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Synthetic dimensions in the strong-coupling limit: Supersolids and pair superfluids
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We study the many-body phases of bosonic atoms with N internal states confined to a one-dimensional (1D)
optical lattice under the influence of a synthetic magnetic field and strong repulsive interactions. The N internal
states of the atoms are coupled via Raman transitions creating the synthetic magnetic field in the space of internal
spin states corresponding to recent experimental realizations. We focus on the case of strong SU(N ) invariant
local density-density interactions in which each site of the 1D lattice is at most singly occupied, and strong
Raman coupling, in distinction to previous work which has focused on the weak Raman coupling case. This
allows us to keep only a single state per site and derive a low-energy effective spin-1/2 model. The effective model
contains first-order nearest-neighbor tunneling terms, second-order nearest-neighbor interactions, and correlated
next-nearest-neighbor tunneling terms. By adjusting the flux φ, one can tune the relative importance of first-order
and second-order terms in the effective Hamiltonian. In particular, first-order terms can be set to zero, realizing
a model with dominant second-order terms. We show that the resulting competition between density-dependent
tunneling and repulsive density-density interaction leads to an interesting phase diagram including a phase with
long-range pair-superfluid correlations. The method can be straightforwardly extended to higher dimensions
and lattices of arbitrary geometry, including geometrically frustrated lattices where the interplay of frustration,
interactions, and kinetic terms is expected to lead to even richer physics.

DOI: 10.1103/PhysRevA.94.023630

I. INTRODUCTION

Cold-atom systems provide an ideal setting in which
to perform experiments that simulate quantum many-body
systems. The fine control and wide tunability of system
parameters, as well as precise measurements of observables,
allow cold-atom systems to simulate idealized models of
solid-state physics [1,2], making them a testing ground for
condensed-matter theories. However, the natural situations
that emerge in cold-atom experiments also introduce new
models with interesting and novel features which raise new
theoretical questions.

Optical lattices can be used to confine atoms in d =
1,2,3-dimensional lattices of chosen geometry. An additional
synthetic dimension can be created in any d-dimensional
lattice by exploiting the internal states, e.g., spin states, of
the atoms [3,4]. Recent progress in the control of cold-atomic
gases allows the study of systems with large (tunable) numbers
of internal spin states [5–7]. Engineering the transitions
between the internal states, e.g., by Raman transitions induced
by lasers, allows the simulation of motion as along an addi-
tional (finite) “synthetic” dimension. Moreover, this synthetic
dimension can also be used to engineer artificial gauge fields
for neutral atoms [4,8,9], thus opening the possibility to
explore topological physics in higher-dimensional settings.
Experimentally, this has been realized in a one-dimensional
(1D) lattice geometry realizing the physics and associated
topological properties of a two-dimensional system [10,11].
More recently, it has been proposed how one could simulate
four-dimensional quantum Hall physics in cold-atom setups
using these techniques [12].

In this work, we will focus on one-dimensional systems
with a finite synthetic dimension composed of N = (2I + 1)
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spin states coupled by laser beams in such a way as to
create an artificial magnetic field. Thus, they can alternatively
be considered as frustrated N -leg ladders. Optical lattice
experiments with cold atoms motivate the study of both
bosonic [13–18] and fermionic [19–28] systems. The pre-
dicted behavior includes chirally ordered phases [14], vortex
phases [16], magnetic crystals, and quasi-1D analogues of
fractional quantum Hall states [25,27,28]. At the center of
these phenomena is the interplay of the gauge fields and
the SU(2I + 1) symmetric interactions [29–32]. The natural
SU(2I + 1) symmetry of the interactions between the spin
states implies, in the interpretation of a ladder, that the
interactions are infinitely ranged along the synthetic dimension
and short-ranged along the real dimension, in contrast to the
situation usually considered in the solid-state context. We
remark that therefore the limit of hardcore interactions of
bosonic particles does not correspond to a Tonks-Girardeau
gas [33–35] and the system does not reduce to free fermions.

Prior studies have focused on the weak Raman coupling
case in which one obtains helical states and edge currents [28].
In contrast, we will study the case of strong Raman coupling
and strong interactions, focusing on an effective model of
hard-core bosons in these limits which can alternatively be
understood in terms of an effective pseudo-spin-1/2 system.
Our main focus will be on a regime in which the physics is
dominated by the interplay of density-density interactions and
correlated tunneling terms. This will lead to a competition
between phase separation and charge order, and normal
superfluidity and pair superfluidity.

