in a cascaded fashion by a past version of itself via the feedback
in-loop field b1

in,2(t) = eiφb1
out,1(t − τ ). The additional input b2

in takes
account of additional drives or losses of the system independent of
b1

in. Left bottom: Same physical setup represented by a loop. Right
bottom: The in-loop field can be eliminated; its only purpose is
to modify the internal dynamic. Note that b1

out never influences the
system again.

Ẋ = − i

�
[X,HA + HB] (A3a)

−
∑

k

{
[X, c

†
A]

(
γk

2
cA + √

γkb
k
in(t)

)
−

(
γk

2
c
†
A + √

γkb
k†
in (t)

)
[X, cA]

}
(A3b)

− [X, c
†
B ]

(
γf

2
cB + √

γ1γf cA(t − τ ) eiφ + √
γf b1

in(t − τ ) eiφ

)
+

(
γf

2
c
†
B + √

γ1γf c
†
A(t − τ ) e−iφ + √

γf b1†
in (t − τ ) e−iφ

)
[X, cB ]. (A3c)

We have defined the input operator bk
in(t) = 1/

√
2π∫ ∞

−∞ dω bk
0(ω)e−iωt , which only depends on the initial reservoir

operator bk
t=0(ω).

We see from Eq. (A3) that only system A has an effect on
system B, whereas B does not influence A. Thus we have an
unidirectional coupling field from A to B.

This setup can now be modified to represent time-delayed
feedback: In the following we consider only one additional
reservoir H 2

R beside H 1
R . To describe a system driven coher-

ently by a past version of itself through a feedback channel, we
now go one step further and let the two subsystems HA and HB

become the same system Hsys, which means that cA = cB = c.
We consider the equation of motion for the operator c, which
from (A3) takes the form

ċ = − i

�
[c,Hsys] − γ1 + γ2 + γf

2
c(t) − √

γ1γf eiφc(t − τ )

− √
γ1b

1
in(t) − √

γ2b
2
in(t) − √

γf eiφb1
in(t − τ ). (A4)

Equation (A4) is a time-delayed differential equation.
This is a quite general equation; indeed no assumptions have
yet been made about the system Hamiltonian nor the initial
statistics of the reservoir. The input operators bin only depend

on the initial condition b0. They can therefore be interpreted as
noise terms if the system and reservoir are initially factorized
and b0 is in an incoherent state. The delayed term b1

in(t − τ )
indicates that past fluctuations have an influence on the
dynamics of the present system. We now simply have the
situation of a system interacting with an input field giving
rise to an output field which interacts with the system again
after a delay τ and a phase shift φ. Moreover, causality has
to be preserved, which means that the system at later times
should not influence the previous system. This is naturally
ensured in the present case, where sys1 (previous) influences
sys2 (later) but the reverse direction is forbidden. Therefore,
the input-output theory for quantum cascade systems is well
suited for the treatment of a quantum coherent description
of autonomous time-delayed feedback as it allows input to
output connections with preservation of causality. A graphical
representation of the cascade is given in Fig. 6 (top).

2. Description of feedback in terms of loops

We define output fields related by the standard input-output
relation [30]

bk
out,α(t) = bk

in,α(t) + √
γk,α c(t). (A5)
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The subscript α labels the input and output ports, which
are driven by fields from the same reservoir k. The problem
is schematically shown in Fig. 6 (bottom left). We omit the
subscript in the case where the operator bk

in/out only acts on
one port of the system.

We remark that (A4) can be directly obtained by coupling
the system to two bosonic fields b1

in,1(t) and b1
in,2(t) with

respective strength γ1 and γf by letting

b1
in,2(t) = eiφb1

out,1(t − τ ). (A6)

Using the input-output relation (A5) we can directly connect
the in-loop input to the free input b1

in, that is,

b1
in,2(t) = eiφ

[
b1

in,1(t − τ ) + √
γ1c(t − τ )

]
. (A7)

Inserting the new input b1
in,2 in (A3) without (A3c) repro-

duces (A4).
This is an interesting point since it gives an intuitive picture

of autonomous feedback. In fact the field b1
in induced by

the reservoir gives rise to the in-loop field b1
out,1. This is

propagating back into the system again to become the input
b1

in,2 after having experienced a phase shift φ and a delay time
τ . The only purpose of this in-loop field is to modify the
internal dynamics of the system and may then be lost in form
of the output b1

out,2. That means that the information of the
past system is only stored for the duration of one loop in the
feedback channel and may then be forgotten. Therefore, only
one τ appears in the equation.

In the present case we do not allow b1
out,2 to influence the

system again, but we can straightforwardly extend Eq. (A4) to
include this case. However, the present treatment is sufficient
for a number of problems dealing with time-delayed feedback
in open quantum systems when the coupling between system
and reservoir is weak; see, e.g., Refs. [7,8,12]. We will discuss
that in the next section.

3. Equivalence of the proposed coherent feedback
scheme to other approaches

We reconsider now the Hamiltonians of Sec. (A 1). We will
show that our coherent feedback scheme is equivalent to other
approaches found in the literature.

