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Creation and counting of defects in a temperature-quenched Bose-Einstein condensate
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We study the spontaneous formation of defects in the order parameter of a trapped ultracold bosonic gas while
crossing the critical temperature for Bose-Einstein condensation at different rates. The system has the shape
of an elongated ellipsoid, whose transverse width can be varied. For slow enough temperature quenches we
find a power-law scaling of the average defect number with the quench rate, as predicted by the Kibble-Zurek
mechanism. A breakdown of such a scaling is found for fast quenches, leading to a saturation of the average
defect number. We suggest an explanation for this saturation in terms of the mutual interactions among defects.
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I. INTRODUCTION

A physical system can exhibit states with different prop-
erties and symmetries depending on the values of the macro-
scopic parameters that describe it. Phase transitions connecting
different states of a system across a critical value of a control
parameter are ubiquitous in nature, from cosmology to mag-
netism and from classical to quantum regimes. After crossing a
critical point, systems need to rearrange themselves, adapting
their properties to the new conditions. While equilibrium
configurations are generally well known, the nonequilibrium
dynamics of phase transitions occurring at a finite rate is far
less understood.

The Kibble-Zurek mechanism (KZM) [1,2] deals with the
dynamics across a phase transition involving the appearance
of an order parameter in the system. The theory predicts a
power-law scaling of the density of defects that the order
parameter would contain after crossing the transition as a
function of the quench rate. The scaling exponent depends
on the intrinsic properties of the system and is the same for all
systems belonging to a given universality class, independently
of the microscopic details. Predictions were initially given
for uniform systems undergoing a linear quench in time,
and later extended to some inhomogeneous cases [3–5]. A
quantitative comparison with the observed behavior of actual
systems, however, is rather challenging. For instance, the
exact time at which defects are created cannot be easily
estimated and very little is known in the case of nonlinear
quenches or quenches where the control parameter is spatially
inhomogeneous. Furthermore, interactions between defects
are ignored in the KZM, whereas real systems are likely
affected by such interactions during the post-quench evolution,
or even at the early stages after the transition crossing.

The KZM has been experimentally observed and tested
in a large variety of systems, such as liquid crystals [6], su-
perfluid He-3 [7,8], thin film superconductors [9,10], annular
Josephson junctions [11,12], multiferroic crystals [13,14], and
ion chains [15,16]. Ultracold atomic gases represent an ideal
testbed to explore different aspects of quench mechanisms,
since many of their parameters can be finely controlled and
tuned. Harmonically confined gases, in oblate and prolate
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geometries, as well as uniform gases have been studied by
quenching the temperature across the Bose-Einstein conden-
sate (BEC) transition [17–21]. In addition, quantum phase
transitions at zero temperature can be crossed by varying
the interaction parameters as, for instance, in the case of the
transition from Mott insulator to the superfluid phase of a
gas in an optical lattice [22,23], or from the miscible to the
immiscible phase of a two-component gas [24].

In this article we experimentally investigate the creation
of defects in a harmonically trapped ultracold gas of sodium
atoms while evaporatively cooling it across the BEC transition
at different rates. We extend our previous experiments [18],
where we observed the KZM scaling law, by collecting further
data with an improved protocol for quenching and imaging.
We explore faster quench regimes and find an unexpected
saturation of the measured average defect number. Here we
use a different quench protocol that keeps the observation
time after the transition point fixed, instead of keeping the
final temperature fixed. We also provide new data for different
values of the transverse confinement frequencies, in order to
possibly explore effects related to the dimensionality of the
system. As shown in [25], the observed defects in the order
parameter are quantized vortex lines which, due to the role
of the transverse confinement of the elongated condensate,
manifest a peculiar soliton-like character as in the solitonic-
vortex structures predicted in Refs. [26,27].

The paper is organized as follows. Section II briefly
introduces the KZM theory and focuses on the prediction of
the power-law exponent in connection with dimensionality.
In Sec. III, we describe the experimental methods to quench
a sodium gas across the BEC transition and explain the
techniques we use to reveal the defects and characterize the
system properties. In Sec. IV we report on the final results
and describe the different observations in case of slow or fast
quenches. Conclusions are provided in Sec. V.