In 2D, pair superfluids can be realized using the
long-range interactions of dipolar quantum gases [36,37]
and confining them in bilayer geometries [38–40]. In a
mean-field analysis, the presence of correlated tunneling
allows the condensation of pairs (〈bibj 〉 �= 0) in the absence
of single-particle condensation (〈bi〉 = 0) [41]. Generically,
correlated tunneling can be understood to act as an attractive
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interaction between the bosons favoring pair formation, and
the repulsive nearest-neighbor interaction is required to avoid
collapse [42] or phase separation [43]. Correlated tunneling
has been shown to lead to pair superfluidity for bosons in
2D [43] and in 1D [44,45] in theoretical studies, but the
required models are hard to realize experimentally.

We propose a way to realize (quasi)-pair-condensed and su-
persolid phases of ultracold atoms starting from an experimen-
tally realized system. We do not require special (long-range)
interactions or complicated lattice geometries. The proposed
scheme is applicable to both fermions and bosons, but we will
limit the discussion to the bosonic case here. We do not assume
specially engineered Raman couplings of the spin states to ob-
tain homogeneous couplings along the synthetic dimension or
periodic boundary conditions, which are hard to realize exper-
imentally for large number of internal spin states, but consider
the highly nonhomogeneous couplings and open boundary
conditions along the synthetic dimension, which occur nat-
urally for I > 1 due to the nature of the atom-light interaction.

We introduce the full model and the effective model derived
in the limits of large Raman coupling and strong interactions
in Sec. II. Importantly, the coupling constants will turn out to
depend on the flux φ, and the freedom in tuning both the flux
and the number of spin states 2I + 1 allows great control and
freedom in engineering the resulting effective Hamiltonian.
In Sec. III, we will focus on the special case of flux φ =
π in which the first-order terms vanish and investigate the
behavior resulting from the dominant second-order terms in the
effective model. By employing density matrix renormalization
group (DMRG) calculations [46], the phase diagram of the
effective model is obtained, and described in Sec. III. Based
on the analysis of correlation functions and the von Neumann
entropy, we establish a phase diagram containing a charge
density wave (CDW) at half filling, a supersolid (SS) phase
with simultaneous charge density wave order and superfluid
correlations, and a (quasi)-pair-superfluid phase.

II. MODEL

We consider spinful bosons with N = 2I + 1 inter-
nal spin states loaded into a one-dimensional optical lat-
tice described by a Hamiltonian Ĥ = Ĥ1 + Ĥ2 + Ĥint. Ĥ1

describes the bosonic hopping along the lattice, Ĥ1 =
−t

∑
j

∑I
m=−I (ĉ†j+1,mĉj,m + H.c.) where ĉ

(†)
j,m are bosonic

operators annihilating (creating) bosons in spin state m

at site j , and t is the hopping amplitude. Ĥ2 de-
scribes the Raman coupling of the internal spin states
via Ĥ2 = −∑

j

∑I−1
m=−I �m+1(eiφj ĉ

†
j,m+1ĉj,m + H.c.) where

�m = �gm with gm = √
I (I + 1) − m(m − 1), and φ is the

running phase of the Raman beams (set by the wave-vector
transfer �k and the lattice constant d). Ĥint is taken to
be an SU(2I + 1) invariant interaction of contact form, i.e.,
Ĥint = U

∑
j,m,m′ n̂j,m(n̂j,m′ − δm,m′ ). In the next section, we

will consider an effective spin-1/2 model describing the
dynamics in the strong-coupling limit.

Effective model at strong coupling

We will consider the parameter regime t � �,U and work
with the resulting low-energy effective Hamiltonian in the

following. In the limit t � �, only the lowest of the eigenstates
of Ĥ2 remains in the effective description coupled via direct
and virtual hoppings induced by Ĥ1. The interaction Ĥint takes
the same form in the eigenbasis of Ĥ2 due to its SU(2I + 1)
invariance and, in the limit of t � U , leads to a hard-core
constraint in the effective basis. In the Appendix, A we derive
the effective second-order model describing spinless particles
interacting via a nearest-neighbor interaction and hopping
with nearest-neighbor, next-nearest-neighbor, and correlated
next-nearest-neighbor tunneling terms.

The effective Hamiltonian takes the form

Ĥeff/t = −t1(φ)
∑

j

(d̂†
j+1d̂j + H.c.) + κV (φ,ũ)

∑
l

n̂l n̂l+1

−κt2(φ,ũ)
∑

j

(d̂†
j+2d̂j + H.c.)

+κtcor(φ,ũ)
∑

j

(d̂†
j+2n̂l+1d̂j + H.c.), (1)

where d̂j = d̂j,I is the creation operator for a particle in
the sx = I (after the unitary transformation explained in the
Appendix A) eigenstate at site j , κ = t/�, and ũ = U/(4�I ).
The explicit form and functional dependence of the coupling
constants on the flux φ, the interaction strength ũ, and the
number of spin states I is provided in the Appendix A; see
Eqs. (A5)–(A7).

