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In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion)
zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial
quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field’s
components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness
and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell’s
vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the
Helmholtz and Maxwell’s equations. The EM beam components are characterized by nonzero integer degree and
order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR ,
and a weighting (real) factor 0 � α � 1 that describes the transition of the beam from a purely vortex (α = 0)
to a nonvortex (α = 1) type. An attractive feature for this superposition is the description of strongly focused
(or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular
momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector
potentials forming the beams and the weight of the coherent beam superposition causing the transition from the
vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials
and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde
propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam
handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are
particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams,
optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation,
and other related topics.
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I. INTRODUCTION

Scalar waves with a Gaussian beam profile originate in
the wave diffraction theory as a solution of the parabolic
(paraxial) wave equation (pp. 143–156 in Ref. [1], pp. 637–641
in Ref. [2], and pp. 263–287 in Ref. [3]). Various mathematical
models were developed for beam-forming design purposes to
describe the propagation of weakly focused or quasicollimated
beams [4–7], as well as evaluating the beam-shape coefficients
(BSCs) [8,9], which are essential in computing the scattering,
radiation force, and torque on particles placed arbitrarily in
the field of electromagnetic (EM) or optical beams [8,10].
For tightly focused beams, improved models [11–13] have
been developed based on the angular spectrum decomposition
approach [14], finite series (Chap. V in Ref. [8]), and
the formalism of localized beams (Chap. VII in Ref. [8]),
which produce a remodeled Maxwellian beam that closely
resembles the original paraxial beam. Other models based
on the complex rays [15–18] and the complex-source-point
methods [19–29] have been devised, which produce exact
solutions of Maxwell’s equations, without the need of the
higher-order corrections [6,7,9,30] required to regularize the
paraxial Gaussian beam and make its mathematical expression
suitable for computational purposes.

One particular solution has been developed [27], which is a
fundamental (zeroth-order) beam description of a generalized
result [28] corresponding to a higher-order quasi-Gaussian
vortex beam satisfying Maxwell’s equations. The generalized
solution has been termed high-order “quasi-Gaussian” to make
a distinction from the paraxial Gaussian beam that does not

satisfy Maxwell’s equations. The mathematical expressions
for the EM field’s components of a generalized high-order
quasi-Gaussian vortex beam in a complex coordinates system
consist of products of spherical Bessel functions of the first
kind and associated Legendre functions with a complex
exponential phase dependency on the azimuthal angle.

In this work, the complex-source-point is further extended
to develop the most general solution corresponding to a
transition from a vortex to a nonvortex high-order quasi-
Gaussian beam of any integer degree and order (n,m) which
satisfies the Helmholtz and Maxwell’s equations. It is shown
here that it is possible to create a coherent superposition of
two copropagating high-order quasi-Gaussian vortex beams
of opposite handedness (i.e., opposite helicity or topological
charge) and different amplitude. Depending on the amplitude
difference between the two beams, the resulting field can carry
a total angular momentum (i.e., beam of vortex nature), or not
(i.e., beam of nonvortex type). Stemming from the Lorenz
gauge condition [31], Maxwell’s equations, and the state of
polarization of the vector potentials, closed-form expressions
for the EM field’s components are established without any
approximations. Moreover, the EM power density and the
linear and angular momentum flux densities are examined.
Numerical computations illustrate the analysis with particular
emphasis on the polarization state of the vector potential
from which the EM fields are derived and the weight of the
coherent superposition. The results anticipate the production
of an axial (i.e., along the direction of wave motion) Poynting
singularity (i.e., axial zero-energy density flux). In general,
the Poynting vector is a real observable; thus, it has no phase
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associated with it, and subsequently, it does not possess
any phase singularities. On the other hand, the Poynting
“singularity” encountered here results from the indeterminacy
of its direction at zero amplitude. Since the Poynting vector
is a composite observable resulting from the interaction of
the electric and magnetic fields, the singularity can arise due
to the vector field singularities (i.e., zeros of the electric
and magnetic field) and the mutual polarization of the fields.
Moreover, negative-energy flux density in the axial direction
is observed in a bounded region around the axis where the
local behavior of the wave field is similar to that of a wave
field with negative-energy flow. This physical phenomenon
observed using strongly focused quasi-Gaussian beams is of
essential importance for EM and optical traps and tweezers,
where the location as well as the linear and angular momenta
may be manipulated by varying the sign of the Poynting vector.
The zero- and negative-energy flux density characteristics
of the quasi-Gaussian (vortex) solution may also be used
in invisibility cloaks, such that a metamaterial object could
possibly tailor the incident wavefront into a quasi-Gaussian
field propagating in the host medium. Furthermore, a sign
reversal of the forward linear and angular momentum flux
densities is predicted, which may suggest the possible genera-
tion of retrograde wave propagation and negative (left-handed)
torques [32,33] should some conditions related to the beam
parameters be adequately satisfied. The physical properties
and characteristics of the generalized quasi-Gaussian (vortex)
beam solution developed here are necessary to study for design
optimization purposes of a possible improved generation of
laser beams with strong focusing. Notice that the mathematical
modeling of strongly focused optical (vortex) beams remains
among the hot topics of modern optics due to its utility in the
prediction of counterintuitive effects from the standpoint of
EM wave propagation theory and polarization. The present
solution and associated results should also be of potential
interest to investigations involving the study of the arbitrary
scattering by strongly focused optical beams, radiation force,
and torque, as well as the quantitative predictions of the
linear and angular momenta of tightly focused (or strongly
divergent), and quasicollimated high-order quasi-Gaussian
beams.

