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We study the dynamical response of ultracold fermion-boson mixtures in the Bogoliubov regime, where the
interactions between fermionic impurities and bosonic excitations (phonons) are described by an effective Fröhlich
model under the Bogoliubov approximation. A characteristic suppression of the single-particle spectral weight is
found in the small-momentum region where the impurity band and phonon mode intersect. Using a diagrammatic
technique we compute the Bragg spectra as well as the momentum-dependent force-force correlation function.
We find that both of them are heavily affected by the spectral weight suppression effect at low impurity densities
in both one- and two-dimensional systems. We show that the spectral weight suppression feature in Bragg spectra,
which was previously found in quantum Monte Carlo simulations and which cannot be recovered by the random
phase approximation, can be accurately reproduced with the help of vertex corrections.
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I. INTRODUCTION

The experimental advances in manipulation of ultracold
gas mixtures have made them outstanding platforms to
explore the quantum many-body phenomena analogous to
those in condensed-matter physics [1,2]. In recent years,
a high-precision experimental control of such parameters
as the strength of interaction, concentration of individual
mixture components, imbalance of internal states, as well
as dimensionality of the system has become possible, thus
allowing clean setups to study the properties of phase transi-
tions, excitation spectra, and dynamical processes [3–5]. In
the case of ultracold fermion-boson mixtures, the systems
are realized by mixing atoms of different species [6–9] or
isotopes of the same element [10], in which, e.g., fermionic
impurities are subject to interactions with the bosonic exci-
tations (phonons) in Bose-Einstein condensates (BEC) upon
sympathetic cooling [11,12]. In the Bogoliubov regime, where
the depletion of condensate is negligible and the Bogoliubov
linear approximation holds [13], such a complex system is
nothing but an analog of the conventional Fröhlich polaron in
solid-state materials [14–16].

The idea of polarons was first proposed by Landau
and Pekar [17,18] and further developed by Fröhlich and
Feynman [19–21] so as to describe the long-living states
of quasiparticles comprising dressed electrons and collective
excitations due to electron-phonon couplings in polar crystals.
This conceptual framework plays an important role in a number
of intriguing quantum phenomena, such as, e.g., conventional
superconductivity (see Ref. [22] for a review of the solid-
state polaron). There are, however, fundamental differences
between the solid-state Fröhlich polarons and their BEC
counterparts. The most obvious one is the different dispersion
relation of the bosonic subsystem as well as the profoundly
different momentum dependence of the coupling strength [16].
However, these details do not alter the general picture of the
polaron and its quasiparticle nature and the Fröhlich model
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hence serves as a reasonable starting point for interpreting the
underlying intricacy of ultracold fermion-boson mixtures.

From another perspective, solving the Fröhlich model is
a nontrivial and challenging theoretical task. While analytical
approaches, such as the Lee-Low-Pines variational ansatz [23],
Landau-Pekar strong-coupling theory [24], Feynman path
integral and variational scheme [21], work well in many
circumstances and especially in solid-state systems, they are
not able to yield a complete knowledge about the Fröhlich
polaron properties. Recent studies on the self-trapping effect
of a BEC polaron in its ground state have exposed a marked
discrepancy between the predictions of Feynman’s variational
approach [25,26] and the numerical results [27–29]. While
the analytical calculations predict a monotonic enhancement
of the polaron binding energy with the increasing coupling
strength, the numerical works predict a clear upper bound for
the energy change. Such a discrepancy was also noticed in a
quantum Monte Carlo investigation [30]. It has been proposed
that an experimental setup of an impurity-doped BEC may act
as a benchmark for examining these theories [31].

Besides the ground-state properties, understanding the
dynamical properties of the BEC polaron is of great importance
because many of them are experimentally accessible by
virtue of existing ultracold spectroscopic techniques like radio
frequency [32–36] and Bragg spectroscopy [37–41] and hence
enable us to gain further insights into the properties of the
Fröhlich model. Earlier theoretical studies on the BEC polaron
have identified characteristic phonon-induced structures in the
Bragg spectra of impurities [42–44], indicative of polaron
formation in the system. In addition, quantum Monte Carlo
(QMC) simulations revealed a highly nontrivial feature in
the excitation spectra of such mixtures [44]—a characteristic
suppression of spectral weight in response functions. However,
the presence of this spectral weight suppression (SWS) was not
corroborated in other analytical works and its origin remains
a puzzle. The motivation of present paper is to uncover
the mechanism of the SWS and to clarify its influence on
the fermion-boson mixture. We show that SWS is a direct
consequence of the fermion-phonon coupling. Its properties
can be adequately described by a Feynman diagrammatic
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calculation, which shows a rather good agreement with the
QMC simulation results once the Fock term is taken into
account. This is done for both one-dimensional (1D) and two-
dimensional (2D) systems. Moreover, through an investigation
on the momentum-dependent force-force correlation, which
gives direct access to a friction coefficient [45], we find that at
least at low impurity densities their properties are considerably
modified by the appearance of the SWS.

The paper is organized as follows: In Sec. II we introduce
the effective Fröhlich Hamiltonian of a fermion-boson mixture
and the relevant physical quantities including the dynamical
correlation and spectral functions. In Sec. III, we develop
a diagrammatic formalism of dynamical response. Then we
discuss in detail the emergence of the SWS in connection with
the numerical results for the spectra. The higher-order dia-
grammatic contributions from vertex corrections are evaluated
and compared with QMC simulation results in Sec. III C. Our
conclusions are presented in Sec. IV.

II. MODEL AND OBSERVABLES

We start with the effective Fröhlich Hamiltonian for a
BEC-fermion mixture in the Bogoliubov regime (at low
energies) [16,20],

H = H0 + HI , (1)

H0 =
∑

k

(εk − μI ) a
†
kak +

∑
q

ωqb
†
qbq, (2)

HI = 1√
V

∑
k,q

Vq a
†
q+kak (bq + b

†
−q). (3)

Here a
†
k (ak) and b

†
q (bq) are the creation (annihilation)

operators for a fermionic impurity of momentum k and
a Bogoliubov phonon of momentum q, respectively. The
fermionic impurity has a kinetic energy εk [≡ k2/(2mI )], a
mass mI , and a chemical potential μI . The energy dispersion
relation of the phonon mode is

ωq = cs |q|
√

1 + (ξq)2/2,

with cs = (
√

2mBξ )
−1

the speed of sound in condensate,
ξ = 1/

√
8πaBBn0 its healing length, mB the boson mass,

n0 the condensate density, and aBB the boson-boson s-wave
scattering length. In Eq. (3), V is the volume of the system [46]
and the fermion-phonon coupling constant is given by

Vq = λ{(ξq)2/[(ξq)2 + 2]}1/4, (4)

where λ = gIB
√

n0, with gIB being the effective interaction
strength between the impurities and Bogoliubov excitations,
which can be adjusted by changing either the particle den-
sity or the s-wave scattering length in the impurity-boson
collision processes. If not explicitly stated, we use polaronic
units throughout our calculation. That means the distance is
measured in units of ξ , time in units of mIξ

2/�, and energy in
units of �

2/(mIξ
2). In the numerical calculations, we consider

a specific system of 6Li impurities in a BEC of 23Na which
renders mB/mI ≈ 3.8.

