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The expansion of the partition function for large coordination number Z is a long-standing method and has
formerly been used to describe the Ising model at finite temperatures. We extend this approach and study the
interacting Bose gas at finite temperatures. An analytical expression for the free energy is derived which is valid
for weakly interacting and strongly interacting bosons. The transition line which separates the superfluid phase
from Mott insulating or normal gas phase is shown for fillings 〈n̂〉 = 1 and 〈n̂〉 = 2. For unit filling, our findings
agree qualitatively with quantum Monte Carlo results. Contrary to the well-known mean-field result, the shift of
the critical temperature in the weakly interacting regime is apparent.
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I. INTRODUCTION

The Bose-Hubbard model describes interacting bosons in
periodic potentials and was originally introduced to study low-
energy excitations and the solid-superfluid phase transition in
4He [1–3]. Later on it was used to describe properties of
Josephson junction arrays [4] and 4He absorbed in porous me-
dia [5]. Within the past decade, the Bose-Hubbard model has
attracted increasing attention since its experimental realization
became possible by means of interacting bosons in optical
lattices [6–12]. The system exhibits a Mott insulating and a
superfluid phase. The second-order phase transition, resulting
from the competition between hopping energy and interaction
energy, has been observed for bosons in optical lattices [12].

On the theoretical side, the Bose-Hubbard Hamiltonian
has been studied perturbatively for strong and weak cou-
pling [13–18] and for large and small filling factors [19,20].
Furthermore, it has been investigated using dynamical mean-
field theory [21–25], a slave-boson approach [26], exact
diagonalization [27], Monte Carlo methods [28–30], and the
density matrix renormalization group technique [31–33].

The goal of the present work is to study thermal properties
of interacting Bosons using an expansion of the partition
function into inverse powers of the coordination number Z, i.e.,
the number of nearest neighbors on a given lattice. The formal-
ism has been previously applied to the Ising model [34–38],
where Z was taken to be the number of spins in the range
of the exchange potential. It was found that the results
are in good agreement with rigorous high-temperature and
low-temperature expansions [36]. A related approximation
method was previously applied to investigate the dynamics
of lattice site correlations after a quantum quench [39–41] and
particle-hole pair creation in tilted optical lattices [42]. The
1/Z expansion is valid for all values of the interaction energy
and the hopping energy. Therefore, it is suited to study the
intermediate regime between the strongly interacting regime
on the one hand and the weakly interacting regime on the other
hand. In the strongly interacting regime, the (thermal) state of
the system respects the U (1) symmetry of the Hamiltonian
and the correlations are short ranged. If the kinetic term dom-
inates, the U (1) symmetry is broken and spatial correlations
become long ranged. It should be noted that the U (1) phase is

divided into a Mott insulating phase and a normal gas phase,
which are separated by a crossover. This crossover occurs when
the typical energy of thermal excitations, kBT , is of the same
order as the energy gap of the system. It becomes manifests in
the gradually vanishing of the Mott lobes [43–45].

In the following we will focus on the finite-temperature
phase transition of the Bose-Hubbard system in three di-
mensions [28,29,45–47]. The paper is organized as follows.
After reviewing the 1/Z expansion of the partition function
for the classical Ising model in Sec. II, we apply it to inter-
acting bosons in Sec. III and derive various thermodynamic
quantities. In Sec. IV, we depict finite-temperature phase
diagrams, which are evaluated from the analytical expressions
and compared with results from the literature.

II. THE CLUSTER EXPANSION

We start by reviewing the main arguments of Refs. [34,35],
which led to a systematic expansion of the Ising model partition
sum into inverse powers of the coordination number Z. The
energy of the classical Ising model with a constant interaction
strength V within a finite range is given by

E = −1

2

V

Z

∑
μ �=ν

Tμνsμsν, (1)

where sμ is a random variable which take the values ±1 and
Tμν is equal to unity inside the interaction range and zero
elsewhere.