II. KIBBLE-ZUREK MECHANISM

The KZM describes the defect formation in a system
undergoing a continuous phase transition [1,2,28], focusing
on the spontaneous symmetry breaking that occurs at the
critical value λc of a control parameter λ. If we consider
the reduced control parameter ε = (λc − λ)/λc, a second-
order phase transition is characterized by the divergence
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FIG. 1. Relaxation time τ = τ0(τQ/|t |)zν (top panels) and corre-
lation length ξ = ξ0(τQ/|t |)ν (bottom panels) across the transition
at t = 0 are illustrated for slow (left) and fast (right) quenches. In
the KZ theory, the extent of the frozen region is approximated by
the freeze-out time t̂ , corresponding to the instant when τ equals the
time distance from the transition |ε/ε̇| (dashed lines). The correlation
length at such a time provides an estimate for the average defect size
ξ̂ . The illustration shows that ξ̂ is smaller in case of faster quenches
(small τQ).

of the equilibrium correlation length ξ (ε) = ξ0/|ε|ν and the
equilibrium relaxation time τ (ε) = τ0/|ε|zν . Here ν and z are
the critical exponents that depend only on the universality class
of the transition, while ξ0 and τ0 are constants related to the
specific microscopic properties of the system.

The phase transition is crossed with a variable quench rate
defined by the time derivative of the control parameter, ε̇. If
we consider a quench that is linear in time, we can express
the control parameter as ε(t) = t/τQ. By doing so, the quench
time τQ = 1/ε̇ becomes the relevant time scale for the quench.
The relaxation time τ and the correlation length ξ diverge at
the critical point t = 0 as qualitatively represented in Fig. 1.
Starting from a high-symmetry state at t � 0, where τ is small,
the spontaneous symmetry-breaking occurs while driving the
system across the transition: τ diverges and the dynamics
freezes because the system is no longer able to adiabatically
follow the variation of the control parameter. The dynamics
becomes adiabatic again for t � 0.

In the context of the KZM, the crossing of the continuous
transition is approximately described by the presence of three
distinct regimes. As illustrated in Fig. 1, the frozen regime
is the one during which the relaxation time τ is larger than
the time distance from the transition. The time for which the
distance from the transition equals the relaxation time is called
freeze-out time t̂ : the system is considered frozen for |t | < t̂

and adiabatic elsewhere. By introducing ε̂ as ε(t̂), one can

express the relaxation time at t̂ as

τ̂ = τ (ε̂) = τ0

|ε̂|zν = τ0τ
zν
Q

|t̂ |zν (1)

and, using the definition τ (ε̂) = |t̂ |, one gets

t̂ = (
τ0τ

zν
Q

) 1
1+zν . (2)

As a consequence of causality and of the frozen dynamics,
spatially disconnected regions of the system can independently
choose different values for the order parameter while crossing
the transition. The KZM predicts that the average size of such
domains ξ̂ is determined by the value of the correlation length
at ε̂:

ξ̂ = ξ (ε̂) = ξ0

(
τQ

τ0

) ν
1+zν

. (3)

The presence of independent domains after the freeze-out
can result in the formation of defects at their boundaries. The
average density of defects n in the system can be calculated
[28] as the ratio between the size of the defects ξ̂ d and the
size of the domains ξ̂D , with d and D the dimensionality of
the defects and of the space, respectively:

n ∼ ξ̂ d

ξ̂D
= 1

ξD−d
0

(
τ0

τQ

)(D−d) ν
1+zν

. (4)

Thus the density of defects exhibits a power-law dependence
on the quench time, n ∝ τ−α

Q , and this is the main prediction
of KZ theory.

The above derivation is obtained considering a homoge-
neous system, and predicts a power-law exponent

αhomog = (D − d)
ν

1 + zν
. (5)

For inhomogeneous systems the transition does not occur
simultaneously everywhere, and the theory must keep the
external trapping potential into account, with the introduction
of local parameters. Under the assumptions of a linear quench
and of a uniform control parameter in the whole system, for a
harmonic trap the power-law exponent becomes [3,4]

αharm = (D − d)
1 + 2ν

1 + zν
. (6)