In this work, we are mainly interested in the dynamical
response of the polarons. While for the conventional solid-

state materials it can be probed by an optical absorption
measurement, the method of choice for the cold atomic systems
is Bragg spectroscopy [37–41]. The measured spectra—the
impurity Bragg spectral function [≡ R(q,ω)]—is related
to the (retarded) density-density correlation function [≡
χR(q,ω)] [13,42],

R(q,ω) = − 1

π
Im χR(q,ω). (5)

Mathematically, one can first evaluate the correlation function
χ (q,iωn) in the Matsubara representation, where ωn = 2nπ/β

is the Matsubara frequency and β = 1/(kBT ) is the inverse
temperature (we set kB = 1 from now on). The retarded
correlation is then obtained by an analytic continuation, i.e.,
imposing iωn → ω + i0+. In the Matsubara representation,
the density-density correlation is expressed as

χ (q,iωn) = − 1

V

∫ β

0
dτeiωnτ 〈Tτρ

†(q,τ )ρ(q,0)〉, (6)

where 〈· · · 〉 means ensemble average, Tτ is the imaginary
time-ordering operator, and

ρ(q) =
∑

k

a
†
k+qak

is the Fourier component of the fermion density operator.
While the Bragg spectrum is related to the particle pair

correlation χ (q,iωn), there are, of course, purely single-
particle quantities. It is difficult to immediately observe them
experimentally but they have very clear physical content and
are easily accessible analytically. That is why we are also going
to discuss them. One of them is the single-particle fermion
spectral function,

A(k,ε) = − 1

π
Im GR(k,ε), (7)

and the other one is the phonon spectral function,

B(q,ω) = − 1

π
Im DR(q,ω). (8)

They are related to the impurity Matsubara Green’s function,

G(k,iεn) = −
∫ β

0
dτeiεnτ 〈Tτak(τ )a†

k(0)〉, (9)

with εn = (2n + 1)π/β,2nπ/β the fermion or boson Matsub-
ara frequency, and the phonon Matsubara function,

D(q,iωn) = −
∫ β

0
dτeiωnτ 〈TτBq(τ )B†

q(0)〉, (10)

where Bq = bq + b
†
−q, respectively [47].

In the solid-state systems there is yet another very important
quantity, which gives access to the optical properties of the
impurities. It is the force-force correlation function. In the
present case of uncharged impurities it can be directly related
to the friction of the impurities while they are moving in the
medium [45]. Right in the moment such setups move into the
focal point of both experimenters as well as theorists (see, e.g.,
Refs. [48,49]), which is why we also analyze this particular
correlation function.

In order to obtain a sensitive definition of the force-force
correlation function we first take a look into a drag force acting
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on impurities due to impurity-BEC interaction, which is given
by (see Appendix A for the derivation)

FI = − i√
V

∑
k,q

qVqUk,q, (11)

where

Uk,q ≡ Bqa
†
kak−q (12)

is a composite bosonic operator involving one bosonic
operator—the displacement operator Bq—and two fermionic
operators. Here k and q denote the fermion and phonon
momenta, respectively. One can see from Eq. (11) that, when
the impurity emits or absorbs a phonon with momentum
q, the drag force exerted on the impurity is proportional
to the coupling strength Vq and the phonon momentum q.
To gain insight into the k and q dependence of the drag
force, we introduce a momentum-dependent drag force fk,q
in accordance with Eq. (11) (here we suppress the subscript
“I” of the impurity and neglect the constant coefficient for
simplicity),

fk,q = −iqVqUk,q,

and we also define the momentum-dependent force-force
correlation (MDFC) as

C̃k,q(t) = 〈T fk,q(t)f†k,q(0)〉
= q2V 2

q 〈T Uk,q(t)U †
k,q(0)〉, (13)

where T is the time-ordering operator. One of its most
important characteristics is its instantaneous value t → 0+,
which is equal to an integral over all energies of its Fourier
transform,

Ck,q = lim
t→0+

C̃k,q(t), (14)

which we also refer to as MDFC by abuse of terminology.
Later on we focus on this quantity instead of the full
time-dependent MDFC. As mentioned above, the correlation
function of total force 〈FI (t)F†

I (0)〉 is related to the optical
absorption and the current-current correlation of electrons
in semiconductors [47]. In the present work, since we are
interested in the q and k components of the drag force, we
calculate MDFC by the diagrammatic technique as mentioned
above.

We first define a standard time-ordered three-particle
Green’s function as

Kk,q(t) = −iθ (t)〈Uk,q(t)U †
k,q〉

−iθ (−t)〈U †
k,qUk,q(t)〉. (15)

If Kk,q(t) is known, then MDFC is immediately obtained in
the equal-time limit t → 0+. It can be conveniently computed
from the Matsubara Green’s function, defined according to

Kk,q(τ ) = −θ (τ )〈Uk,q(τ )U †
k,q〉

−θ (−τ )〈U †
k,qUk,q(τ )〉. (16)

Its Fourier transform is given by

Kk,q(iωn) =
∫ β

0
dτeiωnτ 〈Uk,q(τ )U †

k,q〉.
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FIG. 1. Feynman diagrams for the interacting fermions (solid
lines) and phonons (wavy lines). (a) Loop diagram for the polarization
of a pair of fermions and their density correlation. (b) Self-correlation
effect for a pair of fermions. (c) Fock diagram for the first-order
self-energy of a fermion. (d) Vertex diagram for the second-order
fermion self-energy. (e) Ring diagram for the second-order fermion
self-energy. (f) Diagram for the force-force correlation.

In what follows we compute all of these correlations for a
binary mixture of fermionic impurities immersed into a BEC.