The Curie point is reached by varying the spin density
at fixed interaction strength or by increasing the interaction
strength at fixed density. When the number of spins in the
interaction range is increased and the potential strength is
decreased ∼1/Z, the Curie point is fixed. Assuming that only
configurations with an average magnetization R = ∑

μ sμ/N

are taken into account, we obtain for Z → N the molecular
field limit

E = N

2
V R2 + O(1). (2)

This limiting procedure motivates the choice of 1/Z as a
suitable expansion parameter for calculating corrections to the
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FIG. 1. (a) Graphical illustration of the first three geometrical
factors of order 1/Z in the partition sums of the Ising model (3)
and the Bose-Hubbard model (14) up to the fourth order. The lines
represent the hopping between the lattice sites whereas the points
represent the correlations at a single site. The sums are not restricted
such that the Fourier transform can be performed. For this reason, it
is necessary to add additional diagrams which are at least of order
1/Z2. In panel (b) we depicted the terms which have to be added
to the four-vertex expression in panel (a). The dashed lines illustrate
the identification of the connected vertices. Each dashed line in a
diagram increases the order of the diagram by a factor 1/Z. (c) The
geometrical factors of these higher order diagrams are the same as in
panel (b) but the correlations functions are different since also four
lines meet at a vertex.

molecular field limit. The corrections are determined by the
correlations among different spins. To quantify the correction
up to first-order 1/Z, we consider the partition function � and
the free energy ln �, respectively.

ln � = ln
∑

{sμ=±1}
exp

⎡
⎣βV

2Z

∑
μ �=ν

Tμνsμsν

⎤
⎦. (3)

This function can be represented as a sum of connected
diagrams and its expansion (3) into powers of β produces

ln � =
∑

n

βn

n!
Mn, (4)

where the Mn’s can be ordered by powers of the expansion
parameter 1/Z. For simplicity, we assume a vanishing mag-
netization, R = 0, such that the leading contribution is of
order 1/Z. Diagrammatically, the lowest order in 1/Z can
be represented to each order in β by a ring diagram; see Fig. 1.

Other diagrams, for example, the ladder diagram in Fig. 1,
are of higher order since each solid bond gives an additional
factor of 1/Z. The ring diagrams correspond to the summation

over all self-avoiding closed paths on the lattice,

M ring
n = (n − 1)!V n

2Zn

∑
μ1 �=μ2 �=...�=μn

Tμ1μ2Tμ2μ3 · · · Tμnμ1 . (5)

Since it is difficult to evaluate the sums for large n, even
for nearest-neighbor interaction on a square lattice, we turn
to the so-called random-phase approximation. Therefore,
we include also closed paths which cross two or more
lattice sites more than once such that the summations in (5)
are unrestricted. This procedure is formally justified since the
additional terms, represented by diagram with dashed lines
in Fig. 1, are of higher order in 1/Z. However, it should be
noted that this approximation leads to a severe violation of a
sum rule

∑
μ s2

μ = N . Using the Fourier transform given by

Tμν = Z

N

∑
k

Tke
ik·(xμ−xν ), (6)

we arrive at the expression

M ring
n = (n − 1)!V n

2Zn

∑
μ1...μn

Tμ1μ2 . . . Tμnμ1 + O(1/Z2)

= (n − 1)!V n

2

∑
k

T n
k + O(1/Z2). (7)

Summing all the contributions of the ring diagrams, one
obtains the free energy

1

N
ln � = − 1

2N

∑
k

ln[1 − βV Tk] + ln 2 + O(1/Z2). (8)

From here follows that the correlation length diverges if the
temperature approaches the Curie temperature TC = 1/V . A
detailed discussion of (8) can be found in Refs. [34,35].