Consider the case where the interactions Hint,1 and Hint,2

of the system with the reservoir H 1
R are done with the same

operator cA = cB = c and are of same strength, that is, γ1 =
γf . Furthermore, consider a phase shift φ = π .

We introduce the interaction Hamiltonian Hint as the sum
of Hint,1 and Hint,2:

Hint = Hint,1 + Hint,2

= 2�

√
γ1

2π

∫ ∞

−∞
dω [sin(ωτ/2)B†(ω)c + H.c.]. (A8)

Here we have defined the new bosonic operator

B(ω) = e−iωτ/2b(ω). (A9)

This is exactly the interaction Hamiltonian found when
coupling a system weakly to an external continuum of modes
shaped by a mirror, as is done, e.g., in Refs. [7,12,47].

Since H 1
R = �

∫
dω ωb†(ω)b(ω) = �

∫
dω ωB†(ω)B (ω),

the system dynamics described by the total Hamiltonian

H = Hsys + H 1
R + Hint is therefore totally equivalent in the

two approaches. The input-output theory as already outlined
before particularly gives a more intuitive picture of the
feedback problem.

4. Eliminating the in-loop field

It should be mentioned that it is impossible to measure the
in-loop field without destroying the quantum coherence of the
feedback loop, so that the only purpose of this field is to modify
the internal dynamics. It is suitable to derive a direct relation
between the free output b1

out,2 ≡ b1
out to the free input b1

in
since it avoids dealing with nonstandard commutation relation
as (A17) when considering, e.g., correlations of the inputs.
This is easily done using the input-output relation. We have

b1
out(t) = eiφb1

in(t − τ ) + eiφ√
γ1c(t − τ ) + √

γf c(t). (A10)

A graphical representation is given by Fig. 6 (right bottom).
In the main part of the paper a Fourier representation of
Eq. (A10) is needed. Using the Fourier transformed field
operators defined by

Õ(w) = 1√
2π

∫ ∞

−∞
dt e−iωtO(t), (A11)

we can transform (A10) into

b̃1
out(ω) = eiφe−iωτ b̃1

in(ω) + (
√

γ1e
iφe−iωτ + √

γf )c̃(ω).

(A12)

In the same way, the input-output relation for b2
in/b

2
out,

b2
out(t) = b2

in + √
γ2c(t), is simply

b̃2
out(ω) = b̃2

in(ω) + √
γ2c̃(ω). (A13)

In a general form, covering both relations, we can write
Eqs. (A12) and (A13) as

b̃i
out(ω) = Xi(ω)b̃i

in(ω) + Yi(ω)c̃(ω), (A14)

where Xi and Yi are defined in Eqs. (A12) and (A13) and are
used as an abbreviation in the main part of the paper.

5. Commutator relations

The input fields bi
in obey the bosonic commutator relation[

bi
in(t), bj†

in (t ′)
] = δij δ(t − t ′), (A15)

and in the case of a vacuum input, the only nonvanishing
correlation is 〈

bi
in(t)bi†

in (t ′)
〉 = δ(t − t ′). (A16)

For the in-loop input b1
in,2 this relation are modified since

b1
in,2 is not independent of b1

in and the system operator c. We
have for the commutator[

b1
in,2(t), b1†

in,2(t ′)
] = δ(t − t ′) for |t − t ′| < τ, (A17)

which can be found using Eqs. (A5) and (A6) and for reasons
of causality [b1(†)

out,1(t ′), c(†)(t)] = 0 for t − t ′ < τ (see, e.g.,
Ref. [30]).

Thus the in-loop field obeys the canonical commutator
relation only for |t − t ′| < τ but not for time differences
greater than the loop time.
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Ensuring that the time difference |t − t ′| is less than the de-
lay τ guarantees that the two-time commutator remains canon-
ical as it evaluates between fields in coexistence in the loop.

6. Pyragas-type quantum control scheme

If we consider the situation where the phase shift is φ = π

and the coupling is γ1 = γf = γ (perfect coupling) and
γ2 = 0 (lossless) the feedback channel engineers a quantum
control scheme, which is of Pyragas type [3]. In this scheme
Eq. (A4) becomes

ċ = − i

�
[c,Hsys] − γ1[c(t) − c(t − τ )]

− √
γ1b

1
in(t) + √

γ1b
1
in(t − τ ). (A18)

In this scheme the term γ1[c(t) − c(t − τ )] acts as a
control force and vanishes in case of stabilization, when
the system reaches a steady state or is τ periodic, i.e.,
if c(t) = c(t − τ ). The output field is then, using (A10),
b1

out(t) = −b1
in(t − τ ) + √

γ1[c(t) − c(t − τ )]. When the sys-
tem reaches a steady state we will have c(t) = c(t − τ ) and
in consequence the system operator will be stabilized. For the
output field we then have b1

out(t) = −b1
in(t − τ ). That means

only noise remains as an output in case of stabilization. The
Pyragas scheme is noninvasive since the control force vanishes
in the case of stabilization. Pyragas-type stabilization schemes
have been used in coherent feedback control, e.g., to reach
fast steady-state convergence in open quantum systems [8].
We presented recently how to use a Pyragas scheme to control
entanglement in a quantum node network [9].
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