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Anderson localization in the time domain
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PL-30-348 Kraków, Poland

3Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu,
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In analogy with the usual Anderson localization taking place in time-independent disordered quantum systems
where the disorder acts in configuration space, systems exposed to temporally disordered potentials can display
Anderson localization in the time domain. We demonstrate this phenomenon with one-dimensional examples
where a temporally disordered potential induces localization during the quantum evolution of wave packets, in
contrast with a fully delocalized classical dynamics. This is an example of a time crystal phenomenon, i.e., a
crystalline behavior in the time domain.
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I. INTRODUCTION

Anderson localization (AL) is the inhibition of transport
in a spatially disordered quantum system due to destructive
interference [1]. It manifests itself in the exponential localiza-
tion of eigenstates in configuration space, while the classical
dynamics is on the average diffusive. Relying on the interfer-
ence between paths multiply scattered by the disorder—e.g., a
disordered potential—AL very much depends on the geomet-
rical properties of these paths and especially on the dimension
of the system. The scaling theory of localization [2] makes
it possible to understand semiquantitatively this behavior and
shows that AL is a generic behavior in one-dimensional (1D)
systems and in time-reversal invariant two-dimensional (2D)
systems. In higher dimensions, localization usually takes place
at low energy, while high energy states are delocalized.

Although space and time do not play the same roles, one
may wonder whether a system where the potential is a spatially
“ordered” function, but a temporally “disordered” function,
displays a phenomenon analogous to AL, but in the time
domain. It is the aim of this paper to show that the answer
is positive.

A simple example of such a transposition between space
and time is already known in the context of localization
phenomena. The so-called “kicked rotor” model describes a
free rotor which is periodically kicked by a spatially dependent
potential. At long time, it displays “dynamical localization,”
that is, localization in momentum space [3], which has been
shown to be equivalent to AL [4]. Moreover, the addition
of temporal modulations of the kick strength is tantamount
to adding spatial dimensions in the equivalent Anderson
model [5–8].

In the kicked rotor, the disordered character comes from
the classically chaotic dynamics when the kick strength is
sufficiently strong. We will here use a different idea, namely,
directly incorporate the disordered character in the temporal
variations of the potential.

Recently, it has been proposed that crystalline phenomena
in the time domain can emerge due to spontaneous breaking of
continuous time translation symmetry to a discrete one [9,10].

Such phenomena are termed time crystals and there is debate
in the literature as to whether the formation of time crystals
is possible [11–21]. In solid state physics, it is often assumed
that space crystals are already formed in a spontaneous process
of space translation symmetry breaking and their properties
are investigated with the help of space periodic potentials.
A similar approach can be applied in the time domain. That
is, periodically driven systems are able to reveal crystalline
behavior in time in analogy to Bloch wave solutions of
space periodic problems [20]. In this paper, we discuss a
slightly related, but much more general, phenomenon. Using
a conveniently tailored periodic driving of a perfectly ordered
system, one can create an effective disorder in the time domain.
This may induce AL in the time domain, like extended Bloch
states localizing in the presence of a weak spatially disordered
potential. The trick is to play with the harmonics of the driving
frequency which are made resonant with the harmonics of
the unperturbed periodic motion. It is the richness of the
many-component interaction which allows us to control the
localization properties. The phenomenon is at the same time
robust and simple, since we can give an explicit recipe for the
temporal driving.

II. RESULTS

A. Particle in a temporally disordered potential

Let us begin with a time-independent system perturbed by a
temporally disordered potential. A spatially constant potential
trivially does not affect the dynamics. We have thus to use
a space-dependent potential. To keep the spatial structure as
simple as possible, we take a 1D particle moving on a ring.
The position of the particle is denoted by an angle θ and its
momentum by p. The particle experiences a time-dependent
perturbation so that the classical Hamiltonian reads

H = (p − α)2

2
+ Vg(θ )f (t), (1)

where V is the amplitude of the perturbation and the param-
eter α is introduced in order to remove the degeneracy of
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unperturbed motions corresponding to ±p. We assume that

f (t + 2π/ω) = f (t) =
+∞∑

k=−∞
fke

ikωt , (2)

but, between t and t + 2π/ω, it performs random fluctuations,
i.e., fk = f ∗

−k are independent random variables. The function
g(θ ) is a regular function displaying no disorder. In the
following, we concentrate on an example where g(θ ) = θ/π

for θ ∈ [−π,π [, i.e.,

g(θ ) =
+∞∑

n=−∞
gne

inθ , (3)

where gn = i(−1)n

πn
for n �= 0 and g0 =0.