II. METHOD

The propagation of a monochromatic beam with a harmonic
time dependence of exp(−iω t) in vacuum is assumed. The
time-harmonic dependence is dropped from all subsequent
terms for convenience. Consider a magnetic vector potential
field AH,x describing a superposition of two propagating
high-order quasi-Gaussian vortex beams with opposite hand-
edness and different amplitudes, and expressed in complex
coordinates as

AH,x = Ax,

= A0

2
e−kzR jn(κ±)P m

n (cos θ±)[eimφ + αe−imφ]x, (1)

where x is the unit vector along the x direction; A0 is the
characteristic amplitude; κ± = kR±, where k is the wave
number of the incident radiation; jn(·) is the spherical Bessel
function of the first kind that is nonsingular at the origin

R± = 0; P m
n (·) are the associated Legendre functions of

integer degree n and order m; R± =
√

x2 + y2 + Z2
±, θ± =

cos−1(Z±/R±), φ = tan−1(y/x), where the inverse tangent
must be suitably defined taking into account the correct
quadrant of (x,y); Z± = (z ± izR); e−kzR is a normalization
constant; zR = (kw2

0)/2 is known as the Rayleigh range; w0

is the beam waist; and α is a real number representing the
amplitude ratio of the superposition of the two beams (i.e.,
the weighted sum). When α = 0, the beam is of vortex nature
(i.e., the azimuthal dependence is expressed under the form
of a complex exponential function), whereas when α = 1,
the beam becomes of trigonometric (nonvortex) type (i.e.,
the azimuthal dependence is expressed under the form of
a cosine function [34,35]). In this sense, the parameter α

describes the transition from vortex to nonvortex behavior of
the high-order quasi-Gaussian beam. Moreover, since each
individual component is an exact solution of the Helmholtz
equation [21], their superposition as given by Eq. (1) also
satisfies the Helmholtz wave equation.

Using the Lorenz gauge condition [31], a magnetic field
HH is defined as

∇ × AH,x = HH . (2)

Thus, from Maxwell’s equations and Eq. (2), the electric
field is expressed as

EH=ik[AH,x+∇(∇ · AH,x)/k2]. (3)

The Cartesian components of the EM field can now be
determined from these equations. However, the generalized
description of beams in free space (with no specific boundary
conditions imposed) requires adding the dual field setup
to Eqs. (1)–(3) in the process of deriving the EM beam
components, which represent symmetry in their mathematical
expressions. In other words, if only Eqs. (1)–(3) were used, the
resulting electric and magnetic fields would be nonsymmetric.
However, to describe a circularly symmetric quasi-Gaussian
beam in free space, both the electric and magnetic fields must
exhibit symmetry. Therefore, the procedure requires defining
a second electric vector potential field AE,y polarized along
the negative (or positive) y direction such that

AE,y = −Ay, (4)

where y is the unit vector along the y direction. Therefore, an
electric field EE may be defined as

∇ × AE,y = EE. (5)

Thus, from Maxwell’s equations and Eq. (5), the magnetic
field is expressed as

HE= − ik[AE,y+∇(∇ · AE,y)/k2]. (6)

Adding the solution of Eqs. (2) and (3) to the solution
of Eqs. (5) and (6), and dividing the end result by 2 leads
to the spatial Cartesian components for the superposition
of high-order quasi-Gaussian vortex beams such that the
electric and magnetic vector fields are expressed, respec-
tively, as Eu = 1