III. SWS IN FERMION-BOSON MIXTURES

A. Diagrammatic approach to dynamical response

The perturbative expansion of the density correlation in
powers of interaction strength starts with the term of zero
order, which is obtained by replacing the ensemble average
〈· · · 〉 in Eq. (6) by 〈· · · 〉0 with respect to the eigenstate of the
unperturbed Hamiltonian H0. Then one gets

χ (q,iωn) � − 1

V

∫ β

0
dτeiωnτ 〈Tτρ

†(q,τ )ρ(q,0)〉0. (17)

From the diagrammatic point of view Eq. (17) is a fermionic
polarization loop [see the Feynman diagram in Fig. 1(a)].
Using the Wick theorem, we obtain

χ (q,iωn) = 1

βV

∑
k,iεn

G0(k,iεn)G0(k + q,iεn + iωn), (18)

where G0 is the Matsubara Green’s function (GF) of a free
fermion as defined in Eq. (9). In Eq. (18), we have dropped
a term for q = 0 as it corresponds to a time-independent
self-correlation effect [see Fig. 1(b)] and is irrelevant to the
dynamical response. The fermion Matsubara GF is related to
the spectral function via

G0(k,iεn) =
∫

dε
A0(k,ε)

iεn − ε
, (19)

whereA0 is the spectral function of a free fermion as defined in
Eq. (7). Substituting into Eq. (18) and following the standard
procedure of frequency summation over iεn [47], one gets

χ (q,iωn) = 1

V

∑
k

∫
dε dε′A0(k,ε)A0(k + q,ε′)

× nF (ε) − nF (ε′)
iωn + ε − ε′ .
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According to Eq. (5), the lowest order Bragg spectral function
can be determined after the analytic continuation,

R(q,ω) = − 1

π
Im[χ (q,iωn → ω + i0+)]

= 1

V

∑
k

∫
dεA0(k,ε)A0(k + q,ε + ω)

× [nF (ε) − nF (ε + ω)]. (20)

So it is a weighted convolution of two single-particle spectral
functions. Apparently, it characterizes an optical emission
and/or absorption process in which a fermion is transferred
from a state of momentum k and energy ε to another one of
momentum k + q and energy ε + ω with the assistance from
a phonon of momentum q and energy ω. For the simplest case
of a free fermion, the spectral function is

A0(k,ε) = δ[ε − (εk − μ)], (21)

so that Eq. (20) is simplified to

R(q,ω) = 1

V

∑
k

[nF (ξk) − nF (ξk+q)]

× δ(ω + ξk − ξk+q), (22)

where ξk = εk − μ.
We can perform the same program with the MDFC. Its

Feynman diagram is shown in Fig. 1(f). In the lowest-
order approximation, assuming both bosons and fermions are
undressed free particles, we find

Kk,q(iωn) � −
∫ β

0
dτeiωnτD0(q,τ )G0(k − q,τ )G0(k, − τ )

=
∫

dε′ dε′′A0(k − q,ε′)A0(k,ε′′)

×
{

[NB(ε′′ − ε′) − NB(ωq)][nF (ε′) − nF (ε′′)]
iωn − ε′ + ε′′ − ωq

− [NB(ωq) − NB(ε′ − ε′′)][nF (ε′) − nF (ε′′)]
iωn − ε′ + ε′′ + ωq

}
.

(23)

To get Eq. (23), we have used the spectral representation of
the free phonon propagator,

D0(q,iωn) =
∫

dω
B0(q,ω)

iωn − ω
,

B0(q,ω) = δ(ω − ωq) − δ(ω + ωq),

as well as the result of Eq. (19) for the free fermion. Using
Eq. (21) we can simplify it even further and obtain

Kk,q(iωn)

= [NB(ξk − ξk−q) − NB(ωq)][nF (ξk−q) − nF (ξk)]

iωn + ξk − ξk−q − ωq

− [NB(ωq) − NB(ξk−q − ξk)][nF (ξk−q) − nF (ξk)]

iωn + ξk − ξk−q + ωq
.

(24)

After an analytic continuation, we obtain the spectral function
of the force-force correlation from Eq. (23),

γk,q(ω) = − 1

π
ImKR

k,q(ω)

= δ(ω + ξk − ξk−q − ωq)[nF (ξk−q) − nF (ξk)]

× [NB(ξk − ξk−q) − NB(ωq)]

− δ(ω + ξk − ξk−q + ωq)[nF (ξk−q) − nF (ξk)]

× [NB(ωq) − NB(ξk−q − ξk)],

from which the greater and lesser GFs are recovered as

K>
k,q(ω) = −i2π [NB(ω) + 1]γk,q(ω), (25)

K<
k,q(ω) = −i2πNB(ω)γk,q(ω). (26)

Therefore, in the lowest-order approximation, MDFC is found
to be

Ck,q = lim
t→0+

iq2V 2
q

∫
dω

2π
e−iωtK>

k,q(ω)

= q2V 2
q [nF (ξk−q) − nF (ξk)]{NB(ξk − ξk−q)

× [NB(ωq) + 1] − NB(ωq)[NB(ξk−q − ξk) + 1]}.
(27)

Here one notices that the MDFC derived from K>
k,q(ω) in

Eq. (25) describes the force-force correlation of a fermion
being scattered out of the Fermi sea by a phonon. Analogously,
there is another MDFC connected with the lesser GF K<

k,q(ω)
in Eq. (26), which corresponds to a hole scattered by a phonon.
Since the hole state is beyond our interest, we do not discuss
it.

Needless to say, the lowest order result in Eq. (20) is
only a function of Fermi-Dirac distribution nF (ε) and does
not contain any information about the polaron effect. So
does Eq. (27). In an earlier work [44], we studied the
fermion-phonon correlation in Bragg spectra by a random
phase approximation (RPA). That formalism has an advantage
to reveal the interaction effects in a simple way. Although
in that calculation several polaron-related features have been
identified in the Bragg spectra, the SWS could not be seen. In
the present work, we investigate these effects by employing
a different strategy. For the purpose of highlighting the
differences and similarities of both approaches, we provide
a brief discussion of the RPA in Appendix B.

In order to capture the essence of the SWS, we take one
step further and look into the contribution from the terms of
higher order in fermion-boson interaction. One way to do that
is to replace G0 in Eqs. (18) and (23) with the GF of a dressed
fermion G [47], which we assume to take the form

G(k,iεn) = 1

iεn − ξk − �(k,iεn)
, (28)

where �(k,iεn) is the self-energy or memory function of
a dressed fermion. Inspired by Eq. (20), the Bragg spectral
function can be expressed as

R(q,ω) = 1

V

∑
k

∫
dεA(k,ε)A(k + q,ε + ω)

×[nF (ε) − nF (ε + ω)], (29)
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with A(k,ε) being the single-particle spectral function of a
dressed fermion. The same procedure applied to the MDFC
leads to

Kk,q(iωn) � −
∫ β

0
dτeiωnτD0(q,τ )G(k − q,τ )G(k, − τ )

=
∫

dε′ dε′′A(k − q,ε′)A(k,ε′′)

×
{

[NB(ε′′ − ε′) − NB(ωq)][nF (ε′) − nF (ε′′)]
iωn − ε′ + ε′′ − ωq

− [NB(ωq) − NB(ε′ − ε′′)][nF (ε′) − nF (ε′′)]
iωn − ε′ + ε′′ + ωq

}
,

(30)

and

Ck,q = q2V 2
q

∫
dε dωA(k,ε)

×{A(k − q,ε + ω − ωq)[NB(ωq) + 1]

×NB(ωq − ω)[nF (ε + ω − ωq) − nF (ε)]

−A(k − q,ε + ω + ωq)[NB(ωq + ω) + 1]

×NB(ωq)[nF (ε + ω + ωq) − nF (ε)]}. (31)

The last expressions contain the Fermi-Dirac distribution
nF (ε), the Bose-Einstein distribution NB(ε), and the fermionic
spectral function A(k,ε). The most important features of the
polaron effect are captured in the spectral function A(k,ε)
through the fermion self-energy [50]. In terms of Eq. (28),
A(k,ε) can be written as a function of the retarded fermion
self-energy �R(k,ε) [≡ Re�R(k,ε) + iIm�R(k,ε)],

A(k,ε) = − 1

π

Im�R(k,ε)

[ε − ξk − Re�R(k,ε)]2 + [Im�R(k,ε)]2
.