Switching to the rotating frame, � = θ − ωt , we can see
that � becomes a slowly varying quantity if its canonically
conjugate momentum fulfills the resonance condition P =
p − α − ω ≈ 0. Then, the motion of the particle can be
described by an effective Hamiltonian that is obtained by
averaging the original Hamiltonian over the fast time variable
(the so-called secular approximation [22]). The details of
the calculation, as well as tests of its validity, are given
in the Appendix. The time-averaged effective Hamiltonian
writes

Heff = P 2

2
+ V

+∞∑
k=−∞

gkf−ke
ik� + ω2

2
. (4)

For each realization of the random function f (t), the motion
of the particle in the vicinity of the resonant trajectory, i.e.,
for |P | � ω, is described by an integrable Hamiltonian (4).
The Hamiltonian (4) does not depend on ω apart from the
last constant term. However, the validity of the effective
Hamiltonian does depend on ω, as discussed in the Appendix.
The second order corrections to the effective Hamiltonian scale
like V 2

ω2 and if this parameter goes to zero, the resonant motion
of the system is perfectly described by (4).

The Hamiltonian (4) indicates that the particle effectively
experiences a disordered potential. We will consider an
example where

|gkfk| = 1√
k0π1/4

e−k2/(2k2
0 ), (5)

and Arg(fk) are random variables chosen uniformly in the
interval [0,2π [. This requires that many gk coefficients are
nonzero, that is a spatial dependence of the potential with
many Fourier components; it excludes potentials with a simple
sinusoidal dependence. Actually, the secular term in the
effective Hamiltonian (4) can be thought of as the coherent
addition of resonant terms between the spatial harmonics of
the potential and the corresponding temporal harmonics of the
disordered driving amplitude.

As we deal with a 1D system, AL is expected for any
disorder strength. In our finite system with periodic boundary
conditions, it is visible only if the localization length ξloc �
2π. In 1D systems, ξloc is essentially twice the transport mean
free path [23]. In the weak disorder limit, it can be computed
using the Born approximation, from the power spectrum of the
potential correlation function and the disorder-free density of
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FIG. 1. Visualization of an eigenstate of the Hamiltonian (4) in
the laboratory frame. Panels show the probability density for the
measurement of a particle at a fixed point on a ring versus time, for
an eigenstate of the Hamiltonian (4) of energy E − ω2

2 = 8 × 103 for
k0 = 103 and V = 4 × 103. The localization length is of the order of
0.17/ω. The upper plot is on a linear scale, and the lower plot on a
logarithmic scale, showing approximate exponential localization.

states [23,24]. In our case, this gives

ξloc = k0Ẽ√
πV 2

exp

(
8Ẽ

k2
0

)
, (6)

where Ẽ = E − ω2/2 is the energy of the eigenstate with
respect to the average value of the potential energy in (4). The
exponential term is due to the finite correlation length ζ =

√
2

k0
of the disordered potential.

The Born approximation is valid in the weak scattering
regime, that is, if V 2 � ẼEζ where Eζ = 1/ζ 2 = k2

0/2 is
the so-called correlation energy [24] (throughout this paper,
we assume �=1). Eζ is the energy scale separating two
qualitatively different regimes. If Ẽ � Eζ , the de Broglie
wavelength of the particle is longer than ζ , meaning that the
particle can tunnel through potential hills; this regime is often
referred to as the “quantum” regime. In contrast, Ẽ 	 Eζ

refers to the “semiclassical” regime. We are mainly interested
in the quantum regime, where the exponential factor in Eq. (6)
is close to unity, so that

ξloc

ζ
≈

√
2

π

Eζ Ẽ

V 2
. (7)

Therefore, the weak scattering condition reduces to ξloc 	 ζ.

In Fig. 1, an exemplary eigenstate of the quantum version
of the effective Hamiltonian (4) is presented for V =4 × 103,
k0 =103, and α= (

√
5 − 1)/2 [25]. The energy of this state

is close to Ẽ = E − ω2/2=8 × 103, so that V 2/ẼEζ =
0.004 � 1, and the Born approximation can be used. It
predicts ξloc =0.30. Numerical calculation using the transfer
matrix method [26] agrees with this value within 1%. Single
eigenstates do not display a perfect exponential localization,
so that there are state-to-state fluctuations of the estimated
localization length, making the observed length 0.17 fully
compatible with the theoretical calculation.