2 (EE + EH ) and Hu = 1
2 (HE + HH ), where

Eu = (Eu
x ,Eu

y ,Eu
z ) and Hu = (Hu

x ,Hu
y ,Hu

z ). The superscript
u denotes the state of polarization of the vector potentials,
such that u = (x, − y) defines the fields obtained based on the

023801-2



SUPERPOSITION OF NONPARAXIAL VECTORIAL . . . PHYSICAL REVIEW A 94, 023801 (2016)

polarizations chosen in Eqs. (1) and (4). The results for the
fields are given in Eqs. (A2)–(A7) in the Appendix.

It has already been established that the polarization of the
vector potentials can have significant impact on the mathe-
matical expressions and spatial distributions of the EM field’s
components [27,28]. Changing the transverse polarization to
an axial (i.e., along the direction z) one requires choosing
another set of vector potentials, for example, the first, AH,z,
polarized along the direction of wave propagation, z, and the
second vector potential AE,z, polarized along the opposite
direction, –z. Note that this type of (axial) polarization has
been previously suggested for the development of a new type
of free-electron laser [36]. Repeating the derivations for this
choice of potentials [defined as the u = (z,–z) configuration],
produces a set of spatial Cartesian components given by
Eqs. (A8)–(A13) in the Appendix that differ from Eqs. (A3)–
(A7) for the u = (x,–y) polarization configuration.

After derivation of the EM field’s components, other
observables, such as the time-averaged Poynting vector 〈S〉
as well as the linear and angular momentum density fluxes
can be evaluated. The EM power density (i.e., time-averaged
Poynting vector) is expressed as (p. 259 in Ref. [31])

〈Su〉 = c

8π
Re{Eu × Hu∗}

= c

8π
Re

{
Su

x x + Su
y y + Su

z z
}

= c

8π
Re

⎧⎪⎨
⎪⎩

(
Eu

yHu∗
z − Eu

z Hu∗
y

)
x

+(
Eu

z Hu∗
x − Eu

xHu∗
z

)
y

+(
Eu

xHu∗
y − Eu

yHu∗
x

)
z

⎫⎪⎬
⎪⎭, (7)

where z is the unit vector along the z direction, the symbol
〈·〉 denotes time averaging, Re[·] denotes the real part of a
complex number, and the superscript * indicates a complex
conjugate.

In the following, the analysis is extended to include the
description of the axial components of the time-averaged linear
and angular momenta density fluxes.

The expression for the linear momentum flux density

tensor in vacuum is given by (p. 261 in Ref. [31]),
←→
�u =

(Wu
↔
I − Eu ⊗ Eu − Hu ⊗ Hu), where the energy density for

the free EM field is Wu = 1
2 [Eu2 + Hu2

];
↔
I is the identity

matrix (tensor); ⊗ denotes a tensor product, with
←→
�u = −←→

Tu ,

where
←→
Tu is known as the Minkowski form of Maxwell’s stress

tensor [31,37,38]. It follows that the axial component of the
time-averaged linear momentum density flux (which can cause
an axial force [10] if a particle is placed along the waves path)
is expressed as

�u
zz = zT 〈←→�u 〉z,

= 1
4

[∣∣Eu
x

∣∣2 + ∣∣Eu
y

∣∣2 − ∣∣Eu
z

∣∣2 + ∣∣Hu
x

∣∣2 + ∣∣Hu
y

∣∣2 − ∣∣Hu
z

∣∣2]
,

(8)

where the superscript T denotes the transpose of a vector.
Moreover, the angular momentum density flux tensor is←→

Mu= r × ←→
�u . This angular momentum can produce a torque

on a particle [10], which can be determined by performing a
surface integration of the dot product of the outwardly directed
normal unit vector and the negative angular momentum density
flux tensor.

The angular momentum flux density tensor is expressed as

←→
Mu = Wur × ↔

I − (r × Eu) ⊗ Eu − (r × Hu) ⊗ Hu. (9)

For time-harmonic wave fields, 〈←→Mu〉 is solenoidal; i.e.,
∇ · 〈←→Mu〉 = 0. Moreover, it is noticed that the energy density
factor Wu does not contribute to the diagonal components of←→
Mu in Eq. (9), but only the off-diagonal terms. It follows that
the axial component of the time-averaged angular momentum
density flux tensor is expressed as [39]

Mu
zz = zT 〈←→Mu〉z,

= 1
2 Re

[
y
(
Eu

xEu∗
z + Hu

x Hu∗
z

) − x
(
Eu

yEu∗
z + Hu

y Hu∗
z

)]
.