(32)

If the fermion self-energy is known, then the spectral function
A(k,ε) and Bragg spectral function R(q,ω) in Eq. (29) as
well as Ck,q from Eq. (31) can be determined immediately. It
is important to realize that although Im�R(k,ε) can become
very small, it is never zero in real systems. The reason is that
this quantity even in noninteracting systems is proportional to
reciprocal lifetime, or energy level width, of the corresponding
state (e.g., due to coupling to thermal reservoirs). In order
to ensure nonvanishing spectral functions during numerical
evaluations we replace Im�R(k,ε) by a numerical infinitesimal
whenever it becomes too small. Its precise numerical values
are given further down.

In order to obtain the self-energy we perform a diagram-
matic calculation. Figure 1(c) shows the irreducible diagram
for the lowest-order fermion self-energy, coming only from
the Fock term. Here we use the free fermion propagator G0

and free phonon propagator D0. The frequency summation is
readily done and one gets

�(1)(k,iεn) = 1

V

∑
q

V 2
q

[
N (ωq) + nF (ξk+q)

iεn + ωq − ξk+q

+ N (ωq) + 1 − nF (ξk+q)

iεn − ωq − ξk+q

]
, (33)

where N (ωq) = 1/[exp(βωq) − 1] and nF (ξk) =
1/[exp(βξk) + 1] are the bosonic and fermionic distributions,
respectively. Here the superscript “(1)” reflects the fact
that only the single-phonon process is considered in the
fermion self-energy. Obviously, �(1) (∝ V 2

q ) is the result
of a standard second-order perturbation calculation. The
next-order contributions from the two-phonon processes are
presented in Figs. 1(d) and 1(e). They correspond to the
vertex and ring corrections, respectively. We discuss them in
Sec. III C.

Equation (33) can be rewritten as

�(1)(iεn) =
∑

j

Cj

iεn + Ej

, (34)

where Cj and Ej represent some well-defined quantities. After
the analytic continuation iεn → ε + i0+, the imaginary part
of the retarded self-energy can be found to be given by

Im�(1)R(ε) = −π
∑

j

Cj δ(ε + Ej ), (35)

where δ(ε) is the Dirac delta function. Substituting it into
Eq. (32) and taking into account that Cj are non-negative, one
immediately confirms the positivity of the spectral function
A(k,ε) within this approximation. In the light of Eq. (32),
A(k,ε) turns out to be a positive-definite Lorentzian located at
ε = ξk + Re�(1)R(k,ε) and with a half width at half maximum
of −Im�(1)R(k,ε). If the self-energy vanishes, for example, in
the noninteracting limit λ → 0, the Lorentzian is reduced to
a δ function. In this case, the free fermion spectral function
Eq. (21) is recovered (for the numerical details see the remark
above).

B. Emergence of the SWS: Lowest-order
self-energy approximation

SWS can already be seen in the lowest-order self-energy
approximation presented above. First we turn to the numerical
results on the spectral function A(k,ε) and Bragg spectral
function R(q,ω). In order to clarify the physical origin
of the SWS, we concentrate on a 1D system. Then the
fermion and phonon momenta are scalars. Some results in
two dimensions are provided later in Sec. III C, and the
mechanism discussed in this section can be easily generalized
to the higher dimensions. In our numerical calculations, we
employ a cutoff for the fermion momentum in Eq. (29) as
−π � k � π , and for the phonon momentum in Eq. (33) as
−2π � q � 2π . As demonstrated below, the SWS takes place
in the small-momentum region, � 0.2π , and thus the cutoff
effect on the SWS can be safely disregarded. This assumption
was confirmed by an exemplary calculation for a considerably
larger cutoff for one typical constellation of other parameters
(see Fig. 3 below).

Figure 2 shows the intensity graphs of the fermion spectral
function A(k,ε) at temperature T = 0 for three different
interaction strengths. With the increase of λ, one clearly
observes a band repulsion in the small-k region, leading to
an energy gap between the upper and lower branches. In the
inset of Fig. 2(a), we show the dispersion relations of the
free fermion and Bogoliubov mode. Comparing these energy
dispersions with the main graphs, one can see that the energy
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FIG. 2. Emergent avoided crossing in the spectral functions
of fermionic impurities in a 1D BEC with increasing interaction
strength: (a) λ = 0.3, (b) λ = 0.4, and (c) λ = 0.5. The inset in
(a) shows the dispersion relations of a free fermion (blue solid curve)
and the Bogoliubov mode (red dashed curve). The Fermi momentum
is at kF = 0.1πξ−1. The horizontal black dotted line denotes the
Fermi level. The temperature is set to be T = 0.

gap corresponds to an avoided crossing between the free
fermion band and the Bogoliubov phonon mode. Being absent
in a free system, the gap intensifies for growing interaction
strengths.

The physical reason for this effect is quite lucid. The
ordinary single-particle spectral function describes how easy
it is to move a single particle with the fixed energy into the
continuum outside of the system. Alternatively one can think
about a probability to succeed in extracting a certain amount
of energy. In a free system the shape of this probability
distribution obviously follows the spectral function of the
constituent fermions. In an interacting system two kinds of
excitations in a system couple to each other. At the point where
their dispersions cross, they compete and it gets increasingly
difficult to “take out” a fermion from the system. That is why
we see an avoided crossing shown in Fig. 2.

In Fig. 3 we plot the total density of states (DOS) for the
fermions, which is obtained from the spectral function A(k,ε)

FIG. 3. Density of states for fermions in a 1D BEC when kF =
0.1πξ−1 (black squares and solid curve), 0.2πξ−1 (red circles and
dashed curve), and 0.3πξ−1 (blue triangles and dash-dotted curve),
respectively. The coupling constant is λ = 0.5. The vertical green
dotted line denotes the Fermi level. The symbols are calculated with
a momentum cutoff at 2πξ−1, and the curves are for a cutoff at 8πξ−1.
The inset shows the q dependence of the ratio Vq/λ.

by an integration over k. Although the SWS can already be
seen in Fig. 2 at λ = 0.5, it can hardly be observed in Fig. 3
when kF = 0.1π . The structure becomes visible only when
kF is large enough. This behavior is due to the momentum
dependence of the effective coupling strength Vq. When kF

is small, the fermions can be excited out of the Fermi sea by
interacting with a phonon of small momentum q, which is
associated with a rather weak coupling Vq according to Eq. (4)
(see also the inset of Fig. 3). In this case, a narrow SWS
exists, but it is superimposed by the van Hove singularity in
its vicinity. With the increase of kF , the momentum of the
scattered phonon and the effective coupling increase quickly.
As a result, the SWS also grows with kF .