The power-law exponents (5) and (6) depend on the critical
exponents ν and z, whose values are not known a priori. A
first reasonable choice for the critical exponents could come
from a pure mean-field calculation, that gives ν = 1/2 and
z = 2. Going beyond mean-field theory, the so-called F-model
[29] predicts ν = 2/3 and z = 3/2. In this work, we will
consider the values taken from the F-model, since recent
experiments with ultracold gases [20,21,30] seem to support
this choice for the universality class of a three-dimensional
(3D) Bose-Einstein condensate. The exponent α depends also
on the quantity (D − d), fixed by the dimensionality of the
system and of the defect. In our superfluid gas in 3D, we
may expect two kinds of defects: solitons (d = 2) or vortices
(d = 1). In Table I we list the corresponding predicted values
of α for both homogeneous and harmonically trapped gases.

The nature of the defects which form spontaneously at the
transition depends mainly on three relevant length scales: the
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TABLE I. Power-law exponents α predicted for the KZM from
Eqs. (5) and (6) in a homogeneous gas and in a harmonically trapped
gas, if the critical exponents predicted by the F-model, ν = 2/3,
z = 3/2 [29] are used, and assuming the defects to be either solitons
or vortices.

D − d αhomog αharm

solitons 1 1/3 7/6
vortices 2 2/3 7/3

size of the system at the transition, the average domain size ξ̂

[see Eq. (3)] and the healing length ξl = 1/
√

8πaρ, where a

is the scattering length and ρ is the atomic density. Clearly the
system size has to be larger than both ξ̂ and ξl , at least along
one direction, otherwise different domains are not allowed and
defects cannot form. Let us consider an elongated system like
the one available in our laboratory, with a long axial size 
z

and a shorter transverse width 
r . As illustrated in Fig. 2, if

r is simultaneously larger than ξ̂ and ξl , then vortices can
be defined and they will likely be the most probable defect
forming with the quench. If, instead, 
r is smaller or of the
same order of magnitude of at least one among ξ̂ and ξl , then
the domains are forced to line up one next to the other along
the long axis of the system and soliton formation is favored.

The prediction (4) refers to the total density of topological
defects at their creation, while the post-quench dynamics is
completely ignored in the model, which also means that the
type of defects formed at the transition does not necessarily
coincide with what is observed at the end of the quench. This
depends on the dynamics and the stability of the defects. In
order to quantitatively estimate the stability of different defects
in a given BEC [26,31,32], it is convenient to introduce the
dimensionless parameter

γ = Rrad

2ξl

= μ

�ωrad
, (7)

Δr > ξ̂, ξl

Δr < ξ̂, ξl

Δr

ξ̂

ξ̂

ξl

ξl

Δr

Δz

FIG. 2. Qualitative illustration of the spontaneous formation of
vortices or solitons in elongated systems depending on the relative
magnitude of the transverse size 
r , the domain size ξ̂ , and the
healing length ξl .

where Rrad is the transverse Thomas-Fermi radius of the
formed BEC after the cooling ramp. When γ is of the order
of 1 or smaller, the condensate is too narrow to host a vortex,
while solitons (planar defects perpendicular to the long axis of
the system) are allowed and, in this limit, they are also stable.
When γ � 1, ξl is smaller than the system size along any
direction. In principle both planar solitons and vortex filaments
can exist. However, the larger γ is, the higher the probability
is for solitons to decay via snake instability [33] into vortical
lines with lower energy [31]. Hence for γ � 1, if solitons are
initially formed via the KZM, they likely decay into vortices.
Indeed, as reported in Ref. [25], the defects that we observe
are solitonic vortices, i.e., quantized vortices lying mostly in a
radial plane of the elongated BEC, which may be either directly
generated at the transition or produced via soliton decay.

III. METHODS

A. BEC production

We produce ultracold samples of sodium atoms in the
internal state |F,mF〉 = |1, − 1〉 in a cigar-shaped harmonic
magnetic trap. A detailed description of the experimental
apparatus can be found in Ref. [34]. The aspect ratio of the trap
is defined as κ = ωrad/ωax, with ωrad/2π and ωax/2π being the
trapping frequencies along the radial and axial directions. In
the experiment we keep ωax fixed to 2π × 13 Hz and vary ωrad

from 2π × 76 Hz to 2π × 214 Hz, hence exploring a variation
of κ from 5.8 to 16.5. The radius Rrad varies consequently by
a factor 2, from about 20 to 10 μm.