(10)

III. NUMERICAL RESULTS AND DISCUSSIONS

To illustrate the analysis from the standpoint of energy char-
acteristics as well as the linear and angular momentum density
fluxes of the superposition of nonparaxial EM first-order quasi-
Gaussian (denoted by SqG11) focused vortex beams, numerical
computations are performed by considering a nondimensional
beam waist kw0 = 3 (corresponding to a tightly focused
beam). However, in the simulations n = m = 1, the analytical
development is applicable to any integer values (nm). Notice
that in optical systems the diffraction limit is usually reached
for a beam waist w0 approaching half the wavelength λ/2
of the incident radiation (i.e., kw0 = π ) [2]. A superposition
of qGnm beams with kw0 < 3 results in a beam that is not
directional and may not be entirely physically realizable
[40]. Below this limit, wave reflections at the aperture of
the focused source would practically generate exponentially
decaying evanescent waves which become relatively important
as kw0 → 0. Nonetheless, because of its exponential distance
dependence, evanescent waves would yield infinite energy
at a distance far away from the origin. Thus, on physical
grounds, evanescent waves cannot exist in free-space and their
generation is restricted to the aperture of the optical source.

All the components for the Poynting vector, in addition to
the axial (i.e., along z) components of the linear and angular
momentum density fluxes given by Eqs. (7), (8), and (10),
respectively, are numerically evaluated in the nondimensional
transverse plane –10 � (kx,ky) � 10 for a SqG11 (i.e., n =
m = 1) propagating in free-space with particular emphasis on
the superposition parameter α and type of polarization of the
vector potentials.

Figures 1(a)–1(c) show the plots for the axial energy flux
density Sz,11 for the transverse (x,–y) polarization case, and
for α = 0. The axial energy density flux is maximal around the
center of the “hollow” beam as shown in Fig. 1(c). Moreover,
Fig. 1(d) explicitly shows that the axial energy flux density
is negative around the central axis region, suggesting reverse
beam propagation. Notice that an analogous effect has been
previously observed for vector Bessel (nondifracting) beams
derived based on the superposition of TE- and TM-polarized

023801-3



F. G. MITRI PHYSICAL REVIEW A 94, 023801 (2016)

FIG. 1. (a)–(c) display the plots for the axial energy density flux
for a SqG11 beam with kw0 = 3 and α = 0 with transverse u =
(x,–y) polarization. (b) represents the three-dimensional isosurface
plot while (c) shows the cross-sectional transverse plot at kz = 0. (d)
shows the plot for Sz,11 � 0 where the transverse Poynting vector field
Su

⊥,11 = (Su
x,11,S

u
y,11) computations (denoted by the vector arrows) are

superimposed on the plots of the axial component Sz,11 � 0.

beams [41], and x-wave [42] and Airy beams [43] which
differ from the generalized SqGnm solution presented here.
Figure 1(d) shows the plot for Sz,11 � 0 where the transverse
Poynting vector field S(x,−y)

⊥,11 = (S(x,−y)
x,11 ,S

(x,−y)
y,11 ) computations

(denoted by the vector arrows) are superimposed on the plots of
the axial component S

(x,−y)
z,11 � 0. The anticlockwise direction

of rotation of the vector arrows of S(x,−y)
⊥,11 shows the vortex

nature of the transverse vector energy density flux. In addition,
the negative regions of the axial energy density flux in Fig. 1(d)
are delimited by circular lines over which S

(x,−y)
z,11 = 0. This

corresponds to an “axial” Poynting singularity [44] where the
axial energy density flux of the incident beam vanishes.

Figures 2(a)–2(d) display the computational plots for the
axial component of the linear momentum density flux tensor.
Figure 2(d) shows that negative values for �

(x,−y)
zz,11 are indeed

possible, which are maximal at the center of the beam. This
effect suggests that it may be possible to induce a retrograde
motion on a particle placed around or at the central region of the
beam, depending on its intrinsic physical properties. Moreover,
�

(x,−y)
zz,11 vanishes along lines delimiting annular regions over

which �
(x,−y)
zz,11 < 0.