In order to make sure the growth of SWS with kF is
irrelevant to the momentum cutoff (note that kF = 0.3π is
already comparable to the inverse healing length and cannot
be regarded as a small wave vector), we raise the upper bound
of q from 2π to 8π in calculating the self-energy of Eq. (33).
The results of two different upper bounds are presented in
Fig. 3. The good agreement between them indicates that when
kF ∼ 1, as far as the SWS is concerned, the cutoff at 2π does
not produce significant errors.

As mentioned above, the SWS comes from the avoided
crossing between the fermion band and Bogoliubov mode.
This can be clearly seen in Fig. 3, where the location of the
SWS points to the repulsion region between the two bands.
This property is different from that of conventional energy
gaps. For example, the phonon-induced Peierls gap is known
to shift with the Fermi level. The onset of the Peierls gap
also indicates a metal-insulator phase transition in solid-state
materials. In the fermion-boson mixture the SWS comes from
the renormalization of fermion energy dispersion. Therefore,
no phase transition is incurred with the gap opening.

According to Eq. (29) the Bragg spectrum can be written
down in terms of the single-particle spectral function and
thus should show the SWS feature too. In Fig. 4, we plot
the respective intensity images of R(q,ω), using the same
parameters as in Fig. 2. As in Fig. 2, the Bragg spectra also
display a band repulsion for growing interaction strength λ.
Especially in Fig. 4(c) the upper and lower branches can be
clearly distinguished.

FIG. 4. Avoided crossing seen in the Bragg spectroscopy of
fermions in a 1D BEC with increasing interaction strength:
(a) λ = 0.3, (b) λ = 0.4, and (c) λ = 0.5. The other parameters are
the same as in Fig. 2. The horizontal gray dashed line denotes the
Fermi energy.
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In order to acquire an intuitive picture of the mechanism
of SWS in the Bragg spectrum, let us assume that the system
contains only one fermion of momentum k0 � 1 with energy
ε0 = �

2k2
0/(2mI ). Its spectral function can be approximated

as A(k,ε) = δk,k0δ(ε − ε0). Putting this spectral function into
Eq. (29), one gets

R(q,ω) = 1

V
A(k0 + q,ε0 + ω)[nF (ε0) − nF (ε0 + ω)]

→ 1

V
A(k0 + q,ε0 + ω), (36)

where nF (ε0) = 1 and nF (ε0 + ω) = 0 are for the initially
occupied and unoccupied states, respectively. Equation (36)
shows that the Bragg spectrum can be directly mapped on the
fermion spectral function, which maps out all the occupied
states seen by this single fermion. Although this scenario
holds strictly for the system of a single fermion only, it
is also approximately valid for systems of low impurity
density. This is the reason why SWS shows up in Fig. 4(c).
However, if there are more fermions in the system, then
the superposition of different fermion states in the Bragg
spectrum must reduce its resemblance to the one-fermion
spectral function and eventually the SWS gets less pronounced.
(Results on Bragg spectra at higher Fermi levels show almost
no dependence on the SWS and that is why we do not discuss
them here.) In spite of this, we can say that the SWS is rather
distinctive at low impurity density. In addition, Eq. (36) also
suggests that the Bragg spectroscopy might be applied as a
technique to measure the fermion spectral function compa-
rable to the radio-frequency experiment if the impurities are
dilute [32–36].

Now we turn to the MDFC. Figure 5 presents a case of
low fermion concentration, when the Fermi momentum is
set at kF = 0.1π . Figures 5(a) and 5(b) are for λ = 0.3, and

FIG. 5. Momentum dependence of force-force correlation
weights Ck,q , divided by q2 at a low fermion density with kF =
0.1πξ−1 at zero temperature. The vertical black dotted lines illustrate
±kF . (a), (b) λ = 0.3; (c), (d) λ = 0.5. The free fermion spectral
function is used in calculating (a) and (c), while the data in (b) and (d)
are computed with the help of the dressed fermion spectral function.

Figs. 5(c) and 5(d) are for λ = 0.5. Figures 5(a) and 5(c) are
calculated using Eq. (27) under the free fermion assumption,
while Figs. 5(b) and 5(d) are computed with the help of Eq. (30)
for a dressed fermion, upon replacement of the free spectral
function A0 by A, computed in the lowest-order self-energy
approximation. In each panel, the MDFC is plotted as a
function of the fermion momentum k for three different phonon
momenta.

One feature of MDFC is that its carrier in the momentum
space is roughly confined in a window of width 2kF . For
example, in Fig. 5(a), MDFC for q = 1.0 and 2.0 shows
nonzero values only for −kF � k � kF . This feature arises
from the fact that the fermion-phonon scatterings are allowed
only inside the window for all states occupied by fermions.
On the contrary, outside of the window fermion states are
empty and hence no scattering can take place. The situation
becomes somewhat different for q = 0.5, where the width
of the MDFC is smaller than 2kF , and a small dent appears
between the right edge of the MDFC and kF . This suppression
of MDFC is because q = 0.5 is too small to kick a fermion out
of the Fermi sea from this region; i.e., k − q < −kF cannot be
satisfied. Thus we conclude that the MDFC can be interpreted
as a probability distribution of the fermion-phonon scattering
process efficiency in the momentum space.

Figure 5(b) shows MDFC calculated by Eq. (31) including
the effect of Fock self-energy. It is slightly broadened in
comparison to the noninteracting plot in Fig. 5(a) due to
interactions. As the coupling grows, the MDFC spectrum
computed with the “dressed” GF changes dramatically, de-
veloping a tridentlike structure at large q; see Fig. 5(d). This
is to be contrasted with the data in Fig. 5(c), where the free
fermion GF is used. This transition from a rectangular to a
trident-shaped feature occurs due to a strong renormalization
of the fermion energy dispersion near the avoided crossing
region, a remarkable manifestation of the SWS.

To ensure the above modification of MDFC is indeed related
to the SWS, we plot the same quantities at higher fermion
density in Fig. 6. Here the Fermi momentum is kF = 1 (it

FIG. 6. The same as in Fig. 5 for a higher impurity density with
kF = ξ−1.
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then roughly equals to the inverse healing length of the BEC).
All other parameters are the same as in Fig. 5. Comparing the
results of the free fermion approximation in Figs. 6(a) and 6(c)
with those of the dressed fermion in Figs. 6(b) and 6(d), one
sees that they are only slightly different. In particular, MDFC
of λ = 0.5 in Fig. 6(d) does not show any significant change
as compared to Fig. 6(c), which is to be contrasted with the
picture in Fig. 5(d).