The first term describes the direct hopping between the
sx = I spin state on neighboring lattice sites, with an energy
scale that is reduced from the bare hopping t by the factor
t1(φ) = (cos φ/2)2I [Eq. (A5)]. The remaining terms describe
virtual hopping processes, with energy scale proportional to
tκ = t2/�. The nearest-neighbor repulsion V contains three
contributions, originating from nearest-neighbor hopping and
returning to the original site via an excited spin state on a
neighboring site which is either empty, occupied, or hopping
onto an occupied site in the lowest-energy spin state. The
correlated tunneling term tcor arises from the corresponding
processes with the particle not returning to the original site.
These processes are illustrated in Fig. 1(a).

Importantly, the virtual hopping between the different
Raman eigenstates is controlled by κ = t/�. To avoid double
occupancy, we only require t1(φ) � U/t , which can be
achieved even if the bare coupling t is large by making t1(φ)
small through a judicious choice of φ. This allows us to work at
relatively high-energy scales using shallow lattices with high
bare tunneling rates t , in contrast to the induced interactions
in the Mott regime of the Hubbard model scaling with t/U

requiring deeper lattices and lowering the overall energy scale.
Further, the dependence of the coupling constants on the flux
φ allows one to eliminate the first-order tunneling terms and
obtain an effective model with dominant second-order terms,
even for relatively shallow lattices where all energy scales
remain large.

III. MODEL AT φ = π

In the following, we focus on the model at flux φ = π .
Then, the first-order nearest-neighbor tunneling term t1(φ)
vanishes identically and the effective model is determined by
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FIG. 1. (a) Second-order virtual processes in the effective Hamil-
tonian given by Eq. (1) illustrated in the case of I = 2. The left shows
a particle hopping into an excited state on an unoccupied site and back
to the ground state and leads to a normal and a correlated NN hopping
term t2 and tcor; hopping via an occupied site leads to tcor. The right
corresponds to hopping back and forth via an excited state and leads
to an effective NN interaction V of particles on neighboring sites.
(b) Coupling constants t2/V and tcor/V as a function of rescaled
interaction ũ = U/(4�I ) of the effective spin-1/2 model at flux
φ = π ; see Eq. (2).

the second-order terms only. The model reduces to

Ĥeff/(tκ) = V
∑

j

n̂j n̂j+1 − t2
∑

j

(ĉ†j ĉj+2 + H.c.)

+V/2
∑

j

(ĉ†j n̂j+1ĉj+2 + H.c.), (2)

where c
†
j is the creation operator for hard-core bosons at site

j , n = c
†
j cj is the corresponding density, and the couplings

are the ones defined below Eq. (1) for φ = π . Note that
in these limits, tcor = V/2. Since the nearest-neighbor (NN)
tunneling term has dropped out, particles now only hop on
their respective A/B sublattices, and the model can therefore
also be understood to live on a “zigzag” lattice.

To gain some understanding of the effective model, we
first consider the more general case in which all coupling
constants can be tuned independently, i.e., we consider the
model with couplings t2, tcor, and V . Note that those correspond
to two-body, three-body, and four-body terms, respectively.
For tcor = V = 0, the model is noninteracting and describes
free hard-core bosons living separately on each sublattice. For
tcor = 0, the model corresponds to the t2 − V model [47]. It
has been shown to undergo a quantum phase transition from

a superfluid (SF) phase to a supersolid (SS) phase at nonhalf
filling and to a charge density wave (CDW) at exactly half
filling as a function of t2/V . For V = 0, the model is integrable
and known as Bariev’s model [48]; in this limit, we have two
next-nearest-neighbor (NNN) hopping terms, i.e., a normal
hopping t2 and a correlated hopping tcor for which hopping
between sites depends on the occupation of the intermediate
site on the other sublattice. Depending on tcor/t2, the model has
a finite CDW amplitude, i.e., different sublattice populations,
in the ground state. The fermionic spin-1/2 version of this
model has recently been studied in Ref. [49]. For V = 0 and
tcor = t2, the model admits an exact solution via a mapping to
free spinless particles moving on a charge lattice. This solution
becomes possible because for tcor = t2 particles cannot pass
each other, and the sequence of particles remains preserved
throughout the dynamics. The ground state of the model is
found to be a paired-hole superconductor with hidden string
order and algebraically decaying two-particle correlations.

For our model, we are not free to choose these couplings
independently. The dependence of the couplings in the
effective model given by Eq. (2) on the rescaled interaction
strength ũ = U/(4�I ) is shown in Fig. 1(b). In these limits,
we obtain tcor/V = 0.5 and t2/V = (1 + ũ)/(2ũ). Thus, the
model depends only on a single free parameter ũ, which
determines the ratio t2/V , or we can alternatively consider the
model as a function of t2/V . Hard-core interactions correspond
to t2/V = 0.5 and we will consider the region of repulsive
interactions corresponding to t2/V � 0.5 in Sec. III. We note
that with these parameters, we are outside of the integrable
limits described above and it will be interesting to see what
remains of the physics in the parameter regime accessible in
our model.