III. BOSE-HUBBARD MODEL

Inspired by results shown in the previous section, we use the
same expansion technique to analyze the Bose-Hubbard model
up to the first order in 1/Z. The grand canonical Bose-Hubbard
Hamiltonian has the form

Ĥ =
∑

μ

[
U

2
n̂μ(n̂μ − 1) − μn̂μ

]
− J

Z

∑
μ,ν

Tμνb̂
†
μb̂ν

=
∑

μ

Hμ + 1

Z

∑
μν

Ĥμν − μN̂, (9)

where U denotes the on-site repulsion, J is the hopping rate,
and μ is the chemical potential. By analogy, we shall consider
Tμν = 1 for next-nearest neighbors and zero elsewhere renor-
malized with factor 1/Z. Switching to the interaction picture,
the free energy takes the form

ln � = ln Tr

(
e−β(

∑
μ Ĥμ−μN̂ )T

×
{

exp

[
−

∫ β

0
dβ ′ 1

Z

∑
μν

Ĥμν(β ′)

]})
. (10)
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The hopping term depends on imaginary time according to

Ĥμν(β) = eβ(
∑

μ Ĥμ−μN̂ )Ĥμνe
−β(

∑̂
μĤμ−μN̂ ) and T (. . . ) denotes

the imaginary time-ordering operator. As in field theory, the
disconnected diagrams are absent in the logarithm since the
free energy is the generating functional of all connected
Green’s functions [48]. Using the series representation of the
exponential, we find

ln

(
�

�0

)
=

〈 ∞∑
n=1

(−1)n

n!Zn
T

(∫ β

0
dβ ′ ∑

μν

Ĥμν(β ′)

)n〉
con

,

(11)

where the brackets in (11) correspond to the thermal expecta-
tion values at J → 0,

〈· · · 〉 = Tr(. . . e−β(
∑

μ Ĥμ−μN̂ ))

�0
(12)

with the zeroth-order partition function

�0 =
( ∞∑

n=0

e−β[Un(n−1)/2−μn]

)N

. (13)

The connected parts can be ordered by powers of 1/Z. In
first order only the ring diagrams contribute to the partition
function [see Fig. 1 and compare with the corresponding
expression (5)],

ln

(
�

�0

)
=

∞∑
n=1

(−1)n

nZn

∑
μ1 �=μ2···�=μn

∫ β

0
dβ1 . . .

×
∫ β

0
dβn

〈
T

[
Ĥμ1μ2 (β1)Ĥμ2μ3 (β2) . . . Ĥμnμ1 (βn)

]〉
+ O(1/Z2). (14)

Since the summation runs only over pairwise distinct lattice
sites, the thermal expectation value can be expressed in terms
of the on-site Green’s functions

G(β1 − β2) = 〈T [b̂†μ(β1)b̂μ(β2)]〉

=
∞∑

l=−∞
e2πi(β1−β2)l/βG̃(i2πl/β). (15)

Further calculations identify these components as

G̃(i2πl/β) =
∫ β

0
dβ ′G(β ′)e−i

2πlβ′
β

=
∞∑

n=0

(n + 1)(pn − pn+1)

2πil/β − Un + μ
(16)

with the pn being the on-site occupation probabilities in
absence of hopping,

pn = e−β[ U
2 n(n−1)−μn]∑∞

m=0 e−β[ U
2 m(m−1)−μm]

. (17)

Again, we apply the random-phase approximation and include
terms of order 1/Z2 such that the sum over all lattice sites
can be performed. This allows us to bring the series into the

tractable form

ln(�/�0)

=
∞∑

n=1

∑
μi

∞∑
l=−∞

Tμ1μ2 . . . Tμnμ1

(−J )nG̃n
(

i2πl
β

)
nZn

+ O

(
1

Z2

)

= −
∑

k

∞∑
l=−∞

ln[1 + JTkG̃(i2πl/β)] + O

(
1

Z2

)
. (18)

Here, the Fourier transform of Tμν has been defined as in (6).
The infinite sum over l can be converted to an integral along
the real axis according to

ln � = −β
∑

k

Im
∫ ∞

−∞

dω

π
P ln[1 + JTkG̃(ω + i0)]

exp(βω) − 1

+N ln

( ∞∑
n=0

e−β[Un(n−1)/2−μn]