The original Hamiltonian (1) is a periodic function of time.
Thus, in the quantum description we can employ the Floquet
theorem [22], which is the analog of the Bloch theorem in
the time domain, and calculate quasienergy eigenstates. These
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eigenstates, called Floquet states, are periodic eigenfunctions
of the Floquet Hamiltonian HF = H (t) − i∂t . Eigenstates of
the effective Hamiltonian (4) are directly related to Floquet
states within the secular approximation. When we return from
the rotating frame to the laboratory frame, all eigenstates
of (4) perform a periodic motion with period 2π

ω
. Anderson

localized eigenstates of (4) appear in the laboratory frame as
periodically evolving exponentially localized density profiles.
If we fix the position in the laboratory frame, we observe that
the probability density for a measurement of the particle at this
position reveals a profile that is exponentially localized around
a certain t0; see Fig. 1. The profile comes back periodically
with period 2π/ω. Thus, one deals with the situation analog
to a time-independent 1D problem of a particle in a disordered
potential with periodic boundary conditions.

AL considered here is induced by a time fluctuating
perturbation, not by a spatial disorder, and appears in the time
domain. In the case of a particle on a ring, an exponential
localization is observed in time (for a fixed position in the
configuration space) but also in the configuration space (at a
fixed time) which is a specific property of the ring problem. In
general, an exponential localization is only present in the time
domain, as discussed in Sec. II C.

B. Model of time crystals with temporal disorder

We now consider a slightly different problem. The forma-
tion of time crystals is related to spontaneous breaking of
time translation symmetry, in analogy with the spontaneous
breaking of space translation symmetry in the formation
of usual space crystals [9,10]. We will not consider the
formation of time crystals, but try to simulate time crystal
phenomena with the help of periodically driven systems [20].
This is in analogy with the standard approach of solid state
physics where space periodic Hamiltonians are used to model
properties of space crystals. Let us assume that an unperturbed
Hamiltonian for a particle on a ring reads

H0 = (p − α)2

2
+ λ cos(sθ ) cos(sωt), (8)

where the integer s 	 1. When we switch to the rotating frame,
the new variable � = θ − ωt is a slow variable (similarly to
the previous discussion) and the secular effective Hamiltonian,

H0,eff = P 2

2
+ λ

2
cos(s�) + ω2

2
, (9)

describes quantitatively the resonant motion if λ2/ω2 � 1.
Our problem has been reduced to a particle in an external
periodic potential. The eigenstates ofH0,eff are solutions of the
Mathieu equation [22]. In the limit of large amplitude λ and
large s (with

√
λ/s 	 1), they appear in the laboratory frame

as trains of s localized wave packets arriving periodically at
any chosen point on the ring. This is a model of time crystals
obtained with the help of a periodically driven system [20].
If we add to the unperturbed Hamiltonian H0 the same
perturbation as in (1), the full effective Hamiltonian of the
system reads

Heff = P 2

2
+ λ

2
cos(s�) + V

+∞∑
k=−∞

gkf−ke
ik� + ω2

2
. (10)
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FIG. 2. Visualization of eigenstates of the Hamiltonian (10) in
the laboratory frame. Panels show the probability density for the
measurement of a particle at a fixed point on a ring versus time, for
eigenstates with energy in the middle of the (a) lowest and (b) first
excited energy bands of the system described by the Hamiltonian (10)
for s = 100, λ = 2 × 104, k0 = 100, V = 10 for (a), and V = 300
for (b). The localization lengths are both of the order of 0.16/ω.

For V � λ, we deal with a particle in a periodic lattice
potential which has s minima at positions � = (2j + 1)π/s

for 0 � j < s, perturbed by a weak disordered potential. If we
can restrict ourselves to the lowest energy band of the periodic
lattice, we can further simplify the description by deriving the
standard Anderson Hamiltonian [20]. When ζ is shorter than
2π/s, the disorder is uncorrelated between consecutive sites,
and the only parameters of the model are the disorder strength
V and the hopping amplitude J between consecutive sites.
The latter has been computed in [27] in the limit of a deep
lattice and is given by J = (25λ3s2/π2)1/4 exp(−√

32λ/s). In
the weak disorder limit V � J, the localization length at the
center of the band reads ξloc = 8πJ 2/sV 2 [23]. Figure 2(a)
shows the evolution of the probability density for the particle
detection at a fixed position in the laboratory frame, for an
eigenstate in the middle of the band. For the parameters of
the figure, we obtain J = 7.57, so that we are not fully in
the perturbative limit. Nevertheless the predicted localization
length is ξloc = 0.144, in good agreement with the results in
the figure. Note that the Hamiltonian (10) also predicts the
possibility of AL in higher energy bands. In the first excited
band, the asymptotic solutions of the Mathieu equation [28]
predict J to be 32 times larger than in the lowest band. For a V

value 30 times larger than in Fig. 2(a), the localization length
should be similar to the case of the lowest band; that is indeed
observed in Fig. 2(b).