Phase diagram

To characterize the ground-state phases, we perform
DMRG simulations using the ALPS matrix-product state
(MPS) framework [50,51]. We consider system sizes of L =
80,120,160,240 with open boundary conditions keeping a
maximal number of states of m = 400,600,800, extrapolating
results for fixed system size in 1/m. To characterize the
ground state and obtain the phase diagram, we study two-
and four-point correlation functions and the structure factors
for CDW, superfluid, and pair-superfluid order. To reduce
the effects of the open boundary conditions, correlators are
measured from the middle of the system and averaged over
a window of 10 sites around the central site. We perform
finite-size scaling of the corresponding correlation lengths,
decay exponents, and structure factors to obtain the phase
boundaries. In addition, we characterize the phases via their
entanglement entropy and central charge.

On a bipartite lattice, due to the vanishing of the
nearest-neighbor tunneling, the sublattice populations nA(B) =∑

i∈A(B) ni are separately conserved, and we focus on equal
populations on both sublattices nA = nB . The phase diagram
of the model as a function of t2 in the range 0.5 � t2/V � 0.64
and density 0 � n � 1 is shown in Fig. 2. Three distinct phases
are observed in this parameter range: a charge density wave
(CDW) with a period of two lattice sites, a supersolid (SS)
with simultaneous (quasi)superfluid and maximal CDW order,
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FIG. 2. Phase diagram of the effective model given by Eq. (2)
obtained from the DMRG calculations as a function of coupling t2
and density n. Three distinct phases are observed: a gapped CDW at
n = 0.5 and t2 � 0.6, a supersolid (SS) phase with superfluid order
on one of the sublattices with the other sublattice being empty with
central charge c = 1 below half filling n < 0.5, and a homogeneous
phase with dominant superfluid (SFA+B ) order on both lattices with
c = 2 for high densities n and high t2, which also shows strong
pair-superfluid correlations. Above half filling at low t2, we find phase
separation (PS) as indicated in a jump in n(μ).

and a homogeneous phase with (quasi)superfluidity on both
sublattices (SFA+B) with pair-superfluid correlations. Since
we consider the case of nA = nB , both the CDW and the SS
phases are additionally separated into a left or right region with
vanishing density on one of the sublattices in both regions.
Before the transition into the SFA+B phase, the maximally
imbalanced state with NA = N , NB = 0 (or the equivalent
state with NA = 0, NB = N ) is slightly lower in energy, and
degenerate in the thermodynamic limit. Both the balanced and
the maximally imbalanced state are realized as thermodynamic
phases when introducing two chemical potentials μA and μB

coupling to the respective densities. Our discussion of the
properties of the state does not rely on this distinction. After the
transition into the SFA+B , the imbalanced state is energetically
disfavored.

Exactly at half filling n = 0.5, the CDW phase is stabilized
and persists up to t2/V = 0.6. Below half filling n < 0.5 at low
coupling t2, the effects of the nearest-neighbor repulsion are
still dominant, resulting in a phase where one of the sublattices
is empty and the other is filled and becomes (quasi)superfluid,
thus forming a supersolid state. We remark that if one sublattice
is empty, the model reduces to free particles hopping on the
other sublattice with amplitude t2. Above half filling n > 0.5 at
low t2, particles cannot avoid the cost of the interaction energy
V and the system phase separates. At sufficiently high t2, the
effect of the repulsion V can be overcome and a homogeneous
phase with superfluid order on both lattices emerges. In this
regime, all of t2, tcor, and V are relevant.

An important tool to characterize the ground-state behavior
of strongly correlated systems in one dimension is the von Neu-
mann block entropy [52]. This is defined as SN

A = Tr ρA ln ρA,
where ρA is the reduced density matrix ρA = TrBρ obtained
by dividing the chain into the block A consisting of sites
i = 1, . . . ,l and B of sites i = l + 1, . . . ,L. In particular, for
a gapped state, the entropy saturates whereas it diverges for
a gapless state [53,54]. For a 1D system of size L with open
boundary conditions, the von Neumann block entropy behaves
as SN

L (l) = s1 + c
6 ln [ 2L

π
sin (πl

L
)], where c is the central charge
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FIG. 3. (a) The central charge c determined from fitting the von
Neumann block entropy via SN

L (l) = c

6 ln [ 2L

π
sin ( πl

L
)] for different

system sizes as a function of the coupling t2 at density n = 0.5.
The CDW is gapped and the transition occurs into the SFA+B

phase with central charge c = 2. (b) Extrapolated CDW order
parameter �CDW = limL→∞