Similar to the axial Poynting singularity mentioned earlier,
the effect of having conditions where �

(x,−y)
zz,11 = 0 such that the

incident field does not induce any linear momentum density

FIG. 2. The plots for the axial linear momentum density flux
�

(x,−y)
zz,11 for a SqG11 beam with kw0 = 3 and α = 0 with transverse

u = (x,–y) polarization. (d) shows the values over which �
(x,−y)
zz,11 � 0.

flux in the axial direction corresponds to a linear momentum
density flux singularity.

Figures 3(a)–3(d) display the computational plots for the
axial angular momentum density flux. Depending on the
amount of the shift from the center of the beam, M

(x,−y)
zz,11

vanishes before it becomes negative over annular regions
delimited by angular momentum singularity lines (where
M

(x,−y)
zz,11 = 0) as explicitly shown in Fig. 3(d). The negative

amplitude is maximal over the first annular region around the
central axis, and vanishes at the center of the beam. The sign
reversal suggests that the axial angular momentum flux density
(which is responsible for creating an orbital torque on a particle
located arbitrarily in space) has an opposite handedness with
respect to the beam’s transverse Poynting vector S(x,−y)

⊥,11 shown
in Fig. 1(d). This could lead to the generation of a negative
radiation torque that can rotate a particle in a reversed angular
direction to that of S(x,−y)

⊥,11 .
The effect of changing the polarization of the incident

SqG11 vortex beam is investigated such that an axial (z,–z)
state is now considered. The corresponding results are dis-
played in Figs. 4–6 for the Poyting vector components, and
axial linear and angular momentum flux densities, respectively.
In contrast with the results obtained for the transverse (x,–y)
polarization shown in Figs. 1–3, the axial component S

(z,−z)
z,11 is

maximal at the center of the beam as shown in Figs. 4(a)–4(c),
though the beam remains of vortex nature as shown in Fig. 4(d)
(i.e., vector arrows with anticlockwise direction of rotation).
Moreover, �

(z,−z)
zz,11 displays a different behavior than the one

observed for �
(x,−y)
zz,11 by comparison of Fig. 5 with Fig. 2.
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FIG. 3. The plots for the axial angular momentum density flux
M

(x,−y)
zz,11 for a SqG11 beam with kw0 = 3 and α = 0 with transverse

u=(x,–y) polarization. (d) shows the values over which M
(x,−y)
zz,11 �0.

At the center of the beam in Fig. 5, �
(z,−z)
zz,11 > 0, while it

vanishes before becoming negative over an annular region
around the central axis. Furthermore, Fig. 5(d) shows that

FIG. 4. The same as in Fig. 1 but an axial polarization (z,–z) for
the vector potentials is considered.

FIG. 5. The same as in Fig. 2 but an axial polarization (z,–z) for
the vector potentials is considered.

the negative amplitudes are smaller than those obtained for
�

(x,−y)
zz,11 as shown in Fig. 2(d). As for M

(z,−z)
zz,11 , Fig. 6 shows

that a comparable behavior to M
(x,−y)
zz,11 in Fig. 3 is observed;

FIG. 6. The same as in Fig. 3 but an axial polarization (z,–z) for
the vector potentials is considered.
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FIG. 7. The same as in Fig. 1 but α = 0.5.

M
(z,−z)
zz,11 is maximal over an annular region around the axis

before it vanishes and becomes negative. Notice, however,
that the negative amplitudes are larger than those obtained for
M

(x,−y)
zz,11 as shown by comparing Figs. 3(d) and 6(d).
The weight of the superposition of nonparaxial vectorial

complex-source spherically focused beam solutions is now
investigated, such that α = 0.5. The corresponding plots for

FIG. 8. The same as in Fig. 2 but α = 0.5.

FIG. 9. The same as in Fig. 3 but α = 0.5.

this configuration are shown in Figs. 7(a)–7(d), 8(a)–8(d),
and 9(a)–9(d) for the Poyting vector components, and axial
linear and angular momentum flux densities, respectively. The
transverse polarization (x,–y) case is only considered since
the axial (z,–z) state displays similar effects. A one-to-one

FIG. 10. The same as in Fig. 1 but α = 1.
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FIG. 11. The same as in Fig. 2 but α = 1.

comparison of the figures with those of Figs. 1–3 shows
that the superposition affects the spatial distribution of the
physical observables in the (kx,ky) plane. For Figs. 7 and 8,
respectively, the circular symmetry (observed previously for
Figs. 1 and 2) is broken. Nonetheless, the vortex nature of
the transverse Poynting vector is still manifested as shown
in Fig. 7(d). Notice also that the plots for M

(x,−y)
zz,11 of Fig. 9

preserve the circular symmetry. Moreover, all observables
display singularities and negative values depending on the
amount of the shift from the center of the beam.