The reason for the difference in MDFC is that in Fig. 5(d)
the Fermi level is in the vicinity of the SWS, i.e., in the vicinity
of the crossing point of the fermion and boson dispersion.
This is not the case for the data of Fig. 6(d), where the
Fermi level lies far above the avoided crossing region. This
crossover phenomenon is very interesting and we expect it to
be observable experimentally.

C. Vertex correction and the SWS

The calculations in the previous sections are performed
with the lowest-order self-energy diagram. Its predictive power
decreases significantly with growing interaction strength. In
order to access the regime of intermediate to strong interactions
one needs to use more efficient approximation schemes. In
Ref. [44] it was shown that RPA cannot recover the SWS;
hence an alternative one is necessary. In this section we take

into account the contribution from a two-phonon process and
compare the diagrammatic calculations with the numerically
exact path-integral QMC results [51]. It allows for a calculation
of the dynamic correlation function, from which the spectral
function can be safely extracted. The technical details of
QMC simulations are described in Ref. [44]. In order to
improve the spectral resolution, in the present work we have
increased the size of 1D system to 41 states. Since QMC
simulation cannot reach very low temperatures, in this section
we fix the inverse temperature at β = 10 for both QMC and
diagrammatic calculations.

The Feynman diagrams of two-phonon processes are
depicted in Figs. 1(d) and 1(e). Figure 1(d) can be understood
as a self-energy of the lowest order with a vertex correction
to the fermion self-energy, while the process in Fig. 1(e) is
known as the ring diagram. The latter contributes to a screening
effect on the interparticle interactions, which is important for
high-density fermionic systems such as the electron gases in
metals. In the present study, since we are mainly concerned
with the cases of low fermion concentration, we neglect the
diagram in Fig. 1(e) in the discussion below. As for the diagram
in Fig. 1(d), the frequency summations can be performed in
the same way as we have done previously. After some algebra,
the second-order self-energy with the vertex corrections is
obtained to be given by

�(2)(k,iεn) = 1

V 2

∑
q1,q2

V 2
q1

V 2
q2

⎧⎨⎩− 1

β

∑
iωn

G0(k + q1,iεn + iωn)D0(q1,iωn)

×
⎡⎣− 1

β

∑
iνn

G0(k + q1 + q2,iεn + iωn + iνn)D0(q2,iνn)G0(k + q2,iεn + iνn)

⎤⎦⎫⎬⎭
= 1

V 2

∑
q1,q2

V 2
q1

V 2
q2

∑
r,s=±1

rs

{
1

iεn + rωq1 + sωq2 − ξk+q1+q2

[
NB

(
rωq1

)
NB

(
sωq2

)(
iεn − ξk+q1 + rωq1

)(
iεn − ξk+q2 + sωq2

)
− NB

(
rωq1

)
nF

(
ξk+q1+q2

)(
ξk+q2 − ξk+q1+q2 + rωq1

)(
iεn − ξk+q1 + rωq1

) + NB

(−sωq2

)
nF

(
ξk+q1+q2

)(
ξk+q1 − ξk+q1+q2 + sωq2

)(
iεn − ξk+q2 + sωq2

)]

+ 1

iεn + ξk+q1+q2 − ξk+q1 − ξk+q2

[
nF

(
ξk+q1+q2

)
nF

(
ξk+q1

)(
iεn − ξk+q1 + rωq1

)(
ξk+q1 − ξk+q1+q2 + sωq2

)
− nF

(
ξk+q1+q2

)
nF

(−ξk+q2

)(
iεn − ξk+q2 + sωq2

)(
ξk+q2 − ξk+q1+q2 + rωq1

) − nF

(
ξk+q1

)
nF

(−ξk+q2

)(
iεn − ξk+q1 + rωq1

)(
iεn − ξk+q2 + sωq2

)]

+ 1(
iεn − ξk+q1 + rωq1

)(
iεn − ξk+q2 + sωq2

)[
NB

(
rωq1

)
nF

(
ξk+q2

)
ξk+q2 − ξk+q1+q2 + rωq1

+ NB

(
sωq2

)
nF

(
ξk+q1

)
ξk+q1 − ξk+q1+q2 + sωq2

]}
. (37)

Equation (37) can only be evaluated numerically. Before
we embark on that, we would like to point out some technical
issues. We perform the numerics in several steps. We first
compute the self-energy up to the two-phonon processes, � =
�(1) + �(2). Next we derive the spectral function, Eq. (32).
Here one has to be cautious with the numerical instability
related with Im�R . If Im�R becomes zero for some k and
ε, then in Eq. (32) it should be replaced in both numerators

and denominators by (Im�R − 0+). (See also the discussion
in Sec. III.) In the last stage of numerics, the Bragg spectra
are computed with the help of Eq. (29). In this procedure, the
most time-consuming step is the multidimensional integration
of �(2). Moreover, in this step particular attention needs to
be paid while performing the numerical analytic continuation
iεn → ε + i0+ on �(2). Here 0+ is roughly the numerical
resolution of energy, and we fix it at 0.05 in our calculations
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FIG. 7. Bragg spectrum of fermion impurities immersed in a 1D
BEC at Fermi momentum kF � 0.1πξ−1, coupling constant λ = 0.5,
and inverse temperature β = 10. (a) Calculation is based on the
lowest-order self-energy of a fermion, using Eqs. (29), (32), and (33).
(b) The vertex corrections from Eq. (37) are taken into account.
(c) Results of a QMC simulation. The horizontal gray dashed line
denotes the Fermi energy.

(see Appendix C for a detailed discussion; 0+ is measured in
units of �

2/mI ξ
2).

We concentrate here on the Bragg spectrum as the most
relevant quantity from the experimental point of view. The
related numerical results are presented in Fig. 7, where we
compare the Bragg spectra of fermionic impurities of a 1D
system computed with different methods. One can clearly see
that while the lowest-order self-energy [Fig. 7(a)] is not able
to resolve the gap between the upper and lower branches,
taking into account the vertex corrections makes them clearly
distinguishable; see Fig. 7(b). In Fig. 7(c), the QMC results
are presented, where distinctive upper and lower branches are
also observed, consistent with the diagrammatic calculations.
It is clearly seen in Fig. 7 that taking the vertex corrections into
account yields a better approximation of the QMC data. We
stress again that this is in strong contrast to the RPA procedure,
which fails to reproduce this feature. In Fig. 7(c), one notices
that the upper branches are separated near k = 0. This is an
artifact, probably suggesting that a system of 41 states in QMC
is still not sufficient to fully eliminate the finite-size effect.