√|1/L
∑

l e
iπlG(l)| at density n = 0.5

as a function of coupling t2 showing the vanishing of CDW order at
t2/V = 0.61.

of the associated conformal field theory (CFT) and s1 is a
nonuniversal constant [55–57]. By fitting SN

L linearly in the
conformal distance λ = ln [ 2L

π
sin (πl

L
)], we obtain the central

charge c of the phase. The behavior of the central charge c as
a function of the coupling t2 at density n = 0.5 is shown in
Fig. 3(a). The results indicate a transition close to t2/V = 0.6.
The state for t2/V � 0.6 is gapped as expected for the CDW
phase and the transition occurs into a state with central charge
of c = 2 in the SFA+B . Finally, below half filling, we find a
central charge c = 1 (not shown), which is consistent with
superfluidity on one of the sublattices in the SS phase.

The CDW order can be directly extracted from the
density-density correlation and the static structure factor.
We measure G(l) = 〈n̂i n̂i+l〉. The static structure factor is
defined as SL(q) = 1/L

∑
l e

iqlG(l). The CDW order param-
eter is given by the square root of the structure factor at
q = π , �CDW(L) = √|SL(π )|, and its infinite system size
limit, �CDW = limL→∞

√|SL(π )|. The finite system results
�CDW(L) are extrapolated via a quadratic fit in 1/L to infinite
system size. The results of this extrapolation are shown in
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FIG. 4. (a) Two-point correlation function Cα(l) as a function of
l on sublattice A (α = 0) for a system of size L = 240 at density
n = 0.5 for t2/V = 0.61,0.6,0.59 (top to bottom) showing the
transition from short-range to long-range correlations at t2/V = 0.61.
(b) System size L divided by superfluid correlation length ξsf for
sublattice A vs coupling t2 for L = 240,160,120,80 (top to bottom).
Coalescence of data points for different L at t2/V = 0.61 ± 0.05
signals transition to SF state.

Fig. 3(b). The CDW order parameter vanishes at t2/V = 0.61,
signaling the transition into the superfluid state.

To characterize the degree of (quasi)superfluid order,
we consider the two-point correlation function Cα(2l) =
〈ĉ†2i+αĉ2i+α+2l〉 on either sublattice (α = 0,1). This correlation
function is shown in Fig. 4(a) for a system of size L = 240 on
sublattice A (α = 0) displaying a transition from short-range
to long-range correlations around t2/V = 0.61; the other
sublattice (not shown) exhibits the same behavior. In contrast
to CDW, there is no order parameter for superfluidity in
one dimension, and the whole superfluid phase is critical.
Still, the superfluid phase is characterized by a diverging
correlation length [58]. To determine the transition point,
we perform finite-size scaling of the correlation length de-
fined as ξsf = √∑

l l
2Cα(l)/

∑
l Cα(l) [59,60]. In Fig. 4(b),

L/ξsf on sublattice A (α = 0) is shown as a function of
t2 at n = 0.5 for different system sizes; the correlations
on sublattice B show the same behavior. The coalescence
of the data signals the transition to the superfluid state
at t2/V = 0.61. In the superfluid phase, we find strong
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FIG. 5. (a) Four-point correlation function P (l) as a function
of l for a system of size L = 240 at density n = 0.5 for t2/V =
0.61,0.6,0.59 (top to bottom) showing the transition from short-
range to long-range correlations at t2/V = 0.61. (b) System size
L divided by pair-superfluid correlation length ξpf vs coupling t2 for
L = 240,160,120,80 (top to bottom). Coalescence of data points for
different L at t2/V = 0.61 ± 0.05 signals transition to pair superfluid
(PSF) state.

correlations between the superfluids on the sublattices. To
characterize this phase further, we also consider possible
condensation of pairs via P (2l) = 〈ĉ†2i ĉ

†
2i+1ĉ2i+2l ĉ2i+1+2l〉 −

〈ĉ†2i ĉ2i+2l〉〈ĉ†2i+1ĉ2i+1+2l〉 and its corresponding correlation
length ξpf = √∑

l l
2P (l)/

∑
l P (l). The pair-superfluid cor-

relator is shown in Fig. 5(a) and the finite-size scaling of
the correlation length in Fig. 5(b). We observe very strong
pair-superfluid correlations in the SFA+B phase consistent with
quasicondensation of pairs as the system becomes superfluid.
However, single-particle superfluidity persists alongside pair
superfluidity in the parameter regime we have studied.