The sample is cooled down via forced evaporative cooling
and pure BECs of typically 107 atoms are produced. The part
of the evaporation ramp in the vicinity of the transition—from
now on called quench ramp—is performed at different rates,
from 50 kHz/s to 2 MHz/s, in order to explore the KZM with
the appearance of a few or many topological defects in the
condensate. For a given κ , the variation of the final Rrad at the
end of the evaporation ramp for different τQ is negligible.

The quench ramp is followed by a variable wait time tw,
during which an RF shield is kept on to prevent from heating.
After that, the atoms are released from the trap and observed
with a triaxial absorption imaging, as in Ref. [25].

B. Determination of τQ

As discussed in Sec. II, a finite cooling rate across the
transition makes the system freeze for a variable amount of
time (� 2t̂). The defect number depends on the system and on
the quench parameters within such a time interval. However,
neither the exact time of creation nor the time at which they
start to interact are precisely known from theory. One could
argue that defects are created at −t̂ , when the system starts
freezing, or at +t̂ , when the system is again able to follow
the changes of the external control parameter after breaking
the symmetry. The time t̂ itself is also hard to estimate (see
Sec. II).

The impossibility of unambiguously identifying the time
of defect creation and of interacting dynamics, combined with
the observation of a finite lifetime for the stochastic defects
[25,35], suggests that we measure the defect number after a
fixed given evolution time te from the transition point, which

023628-3



S. DONADELLO et al. PHYSICAL REVIEW A 94, 023628 (2016)

FIG. 3. Sequence of experimental absorption pictures of the
atomic sample around the transition, occurring at νc ∼ 1360 kHz for a
ramp of 203 kHz/s with κ = 10.1. All these pictures have been taken
after a time of flight of 50 ms. At t = 0 a small condensate fraction
of ∼1% of the atoms appears in the thermal cloud and grows for
t > 0. In the last picture the condensate appears much more definite,
and a defect becomes visible in the form of a vertical stripe in the
integrated density distribution. With such a technique it is almost
impossible to detect the presence of defects around t ∼ 0, as they
start to become observable only about 100 ms after the transition.
Note also that isolated dark pixels are just given by saturation due to
electronic noise on the CCD camera and should not be confused with
the actual defects of the condensate.

is clearly identifiable as can be seen in Fig. 3. This protocol
differs from the one used in Ref. [18], where the quench
rate was varied while keeping initial and final temperatures
fixed for all different ramps. In addition, we are in the
condition to precisely identify the critical radio frequency νc

and temperature Tc where the BEC transition occurs for any
given experimental condition, i.e., for each choice of ωrad and
quench ramp.

Since defects need a time of the order of a hundred ms
to become clearly detectable in terms of density depletion, we
choose a time interval te from the transition (te � 250 ms), after
which the atoms are released from the trap. The time te is kept
fixed for any given quench ramp. If te is reached before the end
of the quench ramp (slowest ramps), the ramp is interrupted
before its completion, the atoms are released from the trap and
observed after a long time of flight (TOF); a larger fraction of
the atoms will remain in the noncondensed state with a higher
temperature. Else, if te is longer than the evaporation ramp
(fastest ramps) a waiting time tw is added in the sequence after
the end of the ramp and before the observation. Figure 4 shows
the relevant timescales in case of ramps with different rates.

The radio frequency ramp causes a temperature quench.
We have verified that, for all samples, the evaporation ramp is
always slow enough for the system temperature to adiabatically
follow the variation of the radio-frequency. The reduced
control parameter can thus be expressed as ε = 1 − (T/Tc)

FIG. 4. Experimental quench sequence for three ramp speed
values. The radio frequency ν is plotted as a function of time around
the transition point (t = 0 s). A preliminary evaporative cooling stage
is the same for all samples (light blue line), then the quench ramp (dark
blue line) differs in different experiments. The critical point νc of the
BEC transition is reported for each quench ramp (cyan squares). The
evolution time te is kept constant, relative to the transition (shadowed
in green). After a time te = 250 ms the sample is released, allowed
to expand for a fixed TOF of 120 ms (shadowed in red), and finally
observed with absorption imaging (dashed lines). For faster quenches
a waiting time is added while keeping a constant RF shield on. The
quench times τQ in the three cases are 970, 240, and 60 ms.