)
+ O(1/Z2), (19)

where the Bose factor has simple poles at ω = i2πl/β. The
compact analytical expression (19) for the free energy of
the interacting Bose gas is the main result of our paper.
Since we did not introduce a symmetry-breaking parameter
in the Hamiltonian, the partition function is valid above the
critical temperature for a given ratio J/U . It is valid in the
strongly interacting regime, J/U 	 1, and gives also the cor-
rect limit in the noninteracting limit, U/J → 0. In particular,
we deduce from (19) the partition function of the free Bose gas,

lim
U→0

ln � = −
∑

k

ln{1 − exp[β(μ + JTk)]}. (20)

The on-site probability distribution can be obtained by
replacing the potential energy in (19) according Un(n −
1)/2 → un and taking the partial derivative with regard to un,

Pn = − 1

βN

∂

∂un

ln �|un=Un(n−1)/2

= pn + 1

N

∑
k

∞∑
l=−∞

JTk

1 + JTkG̃(i2πl/β)

[
pnG̃(i2πl/β)

− (n + 1)pn

i2πl/β − Un + μ
+ npn

i2πl/β − U (n − 1) + μ

+ n(pn−1 − pn)/β

[i2πl/β − U (n − 1) + μ]2

− (n + 1)(pn − pn+1)/β

(i2πl/β − Un + μ)2

]
. (21)

From this it is possible to derive an analytical expression for
the probability distribution of the free Bose gas which has
never been obtained before,

lim
U→0

Pn = pn

+ [eβμ(n + 1) − n]
pn

N

∑
k

(
1 − e−βμ

e−β(JTk+μ) − 1
+ 1

)
.

(22)

In Fig. 2, the probability distribution is depicted for various
parameters. The filling can be deduced from the partition
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0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

P
n

J/T = 1 & U/J = 0
U/T = 1 & J/U = 0.6
U/T = 10 & J/U = 0.16

FIG. 2. Probability distribution at unit filling for the free Bose
gas (circles) and the interacting Bose gas (squares and diamonds);
see also Eqs. (21) and (22).

function � by taking the partial derivative with regard to the
chemical potential,

〈n̂〉 = 1

βN

∂

∂μ
ln � =

∞∑
n=0

nPn

=
∞∑

n=1

npn − 1

Nβ

∑
k

∞∑
l=−∞

JTk∂μG̃(i2πl/β)

1 + JTkG̃(i2πl/β)
. (23)

The two-point correlations are deduced via the partial
derivative with regard to the Tk

〈b̂†μb̂ν〉 = Z

J

∂

∂Tμν

ln � = Z

J

∑
k

∂Tk

∂Tμν

∂

∂Tk
ln �, (24)

which leads to

〈b̂†μb̂ν〉 = i

2π
lim

ε→0+

∫ ∞

−∞

dω

eβω − 1

1

N

∑
k

eik·(xμ−xν )

×
(

G̃(ω + iε)

1 + JTkG̃(ω + iε)
− G̃(ω − iε)

1 + JTkG̃(ω − iε)

)
.

(25)

Combining the results (23) and (25), we obtain using the
Fourier transform the momentum distribution,

nk = 〈n̂〉 +
∑

xμ �=xν

eik.(xμ−xν )〈b̂†μb̂ν〉. (26)

The partition function (19) can also be used to determine the
energy, the specific heat, or the entropy of the system.

IV. QUANTUM PHASE TRANSITION

The Bose gas in a lattice resides in the Mott insulating or
normal gas phase when the interaction is dominating over the
kinetic hopping terms. In this phase, the correlations are short
ranged and the energy spectrum is gapped. When the hopping
energy J increases, the correlation length grows and diverges

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

U/J

T
/J

Tc (mean field)
Tc (1/Z hierarchy)
Tc (MC)

FIG. 3. Phase diagram of the three-dimensional (3D) Bose-
Hubbard model for 〈n̂〉 = 1 using the 1/Z results. We compared our
results with the mean-field result and with Monte Carlo calculations,
reproduced from Ref. [30]. The phase diagram has been compared
with experimental data in Ref. [52].

at a critical value Jc. In the following, we use the divergence
of the correlation for determining the phase boundary.