In Figs. 6(a) and 6(b), we display the momentum distri-
bution of particles on sublattice A, n(q) = ∑

eiqlCA(l), and
in Figs. 6(c) and 6(d), the momentum distribution of pairs
of particles npf(q) = ∑

eiqlP (l). As for hard-core bosons,
n(q = 0) is expected to scale with

√
L [61], and both quantities

are normalized by this factor. We focus on the transition from
the SS phase in Figs. 6(a) and 6(c) to the SFA+B phase in
Figs. 6(b) and 6(d). Whereas in the single-particle momentum
distribution a quasicoherent peak is observed in both phases,
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FIG. 6. (a),(b) Single-particle momentum distribution n(q) = ∑
eiqlCA(l) on sublattice A. (c),(d) Momentum distribution for pairs of

particles npf(q) = ∑
eiqlP (l). All are at density n = 0.25 and (a) and (c) at t2/V = 0.51 in the SS phase and (b) and (d) at t2/V = 0.55 in the

SFA+B phase. The single-particle momentum distribution shows a quasicoherent peak in both phases (a) and (b). In contrast, for pairs in the SS
phase in (c), no quasicoherent peak is observed, whereas a peak forms in the SFA+B phase in (d).

pairs only quasicondense in the SFA+B phase as seen in
Fig. 6(d).

IV. CONCLUSIONS

In summary, in this work we have shown that the interplay
of (synthetic) gauge fields and interactions in ultracold
gas systems leads naturally to effective Hamiltonians with
correlated hopping terms. We start from an experimentally
feasible setup for the creation of an artificial magnetic field
using synthetic dimensions. We consider this model in the
limits of strong Raman coupling of the spin states and strong
interactions where it reduces to an effective model with first-
order nearest-neighbor tunneling, second-order next-nearest-
neighbor correlated tunneling terms, and nearest-neighbor
repulsion. Importantly, the additional degree of freedom given
by adjusting the flux φ allows one to engineer effective models
dominated by second-order processes with large energy scales.

By working at flux φ = π , the first-order nearest-neighbor
tunneling term is eliminated, and we obtain a model with
dominant second-order terms. This is a natural route to a large
density-dependent tunneling term, so the proposed scheme is
directly relevant to the realization and study of models with
interaction-assisted hopping and kinetic frustration [62–68].

The physics of our effective model involves the competition
between the correlated tunneling, which favors pair formation,

and the nearest-neighbor repulsion, which favors local CDW
order. We find three distinct phases: a CDW phase, a supersolid
(SS) phase with simultaneous quasisuperfluidity on either
sublattice and maximal CDW order, and a quasisuperfluid
on both sublattices with strong pair-superfluid correlations
SFA+B .

The model can be directly generalized to fermionic species
and higher-dimensional lattices of arbitrary geometry. In the
case of fermions, the study of attractive interactions seems par-
ticularly relevant for the study of paired phases. The extension
to higher dimensions promises even more interesting physics,
e.g., Berezinskii-Kosterlitz-Thouless (BKT) transitions to
novel superconducting states and geometrically frustrated
magnetism. We reserve the discussion of the resulting phases
for future work.
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APPENDIX: DERIVATION OF EFFECTIVE MODEL

We start from the Hamiltonian of bosons with N = 2I +
1 internal spin states loaded into a one-dimensional optical
lattice described by Ĥ = Ĥ1 + Ĥ2 + Ĥint.

Ĥ1 describes the bosonic hopping along the lattice,

Ĥ1 = −t
∑

j

I∑
m=−I

(ĉ†j+1,mĉj,m + H.c.), (A1)

where ĉ
(†)
j,m are bosonic operators annihilating (creating)

bosons in spin state m at site j , and t is the hopping amplitude.
In addition, the internal spin states are coupled by Raman

lasers described by the Hamiltonian

Ĥ2 = −
∑

j

I−1∑
m=−I

�m+1(eiφj ĉ
†
j,m+1ĉj,m + H.c.), (A2)

where �m = �gm with gm = √
I (I + 1) − m(m − 1), and

φ = �kRd is the running phase of the Raman beams given
by the wave-vector transfer �kR and the lattice spacing d. Ĥint

is taken to be a SU(2I + 1) invariant interaction of contact
form, i.e., Ĥint = U

∑
j,m,m′ n̂j,m(n̂j,m′ − δm,m′ ).

For open boundary conditions in the synthetic direction
using the unitary transformation Û defined by Û ĉj,mÛ † =
eiφmj ĉj,m, the Hamiltonian is transformed to

ÛĤ Û † = −t
∑

j

I−1∑
m=−I

(e−iφmĉ
†
j+1,mĉj,m + H.c.)