It is instructive to test the robustness of our approximation
scheme for systems of higher dimensions. In two dimensions
our diagrammatic calculations indicate that the SWS exists at
low fermion density and/or large coupling strength. In Fig. 8,
we plot the Bragg spectrum for a 2D model with λ = 1.2 and
β = 10 on a simple quadratic lattice. The Fermi surface is
a circle with radius kF = 0.02π , which corresponds to low
impurity density. Here Fig. 8(a) depicts the Bragg spectra
along the qx = qy direction computed by the lowest-order
Feynman diagram, and Fig. 8(b) displays the diagrammatic
results including vertex correction along the same direction.
The effect of the vertex corrections is clearly distinguishable.
Figure 8(a) shows only very weak band mixing, while Fig. 8(b)
exposes a more pronounced separation between the upper and
lower branches. We have also performed QMC simulations on
2D clusters comprising up to 9 × 9 states. The results confirm
the existence of a SWS in two dimensions. (The system size
for QMC in two dimensions is, however, not large enough to

FIG. 8. Bragg spectra of fermions in a 2D BEC along the
qx = qy direction in momentum space for λ = 1.2 and inverse
temperature β = 10. The radius of the Fermi circle is kF � 0.02πξ−1.
(a) Calculations are based on the lowest-order self-energy. (b) Vertex
corrections are taken into account. The horizontal gray dashed line
denotes the Fermi energy.

show continuous dispersion relations. Therefore, we abstain
from presenting the data.) From the experimental point of
view, 2D BECs are rather routinely realizable in ultracold
atomic setups. Therefore, we expect that the SWS predicted
above can be observed via measurement of Bragg spectra in
ultracold mixtures.

Given the pronounced weakening of the 2D SWS in
comparison to that in one dimension, we speculate that in three
dimensions it might be very weak or even vanish altogether.
An ultimate answer to that question would require a more
detailed analysis and is an avenue for further research.

IV. CONCLUSIONS

In this work we apply Feynman diagrammatics to study
an ultracold fermion-boson gas mixture in the Bogoliubov
regime. In such setups the energy dispersion of fermions
is significantly modified by the fermion-boson interaction
which leads to the SWS in the small-momentum region.
This phenomenon was previously found in QMC simulations.
We constructed a diagrammatic approach which consistently
recovers the SWS and successfully applied it to compute
three experimentally accessible key quantities: (i) the single-
particle spectral function (ii) the Bragg spectrum, and (iii)
the momentum-dependent force autocorrelation function. We
have shown that at low impurity densities one reliably observes
the SWS feature in all three observables. This is in contrast to
the previously used RPA method, which is not able to recover
the SWS. The results of our method are qualitatively confirmed
by the QMC simulations and we expect that our predictions
can be tested in the state-of-the-art experiments such as those
presented in, e.g., Refs. [8,9] (fermionic 6Li impurities in a
23Na condensate) very soon.
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APPENDIX A: DRAG FORCE ON FERMIONIC
IMPURITIES INTERACTING WITH A BEC

Here we derive the expression for the drag force acting on
a fermionic impurity when it is immersed into a BEC. We start
from the original interacting boson-impurity Hamiltonian,

H = HB + HBB + HI + HIB,

HB =
∫

dx�∗
B (x)[εB(k) − μB]�B(x),

HBB = 1

2

∫
dxdx′�∗

B(x)�∗
B(x′)VBB(x − x′)�B(x′)�B(x),

HI =
∫

dx�∗
I (x)[εI (p) − μI ]�I (x),

HIB =
∫

dxdx′�∗
B(x)�B(x)VIB(x − x′)�∗

I (x′)�I (x′),

where �B(x) and �I (x′) are the field operators of the boson
and impurity, respectively; εB(k) = �

2k2/(2mB) and εI (p) =
�

2p2/(2mI ) are the dispersions of the boson and impurity;
and μB (μI ) is the chemical potential of the boson (impurity).
The boson-boson contact potential has a form of δ function,
VBB(x − x′) = gBBδ(x − x′). The same is assumed for the
impurity-boson interaction, VIB(x − x′) = gIBδ(x − x′), with
gBB and gIB being the scattering strengths. The drag force
acting on the impurity is given by [52]

FI = −
∫

dx dx′|�B(x)|2|�I (x′)|2 ∇x′VIB(x − x′)

= gIB

∫
dx|�B(x)|2[∇x′ |�I (x′)|2]x′=x. (A1)

To get Eq. (A1), a partial integration has been applied (x′ refers
to the coordinate of the impurity). Next we make a transition
to the second quantization representation,

�B(x) = 1√
V

∑
q

Aqe
iq·x, (A2)

�I (x′) = 1√
V

∑
p

cpe
ip·x′

. (A3)

Substituting Eqs. (A2) and (A3) into Eq. (A1), we find that the
force operator becomes

FI = − igIB

V

∑
k,p,q

qA
†
p−qApc

†
kck−q. (A4)

Under the Bogoliubov approximation, the boson number op-
erator can be expressed as a small fluctuation superimposed on
the condensate, i.e., A → √

N0 + a with N0 = n0V . Keeping
the leading-order nontrivial term, we rewrite the force operator
as

FI = −igIB

√
n0

V

∑
k,q

q(aq + a
†
−q)c†kck−q.

In order to make the notation consistent with that of the
Fröhlich model for a BEC polaron, a Bogoliubov transfor-
mation needs to be applied [13],

aq = uqbq − vqb
†
−q,

a†
q = uqb

†
q − vqb−q,

with the coefficients satisfying

uq − vq = Vq

gIB

√
n0

.

Then we finally obtain the force operator as

FI = − i√
V

∑
k,q

qVq(bq + b
†
−q)c†kck−q.

APPENDIX B: RPA CALCULATION OF THE BRAGG
SPECTRUM OF A FERMION-BOSON MIXTURE

The details of RPA calculation have been elaborated in an
earlier paper [44]. Here we only outline the main procedure
together with the representative result for a 1D system. Instead
of working on the Bragg spectrum R(q,ω) directly, we start
with calculating the optical conductivity,

Re[σ (q,ω)] = − 1

ω
Im �R(q,ω), (B1)

because these two quantities are closely related to each
other [42]:

R(q,ω) = q2

πω
Re[σ (q,ω)]. (B2)

�R(q,ω) in Eq. (B1) is the current-current correlation func-
tion. In the Matsubara representation, we have

�(q,iωn) = − 1

V

∫ β

0
dτeiωnτ 〈Tτ j

†(q,τ )j (q,0)〉, (B3)

where

j (q) = 1

mI

∑
k

(
k + q

2

)
a
†
k+qak (B4)

is the current operator for a fermion of momentum q. After
applying two partial integrations to the right-hand side of
Eq. (B3), we obtain

�(q,iωn) = q2

(iωn)2m3
IV

∑
k

(
3k2 + q2

4

)
〈a†

kak〉 − 1

(iωn)2m2
IV

∑
q ′

q ′(q + q ′)V ∗
q ′ 〈Bq ′ρ†(q ′)〉 − 1

(iωn)2m2
IV

∫ β

0
dτeiωnτ

×
⎡⎣ q2

m2
I

∑
kk′

(
k + q

2

)2(
k′ + q

2

)2
〈Tτa

†
k(τ )ak+q(τ )a†

k′+qak′ 〉 − q

mI

∑
kq ′

Vq ′q ′
(
k + q

2

)2
〈TτB

†
q ′a

†
k(τ )ak+q(τ )ρ(q + q ′)〉
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− q

mI

∑
kq ′

V ∗
q ′q

′
(
k + q

2

)2
〈TτBq ′ρ†(q + q ′,τ )a†

k+qak〉 +
∑
q ′q ′′

V ∗
q ′Vq ′′q ′q ′′〈TτBq ′(τ )B†

q ′′ρ
†(q + q ′,τ )ρ(q + q ′′)〉

⎤⎦.