To first order in 1/Z within the random-phase approxima-
tion, criterion is equivalent to the divergence of the density
distribution nk at k = 0. This leads to the finite-temperature
mean-field result [49–51],

1 + J RPA
c G̃(ω = 0) = 0. (27)

For zero temperature, we obtain from (27)

J RPA
c = U (3 − 2

√
2) ≈ 0.171U. (28)

The improvement over the well-known mean-field phase
diagrams can be achieved if the dependence of the filling
on the parameter J/U is taken into account. Therefore, we
calculate the expectation value of the particle number (23)
for a given critical temperature and the corresponding critical
hopping energy J RPA

c . From the intersections of this curve with
〈n̂〉 = 1 and 〈n̂〉 = 2 at various temperatures, we can determine
the phase boundary at a given filling; see Fig. 3 and Fig. 4.
Since the partition function is exact in the limit J/U → ∞,

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

U/J

T
/J

Tc (mean field)
Tc (1/Z hierarchy)

FIG. 4. Phase diagram of the 3D Bose-Hubbard model for
〈n̂〉 = 2.
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−1 0 1 2
0

0.5

1

1.5

2

2.5

µ/U

〈n̂
〉

U/Tc = 5
U/Tc = 10
U/Tc = 50
U/Tc → ∞

0.1 0.2 0.3
0

0.5

1

1.5

2

J/U

µ
/U

U/Tc = 5
U/Tc = 10
U/Tc = 50
U/Tc = 100

FIG. 5. (Top) Expectation value of the number operator for
different critical temperatures. At each point, the critical hopping
is determined by the relation (27). In the limit Tc → 0, the curves
converge to a steplike function where only integer fillings are allowed.
The curves soften when the temperature is increased and at U/Tc ≈ 5
the inflexion points are vanishing. This is the crossover between Mott
insulating and normal gas phase [43,44]. (Bottom) The solid line
encloses the Mott lobes for filling equal to 〈n̂〉 = 1 and 〈n̂〉 = 2 in the
limit of vanishing temperature. For increasing temperature, the Mott
lobes are vanishing gradually.

we arrive at the correct critical temperature for the free Bose
gas, Tc/J ≈ 0.93.

As comparison, we deduced the mean-field phase boundary
using the particle number probability distribution (17). As can
be seen from Fig. 3, the 1/Z method improves qualitatively
and quantitatively the phase diagram. First, the correct free
Bose-gas limit is approached if the on-site interaction vanishes.
Second, there is not discontinuity in the limit T → 0 as in the
mean-field approach (see footnote in Ref. [53]). It is mainly
due to the random-phase approximation that the results deviate
from quasiexact Monte Carlo simulations [28,30,52]. Note that
for filling equal to two, the finite-temperature phase diagram
has not been presented elsewhere.

Figure 5 (top) shows the filling factor 〈n̂〉 as a function
of μ/U which approaches a staircase function in the limit of
vanishing temperature. When the temperature is increased,
the plateaus vanish, which displays the crossover between
Mott insulating phase and normal gas phase [43–45]. The
corresponding Mott lobes for different critical temperatures
are shown in Fig. 5 (bottom).

V. CONCLUSIONS

We showed that the large coordination number expansion
allows a full description of the Bose-Hubbard model at thermal
equilibrium in the complete regime from weak to strong
interactions. We obtained a closed expression for the partition
function of interacting bosons which is valid for all regimes
where the U (1) symmetry of the model is preserved. From
the partition function we obtained local quantities such as
the on-site probabilities pn as well as the nonlocal thermal
correlations 〈b̂†μb̂ν〉. It should be noted that, in the limit of
vanishing temperature, the correlation functions 〈b̂†μb̂ν〉 as
well as the occupation probabilities can also be obtained
from 1/Z hierarchy that describes the dynamics of lattice site
correlations [39,42].
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