C. General discussion

We have illustrated AL in the time domain with the simple
problem of a particle on a ring. However, the phenomenon is
general and can be realized in a broad class of systems. Assume
that we have an integrable 1D system described by a classical
Hamiltonian H0(x,p) which is perturbed by a time-dependent
potential of the form Vg(x)f (t) where f (t) is a randomly
fluctuating function but fulfills f (t + 2π/ω) = f (t) and g(x)
is a regular function. For example, we can think of a particle
bouncing on a mirror whose position fluctuates in time;
then, H0(x,p) = p2

2 + x and g(x) = x (with x > 0) [22]. The
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canonical transformation to the angle-action variables (θ,J ) of
the unperturbed problem allows one to write a full Hamiltonian
in the form H = H0(J ) + Vg(θ,J )f (t). Periodic solutions
of the unperturbed system possess very simple forms in the
angle-action variables, i.e., J = constant and θ = H ′

0(J )t +
constant, where H ′

0 = ∂H0
∂J

. Let us stress that the canonical
transformation between (x,p) and (θ,J ) is usually nonlinear.
On the other hand, the previous equation shows that the angle
variable θ changes always linearly with time on an unperturbed
orbit. By expanding g(J,θ ) = ∑

n gn(J )einθ and f (t) in
Fourier series, one can perform the standard approach for
resonant motion that yields the effective secular Hamiltonian

Heff = 1

2
H ′′

0 (J0)(J − J0)2 + V

+∞∑
k=−∞

gk(J0)f−ke
ik�, (11)

modulo a constant term, where � = θ − ωt and J0 fulfills
the resonant condition ω = H ′

0(J0). Such an effective
Hamiltonian has the same form as (4). If, in addition, we
apply a periodic driving λg(x) cos(sωt), the resulting effective
Hamiltonian will be of the form (10) [29]. Thus, in terms of the
angle-action variables, we obtain the same kind of behavior:
AL phenomena can be expected. There is, however, one
difference. AL is identified and described in the rotating frame
in terms of angle-action variables. When one tries to plot the
probability density of a localized state in the laboratory frame
as a function of x (for fixed t), one does not observe in general
an exponentially localized profile because the canonical
transformation from (�,J ) to (x,p) is generically nonlinear.
However, the temporal evolution of the probability of detecting
the particle at a fixed position x is always exponentially
localized around a certain t0. Indeed, our temporal AL takes
place along a periodic orbit of the unperturbed system,
resonant with the time-dependent perturbation. As the relation
between t and � is always linear for an unperturbed motion,
AL in the � space also means exponential localization in time.

Finally let us discuss possible realizations of AL in the
time domain in higher dimensional systems. Assume that, in a
three-dimensional (3D) case, the Hamiltonian of a one-particle
system can be written, in the angle-action variables (θi,Ji), as
H0(J1) + V (θ1,θ2,θ3; J1,J2,J3; t) where V fluctuates in time
but fulfills V (t + 2π/ω) = V (t). This occurs, e.g., in the
hydrogen atom perturbed by a fluctuating electromagnetic field
where J1 is the principal action, θ1 denotes the position of the
electron on an unperturbed elliptical orbit, while (θ2,J2,θ3,J3)
define the shape and orientation of the orbit. It may happen
that, even if the perturbation is on, there is a stable resonant
periodic orbit where (θ2,J2,θ3,J3) remain nearly constant [22].
Then, the effective Hamiltonian of the θ1 degree of freedom
can be reduced to a form similar to (11) and AL of the electron
can take place.

III. SUMMARY

To summarize, we have proposed an alternative scenario for
the observation of Anderson localization, based on a tempo-
rally disordered driving of a quantum system. In proper condi-
tions, it leads to the spontaneous appearance of wave packets
Anderson localized along an unperturbed periodic trajectory.