and the quench rate as ε̇ = −(1/Tc)(∂T /∂t). The temperature
variation in time, (∂T /∂t), is indirectly controlled via the
speed of the evaporation ramp (∂ν/∂t). In Fig. 5(a) we
show the measured temperature as a function of frequency
around Tc for three ramp slopes. With a linear fit to each
dataset we extract (∂T /∂ν), that is roughly constant in the
different experimental conditions and has an average value of
(∂T /∂ν) = 4.5 ± 0.9 nK kHz−1. Following such a procedure
and referring to the quench time introduced in Sec. II, we
have all the ingredients to estimate τQ, for any ramp and

FIG. 5. (a) Measured temperature across Tc for a slow (58 kHz/s),
medium (158 kHz/s), and fast (710 kHz/s) quench ramp. A linear
fit is shown and the transition region is highlighted. (b) Critical
temperature at the BEC transitions as a function of the ramp speed
for different ωrad. These values of Tc are used in Eq. (8) for the
determination of the quench time.
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experimental condition, as

τQ = −Tc

(
∂T

∂t

)−1

= −Tc

(
∂T

∂ν

∂ν

∂t

)−1

, (8)

where Tc is identified by the onset of the BEC as in Fig. 3, and
reported in Fig. 5(b) as a function of (∂ν/∂t). This procedure
improves the determination of τQ compared to our previous
work [18], where τQ was simply defined as the quench time
duration.

C. Defect observation and counting

KZ theory predicts the density of defects created in a given
quench. Since we deal with a finite system, we are allowed
to directly consider the absolute number of defects, instead
of their density, provided the system size is kept constant.
The total atom number at the transition is kept fixed to Nc =
27(1) × 106 atoms, by tuning the number of atoms involved
in the early stage of laser cooling. We observe that, even if
the number of atoms at the transition is almost constant, the
final number of atoms in the BEC varies significantly with τQ,
both because of different cooling efficiency and of the finite
evolution time. However, in order to be able to relate the defect
number to the defect density, we just need to keep the number
of atoms fixed near the transition. In fact, once defects are
formed, their number is expected to be almost unaffected by
the change of atom number in the final stage of the evaporation.

The defects that we observe at the time of imaging
are quantized vortex lines [25], whose phase distribution is
affected by the condensate boundaries such to produce planar
density depletions in a free expansion of the gas [32]. Hence
we see dark stripes when looking at the BEC from a radial
direction after TOF as, for instance, in the bottom right panel
of Fig. 3. The natural size of the defects in the trapped BEC,
at the end of the cooling ramp, is of the order of the in situ
healing length ξl, which is as small as 100–200 nm. After
a long TOF (ranging from 80 to 150 ms, depending on the
trap aspect ratio we use), the defect size becomes larger than
our imaging resolution of 3 μm. The presence of a levitating
magnetic field gradient makes it possible to achieve such a
long TOF, preventing the BEC from falling.

The measured defect number Nd is averaged over many
experimental realizations in order to get good statistical
samples for each experimental condition: due to the power-law
scaling of the defect number in the KZM we iterate longer
(typically a few tens of iterations) for bigger τQ, where
〈Nd〉 is smaller. The error bars for 〈Nd〉 are estimated as

Nd =

√
δN2 + (1/N ), that is, the sum in quadrature of the

standard error of the mean (δN ) and of a resolution term
(1/

√
N ) decreasing with the number of observations N .

IV. RESULTS

We measure the average number of defects 〈Nd〉 as a
function of the quench time τQ using the quench method
described in Sec. III. Figure 6 shows the results for four
different transverse confinements, ωrad/2π = 76, 131, 174,
and 214 Hz. The data clearly exhibit two regimes: for large τQ,
the observed 〈Nd〉 decreases as a power law, while for small
τQ it saturates around a constant value Nsat. We fit the data

10−1 100

τQ [s]

10−1

100

〈N
d〉

76 Hz
131 Hz
174 Hz
214 Hz

FIG. 6. Average number of defects 〈Nd〉 as a function of the
quench time τQ for several transverse confinements and with a fixed
evolution time te = 250 ms. Each point with its error bar is calculated
by averaging over tens of experimental realizations. A power-law
behavior (linear in the log-log scale) is observed for large τQ, while a
saturation effect is present for small τQ. The lines correspond to the
function 〈Nd〉 = Nsat[1 + (τQ/τ 0