(B5)

As noted in the early studies on optical conductivity [47],
the advantage of the partial integration scheme is that it can
identify the electron-phonon coupling effect, e.g., the forma-
tion of the Fröhlich polaron, in its leading-order terms. On
the contrary, in a direct perturbative expansion of the current
autocorrelation function such effects are usually hidden in the
higher-order terms. Following the conventional treatment, let
us keep the leading-order contributions in Eq. (B5), i.e., the
first and the last terms in the square brackets. After performing
an analytical continuation of these two terms, i.e., imposing
iωn → ω + i0+, and recalling the relation in Eq. (B2), we get
an expression for the Bragg spectrum,

R(q,ω) = mI

2π |q|nF (εp)|p= mI ω

q
− q

2

[
1 − nF (εp)

∣∣
p= mI ω

q
+ q

2

]
× (1 − e−2βmI ω) + q2

πmIω4V 2

∑
s=±

∑
pq ′

s|Vq ′ |2

× q ′2

|q + q ′|nF (εp)[nB(sεp+sq+sq ′ − sεp)

− nB (sεp+sq+sq ′ − sεp − ω)]

× ImDR(q ′,sεp+sq+sq ′ − sεp − ω). (B6)

We then proceed with the calculation under the RPA. The
essential idea is to interpret the phonon as a quasiparticle
modulated by the fermion-boson interaction and still treat the
fermion as being free. The phonon is hence dressed by the
virtual excitations and acquires a self-energy, as schematically
shown in Fig. 9. The phonon Green’s function is determined
by a Dyson equation,

DRPA(q,iωn) = D0(q,iωn)

1 − V 2
q D0(q,iωn)χ0(q,iωn)

,

where D0(q,iωn) and χ0(q,iωn) are the free phonon Green’s
function and free fermion density-density correlation function,
respectively.

The numerical results on Bragg spectra are shown in
Fig. 10 for two different coupling strengths. It is evident
that some peaks are enhanced for increasing λ. They come
from the second term of Eq. (B6), reflecting the “optical”
excitations of Bogoliubov phonon modes. One can see that the
resultant spectrum is consistent with the dispersion relation

DRPA(q, iωn) DRPA(q, iωn)

= +

D0(q, iωn) D0(q, iωn) χ0(q, iωn)

FIG. 9. Phonon Dyson equation in random-phase approximation.
The straight line stands for a naked fermion, and the single (double)
wavy line for a naked (dressed) phonon.

of the Bogoliubov mode schematically depicted in the inset
of Fig. 2(a). In addition, there is a broad continuum in the
background seemingly independent of λ. This plateau comes
from the excitations of fermions across the Fermi level, i.e., the
excitonic excitations, described by the first term of Eq. (B6).
Despite these characteristic components, one immediately
notices that a main difference of Fig. 10 from Fig. 7 is the
absence of the SWS. There is no relative shift of the spectral
components even at large λ, which is a fundamental drawback
of the RPA approach.

APPENDIX C: NUMERICAL ANALYTIC CONTINUATION
OF VORTEX CORRECTION

In the quantum many-body theory, the extraction of a
dynamical quantity of real frequency (or real time) from
its Matsubara counterpart is known as analytic continuation
(AC). By its original definition, AC can be established by
a substitution iεn → ε + i0+ if the functional form of the
physical quantity is already known, where 0+ means an
infinitesimal positive number which is necessary to enforce the
causality. Without knowing the analytical expression, AC of
the physical quantity still can be performed by the numerical
methods but it becomes notoriously difficult because of its
ill-posed nature. The results are sensitive to various numerical
errors which can come from, for example, a cutoff in the
summation over Matsubara frequencies, or the numerical noise
inherent in QMC simulations. In our calculation, thanks to the
analytical expressions for the self-energy obtained in Eqs. (33)
and (37), we are able to accomplish the AC with a good
accuracy through the simple conversion iεn → ε + i0+.

FIG. 10. Bragg spectra calculated with RPA for different coupling
strengths: (a) λ = 0.36 and (b) λ = 0.72. The calculations are
performed for 1D systems at β = 10 with their Fermi momenta at
kF = 0.2πξ−1. The horizontal gray dashed line denotes the Fermi
energy.
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In the operation of AC, Eq. (33) is rather easy to handle,
while vertex correction Eq. (37) still requires special attention
and techniques to avoid unphysical artifacts. To see the origin
of the difficulty, one can decompose the products in Eq. (37)
and rewrite it as a summation:

�(2)(iεn) =
∑

j

Cj

iεn + Ej

, (C1)

where Cj and Ej represent some constants. Since Eq. (C1) has
the same form as Eq. (34), the imaginary part of the retarded
self-energy can be separated as in Eq. (35), which gives

Im�(2)R(ε) = −π
∑

j

Cj δ(ε + Ej ), (C2)

with δ(ε) the Dirac delta function. However, it should be noted
that there is an essential difference between Eqs. (34) and (C1):

all Cj in �(1)R are non-negative, while �(2)R may have some
negative Cj . A direct consequence of negative Cj is a possible
violation of the positivity of spectral function A(ε), as can be
seen from its relation with Im�R(ε) in Eq. (32). This is an
artifact of the approximation. In the full perturbation series a
mutual term cancellation must take place, so that the overall
A(ε) would remain positive. While under certain truncation,
negative unphysical A(ε) can appear in some cases.

However, it turns out that the spectral weight negativity has
almost no influence on our results. It is less pronounced the
larger values we choose for the infinitesimal 0+. While a value
around � 0.01 generates noticeable artifacts, 0+ of the order
0.05 makes them virtually invisible. On the other hand, the
latter value is of the order of the numerical energy resolution
of the Monte Carlo data, rendering values of 0+ less than
0.05 meaningless. That is why we have used this value for 0+
throughout.
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and M. Köhl, Nature (London) 485, 619 (2012).

[37] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S.
Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 83,
2876 (1999).

[38] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev.
Lett. 88, 120407 (2002).
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