A key point for a possible experimental observation of AL
in the time domain is that both the temporally “disordered”

periodic driving and the “regular” inner potential must contain
many harmonics of the fundamental frequency. Thanks to
modern electronics, creating a complex temporal profile of the
driving is not necessarily difficult. Getting a highly anharmonic
potential requires a specific system. In the example used
in this paper, the high-order spatial harmonics come from
the discontinuity of the potential g(θ ) in (1). In a more
realistic system, it will require some kind of singularity. A
first example could be a cold atom bouncing on an optical
mirror (created by an evanescent wave [30]) whose effective
position is modulated in time. Another possibility would
be to use the dynamics of a Rydberg electron [31]. There
the close encounters with the nucleus are responsible for a
highly anharmonic classical motion and consequently Fourier
components decrease only slowly at large order [22]. Driving
the Rydberg electron with a temporally disordered microwave
field could lead to AL in the time domain. Let us also mention
the possibility of trapping a cold atomic gas in a ring-shaped
trap whose parameters can be modulated in time or the use of
rings of superconducting or normal metal devices [32].
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APPENDIX

In this Appendix we analyze the validity of the effective
Hamiltonian (4) obtained within the so-called secular approx-
imation [22,33].

FIG. 3. Poincaré surfaces of section for a particle moving on
a ring in the presence of a temporally disordered perturbation for
V = 20, k0 = 10, and α = (

√
5 − 1)/2. (a) and (b) correspond to

the exact results for ω = 300 − α and ω = 2000 − α, respectively.
(c) is related to the phase space portrait generated by the effective
Hamiltonian (4).
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FIG. 4. Black lines show a bunch of low lying energy levels
of the effective Hamiltonian (4) versus V for k0 = 10. Red circles
correspond to quasienergy levels of the full Hamiltonian (1) for (a)
ω = 300−α and (b) ω = 2000−α where α = (

√
5 − 1)/2. In (b) red

circles follow closely the black lines and the latter are hardly visible.

The original Hamiltonian (1) describes a particle on a
ring. Let us switch to the rotating frame with the help of the
following canonical transformation

� = θ − ωt (A1)

P = p − α − ω. (A2)

A straightforward algebraic manipulation shows that the
Hamiltonian in the new coordinates is

H = P 2

2
+ V

+∞∑
m=−∞

( +∞∑
k=−∞

gkfm−k eik�

)
eimωt + ω2

2
.

(A3)
The secular approximation is valid at large ω. In the region

where |P | � ω, the Hamiltonian’s equations of motion show
that the evolution is slow for the �,P variables, while ωt is a
rapidly varying variable. This makes it possible at first order
to keep in the Hamiltonian only the secular terms m = 0,

resulting in the effective Hamiltonian (4).
The effect of nonsecular terms m �= 0 can be estimated

at second order in V/ω. It results in the contribution to the
effective Hamiltonian [22,33]

H (2) = − V 2

2ω2

∑
m�=0

∑
n,n′

nn′gngn′f−n+mf−n′+m ei(n+n′)�

m2
.

(A4)

If V 2/ω2 → 0, the second order terms disappear. In that limit,
we may expect that the effective Hamiltonian (4) reproduces
the exact resonance dynamics of the system. It can be con-
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FIG. 5. Black solid lines show the probability density of the
seventh excited eigenstate of the effective Hamiltonian (4) in the
laboratory frame in (a) linear and (b) logarithmic scale. Blue dashed
lines depict the probability density of the corresponding Floquet
eigenstate of the full Hamiltonian (1), plotted for a fixed moment
of time, for ω = 300 − α. Red dotted lines (hardly distinguishable
from the black solid lines) show results similar to the blue dashed
lines but for ω = 2000 − α. The other parameters of the system are
the following: V = 20, k0 = 10, and α = (

√
5 − 1)/2.

firmed in numerical simulations where predictions based on
the effective Hamiltonian are compared with the exact results.

In Fig. 3 we compare a Poincaré surfaces of section,
obtained in numerical integration of classical equations of
motion generated by the exact Hamiltonian (1), with the phase
space portrait corresponding to the effective Hamiltonian (4).
We can see that for sufficiently large ω the exact results follow
precisely the secular approximation.

Switching to the quantum description, we can compare
eigenstates of the exact Floquet Hamiltonian HF = H − i∂t

with the corresponding eigenstates of the effective Hamilto-
nian (4). Figure 4 presents quasienergy levels versus V for two
different values of ω. Examples of eigenstates are shown in
Fig. 5. Similar to the classical case, the effective Hamiltonian
provides an accurate description of the system if V 2/ω2 is
sufficiently small.

To sum up, the effective Hamiltonian (4) provides a
quantitative description of the resonant behavior of the system
if V 2/ω2 goes to zero. We have illustrated the validity of
such a secular approximation when the effective disordered
potential in (4) is characterized by the correlation length
ζ = √

2/k0 = 0.14; cf. (5). Diagonalization of the full Floquet
Hamiltonian for much smaller ζ becomes very difficult
numerically. However, thanks to the effective Hamiltonian
approach, such a regime can be investigated.
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