The effect of further increasing the weighted sum parameter
α to unity is shown in Figs. 10(a)–10(d) and 11(a)–11(d)
for the Poyting vector components as well as the axial
linear momentum flux density, respectively, in the transverse
polarization (x,–y) state. As shown in Fig. 10(d), the transverse
Poynting vector displays a nonvortex behavior, with the
Poynting vector arrows converging towards the central region.

Nonetheless, an axial Poynting singularity is still manifested in
the cross-sectional plane as well as negative values indicating
reverse propagation. Moreover, Figs. 11(a)–11(d) show that
the circular symmetry previously noted in Fig. 2 is broken
for the axial linear momentum flux density while the central
region over which �

(x,−y)
zz,11 < 0 is enlarged. Notice that for

the nonvortex case (i.e., α = 1), the axial angular momentum
vanishes at the center of the beam.

IV. CONCLUSION

In summary, counterintuitive effects related to the coherent
superposition of nonparaxial vectorial complex-source spheri-
cally focused beams are revealed from the standpoint of energy,
linear, and angular momentum flux density characteristics.
Zero-energy density flux as well as negative propagation
in which the direction of the Poynting vector reverses sign
during propagation have been theoretically studied. Should
some conditions determined by the polarization type u, the
weighted sum parameter α, and beam focusing properties
be met, the axial components of the energy, linear, and
angular momentum flux densities vanish before they reverse
their sign. Such properties suggest retrograde translation and
rotation reversal with respect to the beam handedness. It
follows directly from the results which are especially relevant
to particle manipulation and handling applications that a
particulate matter in strongly focused quasi-Gaussian beams
would interact with the EM field and experiences the effects
of the negative-energy and linear and angular momentum flux
densities. It is important to emphasize here that the angular
momentum flux density can be separated into spin and orbital
contributions [39], which may be transferred to the object
being manipulated. Subsequently, negative orbital and spin
torques [32,33] can arise depending on the object’s physical
properties. These peculiar properties might be of potential use
in particle manipulation applications using laser EM or optical
tweezers, tractor beams, and optical spanners, where micro-
and nanoparticles are currently utilized. The quasi-Gaussian
beam description of waves with tight focusing offers an
improved exact solution due to the highly localized nature
of the wave field, its strong gradient, and the flexibility in
manipulating the propagation and energy flow characteristics.
The negative-energy flux density characteristics of the quasi-
Gaussian beam solution could possibly be used also in
invisibility cloaks.

APPENDIX: FIELD EXPRESSIONS

Defining the following parameters as


n = {κ±[jn−1(κ±) − jn+1(κ±)] − jn(κ±)},
ξn = {κ2

±[jn−2(κ±) − 2jn(κ±) + jn+2(κ±)] + 2κ±[jn+1(κ±) − jn−1(κ±)] + 3jn(κ±)},
Fnm = [

(n + 1)Z±P m
n (cos θ±) + (m − n − 1)R±P m

n+1(cos θ±)
]
,

χnm = [
(m − n − 1)Z±P m

n+1(cos θ±) +
√

R2± − Z2±P m+1
n+1 (cos θ±)

]
,

nm = [
(m − n − 1)Z±(m2 − 2mn + m − 3n2 − k2Z2

± − n + 1)P m
n+1(cos θ±)

+ (m2 − n2 − k2Z2
±)

√
R2± − Z2±P m+1

n+1 (cos θ±)
]
,
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�nm = [
(−2m2 + m + 2n2 + 3n + 1)Z±P m

n+1(cos θ±) +
√

R2± − Z2±P m+1
n+1 (cos θ±)

]
,

�nm = (
n(n + 1)P m

n (cos θ±)Z2
± + (m − n − 1)(2n + 3)R±Z±P m

n+1(cos θ±)

+R2
±
{
(n + 1)P m

n (cos θ±) + [m2 − (2n + 3)m + n2 + 3n + 2]P m
n+2(cos θ±)

})
, (A1)

the EM field’s components in complex coordinates are now expressed as

E(x,−y)
x,nm = A0

8
e−(imφ+kzR )

{
4(α + e2imφ)jn(κ±)Fnm

R2±
+ 2(α + e2imφ)Z±P m

n (cos θ±)
n

R2±

+ ik

[
4(α + e2imφ)jn(κ±)P m

n (cos θ±) + 1

k2

(
4(α + e2imφ)jn(κ±)Z2

±x2[2Z±Fnm + �nm]