Q)2α]−1/2. The fitting parameters are
the saturation number Nsat, the KZ power-law exponent α, and the
characteristic quench time τ 0

Q at which the two regimes interpolate.
Their values are given in Table II.

with the function 〈Nd〉 = Nsat[1 + (τQ/τ 0
Q)2α]−1/2, which has

the same behavior. The fitting parameters α and τ 0
Q represent

the power-law exponent and the characteristic quench time at
which the two regimes interpolate, respectively. The results
are reported in Table II.

A. Large τQ: Power-law scaling of defects

In case of small cooling rates, the measured average number
of defects, detectable 250 ms after the transition, decreases as
a power law, in agreement with the prediction of the KZM and
with the results reported in our previous work [18]. Figure 7
shows how the power-law exponent varies with the transverse
confinement at fixed axial confinement.

The predictions of the KZM for a harmonically trapped
condensate, with the critical exponents taken from the F-
model, are α = 7/6 and 7/3 in case of solitons and quantized
vortices, respectively (see also Fig. 7). In Sec. II, we already
discussed, in qualitative terms, the key quantities 
r , ξ̂ ,
and ξl , which are expected to determine the type of defects
formed at the transition. Here we can provide quantitative
estimates using the experimental parameters. Let us consider
the first small nucleus of the forming BEC, containing just
about 1% of the total atom number in the system near Tc,
as in the top right panel of Fig. 3. We can estimate 
r

TABLE II. Saturation number Nsat, crossover time τ 0
Q, and power-

law exponent α extracted by fitting the data of Fig. 6 for various radial
trapping frequencies and aspect ratios.

ωrad (s−1) κ Nsat τ 0
Q (s) α

2π × 76 5.8 2.4 ± 0.3 0.49 ± 0.13 1.6 ± 0.4
2π × 131 10.1 2.6 ± 0.3 0.26 ± 0.08 1.3 ± 0.3
2π × 174 13.4 2.2 ± 0.3 0.32 ± 0.08 2.3 ± 0.8
2π × 214 16.5 2.2 ± 0.3 0.27 ± 0.06 2.8 ± 0.9
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50 100 150 200 250

ωrad/2π [Hz]

0

1

2

3

4
α

7/3 (vortices)
7/6 (solitons)

FIG. 7. Power-law exponent α obtained by fitting the data of
Fig. 6 for different radial frequencies. The KZ predictions for
solitons and vortices in an harmonically trapped 3D condensate, from
Table I, are shown as horizontal lines for comparison.

as twice its transverse Thomas-Fermi radius Rrad. In the
various experimental conditions reported here, 
r would then
range between 10 and 20 μm, while the healing length ξl

is already smaller than 1 μm at this stage. As the system
is further cooled, 
r grows while ξl becomes smaller and
smaller, and hence we always have 
r � ξl . In order to
estimate the average domain size ξ̂ according to Eq. (3), we
can proceed as follows. Let us assume the parameter ξ0 to
be of the order of λdB = �/

√
2πmkBTc and τ0 of the order

of the collisional time at center of the sample, where the
BEC is nucleated, τ0 � (ρ0σcollvth)−1, with σcoll = 8πa2 and
vth = 4

√
kBTc/(πm). With these numbers at hand, one obtains

ξ̂ ranging from 1 to 3 μm, hence about one order of magnitude
smaller than 
r . We note that a similar value, ξ̂ � 1 μm, was
recently measured in a uniform Bose gas in Ref. [21]. These
numbers suggest that, in our experimental conditions, the
formation of vortices is always favored. However, as discussed
in Ref. [28], for a quantitative comparison with the KZ theory
a multiplicative factor f may be required in front of ξ̂ , with f

in the range 1–10 depending on the specific model; this factor
would affect the determination of t̂ and would make it not easy
to draw definite conclusions.