−
∑

j

I−1∑
m=−I

�m(ĉ†j,m+1ĉj,m + H.c.) + Ĥint. (A3)

As we consider t � �, we now transform to the eigenstates
of the Raman coupling Hamiltonian Ĥ2. After the unitary
transformation, this is just Ĥ2 = −2�

∑
j Ŝx,j , where Ŝx,j

is the Ŝx operator for spin I for particles at site j . Note
in particular that it is now site independent due to gauging
the Raman phase into the hopping part of the Hamiltonian.
Consequently, the eigenfunctions are just the sx eigenstates
and the spectrum at each site is given by Es = −2�s, with s =
−I, . . . ,I . Due to the gauge transformation that we performed,
this actually corresponds to a rotating spin orientation in the
original basis.

Ĥ1 in the new basis reads as Ĥ1 =
−t

∑
s,s ′ [Ts,s ′ (φ)d̂†

j+1,s ′ d̂j,s + H.c.], where d̂
†
j+1,s ′ creates

a particle in the s ′
x eigenstate at site j and we defined the

hopping matrix Ts,s ′ (φ) = 〈sx |e−iφŜz |s ′
x〉 which now couples

states s and s ′. As the interaction Hamiltonian is SU(2I + 1)
invariant, it takes the same form in the transformed basis,
Ĥint = U

∑
j,s,s ′ n̂j,s(n̂j,s ′ − δs,s ′ ), where now the sum runs

over the sx eigenstates. In the limit of strong interactions, this
restricts the occupation at each site to be 0 or 1.

We see that Ĥ2 + Ĥint is diagonal in the occupation number
basis of sx eigenstates. In the limit t � �,U , we treat Ĥ1 as
a perturbation and derive an effective model keeping only the

lowest-energy eigenstate at each site, i.e., the s = I state, and
consider the sector with empty and singly occupied sites. To
second order, we obtain a model describing spinless particles
interacting via a nearest-neighbor interaction and hopping with
nearest-neighbor, next-nearest-neighbor, and correlated next-
nearest-neighbor tunneling terms. The effective Hamiltonian
takes the form

Ĥeff/t = −f I
t (φ)

∑
j

(d̂†
j+1d̂j + H.c.)

+2κ

[
f I

V (φ,ũ = 0)−f I
V (φ,ũ)−f I

t (φ)2

2I ũ

] ∑
l

n̂l n̂l+1

+κ

⎧⎨
⎩f I

cor(φ,ũ = 0)
∑

j

[d̂†
j+2(1 − n̂l+1)d̂j + H.c.]

+f I
cor(φ,ũ)

∑
j

(d̂†
j+2n̂l+1d̂j + H.c.)

− f I
t (φ)2

2I ũ

∑
j

(d̂†
j+2n̂l+1d̂j + H.c.)

⎫⎬
⎭, (A4)

where d̂j = d̂j,I is the creation operator for a particle in the
sx = I eigenstate at site j , κ = t/�, and ũ = U/(4I�).

The functions f
(I )
i (φ) depend on the flux φ, the interaction

strength ũ, and parametrically on the number of spin states I .
The first term describes the diagonal hopping between the s =
I spin states and the remaining terms describe virtual hopping
processes. The nearest-neighbor repulsion V originates from
nearest-neighbor hopping and returning to the original site via
an excited spin state on a neighboring site which is either
empty (first term), occupied (second term), or hopping onto an
occupied site in the lowest-energy spin state (third term). The
correlated tunneling term tcor arises from the corresponding
processes with the particle not returning to the original site.
The functions f

(I )
i (φ) take the explicit form

f I
t (φ) = TII (φ) = cos(φ/2)2I , (A5)

f I
cor(φ,ũ) = −

∑
s ′ �=I

TI,s ′ (φ)TI,s ′(φ)

(Es ′ − EI + U )/�

= −cos(φ/2)4I

4I ũ
{F [−2I,2I ũ,

1 + 2I ũ, tan(φ/2)2] − 1}, (A6)

f I
V (φ,ũ) =

∑
s ′ �=I

TI,s ′ (φ)T̄s ′,I (φ)

(Es ′ − EI + U )/�

= cos(φ/2)4I

4I ũ
{F [−2I,2I ũ,1 + 2I ũ,

− tan(φ/2)2] − 1}, (A7)

where ũ = U/(4I�), and F (a,b,c,z) = 2F1(a,b,c,z) is the
hypergeometric function.
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks–Girardeau