R4±(Z2± − R2±)
2 + 4(α + e2imφ)jn(κ±)Z±Fnm

R2±(Z2± − R2±)

+ 8i(e2imφ − α)xymjn(κ±)Z±Fnm

R2±(R2± − Z2±)(x2 + y2)
+ 4(α + e2imφ)x2Z±Fnm[3jn(κ±) − 
n]

R4±(R2± − Z2±)

− 4my[e2imφ(my − 2ix) + α(my + 2ix)]jn(κ±)P m
n (cos θ±)

(x2 + y2)2
+ 2(α + e2imφ)P m

n (cos θ±)
n

R2±

− 4i(e2imφ − α)mxyP m
n (cos θ±)
n

R2±(x2 + y2)
+ 2(α + e2imφ)x2P m

n (cos θ±)

R4±

[
ξn

2
− 
n

])]}
, (A2)

E(x,−y)
y,nm = iA0

8k
e−(imφ+kzR )

{
4(α + e2imφ)jn(κ±)Z2

±xy[2Z±Fnm + �nm]

R4±(Z2± − R2±)
2 + 4i(e2imφ − α)mjn(κ±)Z±Fnm[y2 − x2]

R2±(R2± − Z2±)(x2 + y2)

+ 4(α + e2imφ)xyZ±Fnm[
n − 3jn(κ±)]

R4±(Z2± − R2±)
+ 4im[α(x2 − y2 − imxy) + e2imφ(y2 − x2 − imxy)]jn(κ±)P m

n (cos θ±)

(x2 + y2)2

+ 2i(e2imφ − α)mP m
n (cos θ±)
n[x2 − y2]

R2±(x2 + y2)
+ (α + e2imφ)xyP m

n (cos θ±)[ξn − 2
n]

R4±

}
, (A3)

E(x,−y)
z,nm = A0

8
e−(imφ+kzR )

{
4i(e2imφ − α)ymjn(κ±)P m

n (cos θ±)

(x2 + y2)
− 4(α + e2imφ)xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2(α + e2imφ)xP m

n (cos θ±)
n

R2±

+ i

k

[
2(α + e2imφ)Z±x{2jn(κ±)[Z±Fnm − �nm] − Z±Fnm
n}

R4±(R2± − Z2±)
− 2i(e2imφ − α)myP m

n (cos θ±)Z±
n

R2±(x2 + y2)

+ (α + e2imφ)xP m
n (cos θ±)Z±[ξn − 2
n]

R4±
+ 4(α + e2imφ)xjn(κ±)Fnm

R2±(Z2± − R2±)
− 4i(e2imφ − α)ymjn(κ±)Fnm

R2±(x2 + y2)

+ 2(α + e2imφ)xFnm
n

R4±

]}
, (A4)

H (x,−y)
x,nm = E(x,−y)

y,nm , (A5)

H (x,−y)
y,nm = A0

8
e−(imφ+kzR )

{
4(α + e2imφ)jn(κ±)Fnm

R2±
+ 2(α + e2imφ)Z±P m

n (cos θ±)
n

R2±
+ ik

[
4(α + e2imφ)jn(κ±)P m

n (cos θ±)

+ 1

k2

(
4(α + e2imφ)jn(κ±)Z2

±y2[2Z±Fnm + �nm]

R4±(Z2± − R2±)
2 + 4(α + e2imφ)jn(κ±)Z±Fnm

R2±(Z2± − R2±)
− 8i(e2imφ − α)xymjn(κ±)Z±Fnm

R2±(R2± − Z2±)(x2 + y2)

+ 4(α + e2imφ)y2Z±Fnm[3jn(κ±) − 
n]

R4±(R2± − Z2±)
− 4mx[α(mx − 2iy) + e2imφ(mx + 2iy)]jn(κ±)P m

n (cos θ±)

(x2 + y2)2

+ 2(α + e2imφ)P m
n (cos θ±)
n

R2±
+ 4i(e2imφ − α)mxyP m

n (cos θ±)
n

R2±(x2 + y2)
+ 2(α + e2imφ)y2P m

n (cos θ±)

R4±

[
ξn

2
− 
n

])]}
,

(A6)
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H (x,−y)
z,nm = A0

8
e−(imφ+kzR )

{
−4i(e2imφ − α)xmjn(κ±)P m

n (cos θ±)

(x2 + y2)
− 4(α + e2imφ)yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2(α + e2imφ)yP m

n (cos θ±)
n

R2±

+ i

k

[
2(α + e2imφ)Z±y{2jn(κ±)[Z±Fnm − �nm] − Z±Fnm}
n

R4±(R2± − Z2±)
+ 2i(e2imφ − α)mxP m

n (cos θ±)Z±
n

R2±(x2 + y2)

+ (α + e2imφ)yP m
n (cos θ±)Z±[ξn − 2
n]

R4±
+ 4(α + e2imφ)jn(κ±)yFnm

R2±(Z2± − R2±)
+ 4i(e2imφ − α)xmjn(κ±)Fnm

R2±(x2 + y2)

+ 2(α + e2imφ)yFnm
n

R4±

]}
. (A7)

In the axial polarization scheme denoted by (z, −z), those components are given as

E(z,−z)
x,nm = A0

8
e−(imφ+kzR )

{
−4i(e2imφ − α)xmjn(κ±)P m

n (cos θ±)

(x2 + y2)
− 4(α + e2imφ)yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2(α + e2imφ)yP m

n (cos θ±)
n

R2±

+ i

k

[
2(α + e2imφ)Z±x{2jn(κ±)[2Z±Fnm + �nm] + Z±Fnm
n}

R4±(Z2± − R2±)
− 2i(e2imφ − α)my

[
P m

n (cos θ±)Z±
n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

+ 2(α + e2imφ)xFnm
n

R4±
+ (α + e2imφ)xP m

n (cos θ±)Z±[ξn − 2
n]

R4±
+ 4(α + e2imφ)x(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

]}
, (A8)

E(z,−z)
y,nm = A0

8
e−(imφ+kzR )

{
−4i(e2imφ − α)ymjn(κ±)P m

n (cos θ±)

(x2 + y2)
+ 4(α + e2imφ)xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
+ 2(α + e2imφ)xP m

n (cos θ±)
n

R2±

+ i

k

[
2(α + e2imφ)Z±y{2jn(κ±)[2Z±Fnm + �nm] + Z±Fnm
n}

R4±(Z2± − R2±)
+ 2i(e2imφ − α)mx

[
P m

n (cos θ±)Z±
n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

+ 2(α + e2imφ)yFnm
n

R4±
+ y(α + e2imφ)P m

n (cos θ±)Z±[ξn − 2
n]

R4±
+ 4(α + e2imφ)y(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

]}
, (A9)

E(z,−z)
z,nm = e−(imφ+kzR )A0(α + e2imφ)

2iκ±R4±(m + n + 1)
{jn(κ±)[κ2

±R2
±χnm + (4n2 − 1)Z2

±χnm + R2
±nm]

− κ± jn+1(κ±)[R2
±�nm + (2n − 1)Z2

±χnm]}, (A10)

H (z,−z)
x,nm = A0

8
e−(imφ+kzR )

{
4i(e2imφ − α)xmjn(κ±)P m

n (cos θ±)

(x2 + y2)
+ 4(α + e2imφ)yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
+ 2(α + e2imφ)yP m

n (cos θ±)
n

R2±

− i

k

[
2(α + e2imφ)Z±x{2jn(κ±)[2Z±Fnm + �nm] + Z±Fnm
n}

R4±(R2± − Z2±)

+ 2i(e2i|m|φ − α)my
[
P m

n (cos θ±)Z±
n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

− 2(α + e2i|m|φ)xFnm
n

R4±

− (α + e2imφ)xP
|m|
n (cos θ±)Z±[ξn − 2
n]

R4±
− 4(α + e2imφ)x(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

]}
, (A11)

H (z,−z)
y,nm = A0

8
e−(imφ+kzR )

{
4i(e2imφ − α)ymjn(κ±)P m

n (cos θ±)

(x2 + y2)
− 4(α + e2imφ)xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2(α + e2imφ)xP m

n (cos θ±)
n

R2±

− i

k

[
2(α + e2imφ)Z±y{jn(κ±)[2Z±Fnm + �nm] + Z±Fnm
n}

R4±(R2± − Z2±)
− 2i(e2imφ − α)mx

[
P m

n (cos θ±)Z±
n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

− 2(α + e2imφ)yFnm
n

R4±
− (α + e2imφ)yP m

n (cos θ±)Z±[ξn − 2
n]

R4±
− 4(α + e2imφ)y(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

]}
,

(A12)

H (z,−z)
z,nm = E(z,−z)

z,nm . (A13)
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