023630-8

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2409
http://dx.doi.org/10.1038/nphys2409
http://dx.doi.org/10.1038/nphys2409
http://dx.doi.org/10.1038/nphys2409
http://dx.doi.org/10.1126/science.1244059
http://dx.doi.org/10.1126/science.1244059
http://dx.doi.org/10.1126/science.1244059
http://dx.doi.org/10.1126/science.1244059
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevA.85.041602
http://dx.doi.org/10.1103/PhysRevA.85.041602
http://dx.doi.org/10.1103/PhysRevA.85.041602
http://dx.doi.org/10.1103/PhysRevA.85.041602
http://dx.doi.org/10.1103/PhysRevB.87.174501
http://dx.doi.org/10.1103/PhysRevB.87.174501
http://dx.doi.org/10.1103/PhysRevB.87.174501
http://dx.doi.org/10.1103/PhysRevB.87.174501
http://dx.doi.org/10.1088/1367-2630/16/7/073005
http://dx.doi.org/10.1088/1367-2630/16/7/073005
http://dx.doi.org/10.1088/1367-2630/16/7/073005
http://dx.doi.org/10.1088/1367-2630/16/7/073005
http://dx.doi.org/10.1103/PhysRevB.91.140406
http://dx.doi.org/10.1103/PhysRevB.91.140406
http://dx.doi.org/10.1103/PhysRevB.91.140406
http://dx.doi.org/10.1103/PhysRevB.91.140406
http://dx.doi.org/10.1103/PhysRevLett.115.190402
http://dx.doi.org/10.1103/PhysRevLett.115.190402
http://dx.doi.org/10.1103/PhysRevLett.115.190402
http://dx.doi.org/10.1103/PhysRevLett.115.190402
http://dx.doi.org/10.1088/1367-2630/17/9/092001
http://dx.doi.org/10.1088/1367-2630/17/9/092001
http://dx.doi.org/10.1088/1367-2630/17/9/092001
http://dx.doi.org/10.1088/1367-2630/17/9/092001
http://dx.doi.org/10.1103/PhysRevB.76.195105
http://dx.doi.org/10.1103/PhysRevB.76.195105
http://dx.doi.org/10.1103/PhysRevB.76.195105
http://dx.doi.org/10.1103/PhysRevB.76.195105
http://dx.doi.org/10.1103/PhysRevB.88.165101
http://dx.doi.org/10.1103/PhysRevB.88.165101
http://dx.doi.org/10.1103/PhysRevB.88.165101
http://dx.doi.org/10.1103/PhysRevB.88.165101
http://dx.doi.org/10.1103/PhysRevA.89.063618
http://dx.doi.org/10.1103/PhysRevA.89.063618
http://dx.doi.org/10.1103/PhysRevA.89.063618
http://dx.doi.org/10.1103/PhysRevA.89.063618
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevA.93.013604
http://dx.doi.org/10.1103/PhysRevB.92.245121
http://dx.doi.org/10.1103/PhysRevB.92.245121
http://dx.doi.org/10.1103/PhysRevB.92.245121
http://dx.doi.org/10.1103/PhysRevB.92.245121
http://dx.doi.org/10.1088/1367-2630/17/10/105001
http://dx.doi.org/10.1088/1367-2630/17/10/105001
http://dx.doi.org/10.1088/1367-2630/17/10/105001
http://dx.doi.org/10.1088/1367-2630/17/10/105001
http://dx.doi.org/10.1103/PhysRevB.92.115446
http://dx.doi.org/10.1103/PhysRevB.92.115446
http://dx.doi.org/10.1103/PhysRevB.92.115446
http://dx.doi.org/10.1103/PhysRevB.92.115446
http://dx.doi.org/10.1103/PhysRevLett.115.095302
http://dx.doi.org/10.1103/PhysRevLett.115.095302
http://dx.doi.org/10.1103/PhysRevLett.115.095302
http://dx.doi.org/10.1103/PhysRevLett.115.095302
http://dx.doi.org/10.1038/ncomms9134
http://dx.doi.org/10.1038/ncomms9134
http://dx.doi.org/10.1038/ncomms9134
http://dx.doi.org/10.1038/ncomms9134
http://dx.doi.org/10.1088/1367-2630/18/3/035010
http://dx.doi.org/10.1088/1367-2630/18/3/035010
http://dx.doi.org/10.1088/1367-2630/18/3/035010
http://dx.doi.org/10.1088/1367-2630/18/3/035010
http://dx.doi.org/10.1103/PhysRevA.84.043601
http://dx.doi.org/10.1103/PhysRevA.84.043601
http://dx.doi.org/10.1103/PhysRevA.84.043601
http://dx.doi.org/10.1103/PhysRevA.84.043601
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700


SYNTHETIC DIMENSIONS IN THE STRONG-COUPLING . . . PHYSICAL REVIEW A 94, 023630 (2016)

gas of ultracold atoms in an optical lattice, Nature (London) 429,
277 (2004).

[36] M. Baranov, Theoretical progress in many-body physics with
ultracold dipolar gases, Phys. Rep. 464, 71 (2008).

[37] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller,
Condensed matter theory of dipolar quantum gases, Chem. Rev.
112, 5012 (2012).

[38] C. Trefzger, C. Menotti, and M. Lewenstein, Pair-Supersolid
Phase in a Bilayer System of Dipolar Lattice Bosons, Phys. Rev.
Lett. 103, 035304 (2009).
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