The data in Fig. 7 are consistent with the nucleation of
vortices for the two largest values of ωrad, while they are closer
to the soliton formation for smaller ωrad. Such a deviation
cannot be easily explained by the above analysis in terms of

r , ξ̂ , and ξl , which would rather suggest an opposite trend.
However, the comparison with theory must be taken with care.
On the one hand, the experimental error bars are still too
large to make definitive statements. On the other hand, the
KZM predictions for α assume a spatially uniform temperature
profile in the system during the quench, while the temperature
profile is actually nonuniform along the axis of our elongated
condensate due to the different thermalization times in the axial
and transverse directions. A derivation of the KZ exponents
when the system exhibits inhomogeneities in both the density
and temperature profiles is not yet available and might explain
the variations of α with ωrad.

Finally, it is worth recalling that in our previous work [18]
we presented a measurement of 〈Nd〉 similar to the one of
Fig. 6, for an aspect ratio of 10. In that case we found α =
1.38 ± 0.06 which is fully consistent with the new data of the

present work, despite several differences in the experimental
procedures.

B. Small τQ: Saturation of defect number

According to the KZM the defect number in the system
should follow a power-law scaling for all τQ. Figure 6 shows,
instead, that for fast quenches, 〈Nd〉 clearly saturates. The
values of Nsat resulting from the fits to the four datasets are
reported in Table II and their average value is 2.4(3). Here
we suggest that such a saturation, which is almost insensitive
to the change of the radial confinement, might originate from
the post-quench dynamics of the condensate. Indeed, one must
keep in mind that, for the data in Fig. 6, the counting of defects
is performed 250 ms after the BEC transition.

The saturation for fast quenches was not observed in
Ref. [18] because such high evaporation rates were not
investigated. However, Refs. [18,25,35] report signatures of
a post-quench dynamics and a finite lifetime of defects
in elongated BECs such as the ones studied here. Such a
phenomenon, not considered in the KZM, may likely alter
the defect counting, at least in the fast quenches regime.

In order to investigate the effect of the condensate dynamics
on our measurements, we repeat the whole set of measurements
of 〈Nd〉, in the case of κ = 10.1, for different values of the
evolution time: te = 250, 400, and 750 ms. The results are
reported in Fig. 8. We first observe that, in the power-law
regime for large τQ, the data mostly overlap and the power-law
exponent α looks insensitive to the evolution time. Instead,
in the saturation region, the observed 〈Nd〉 exhibits a clear
dependence on te: for longer evolution times the saturation
occurs at lower defect numbers, suggesting a non-negligible
role of the vortex-vortex interaction that might enhance the
vortex number decay.

Using the data reported in Fig. 6 and Fig. 8 and assuming
a Poisson distribution of Nd, given the stochastic nature of
the KZM, we try to reconstruct the amount of defects created
during the quench, before they start interacting and decaying
in number. To this purpose we proceed as follows. We first bin
the experimental data of Fig. 6 by grouping the points lying
in given intervals of 〈Nd〉, independently of τQ and ωrad. For

10−1 100

τQ [s]

10−1

100

〈N
d〉

te = 250ms
te = 400ms
te = 750ms

FIG. 8. Average number of defects as a function of the quench
time with a fixed ωrad = 2π × 131 Hz, for different evolution times.
We note that the evolution time does not substantially influence the
linear behavior, which can be fitted with a single power-law (dashed
purple).
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FIG. 9. Defect counting statistics. Histograms show the measured
occurrence probability of Nd for given intervals of 〈Nd〉 in the data
reported in Fig. 6. The number of experimental runs N considered for
each histogram is reported. Histograms are compared to the Poisson
distribution which has its mean value equal to the central value of the
considered bin. The agreement with the experimental data is good for
small values of 〈Nd〉, i.e., in the power-law regime (upper panels),
while it is bad in the saturation regime (lowest two panels).

each interval of 〈Nd〉 we plot the histogram of the measured
occurrence probability of a given Nd in N experimental runs
and compare it to the Poisson distribution which has its mean
value at the center of the considered bin, as shown in Fig. 9.
As one can see, for cases corresponding to the power-law
regime, where 〈Nd〉 � 1, there is a good agreement between
the experimental data and the Poisson distribution, while the
distributions in the saturation regime, where 〈Nd〉 � 1, show
clear deviations. Of course, the distribution of defects observed
after the evolution time is not the distribution which would be
observed just after crossing the BEC transition, which would
be Poissonian with a larger 〈Nd〉. However, if the decay time
of each single defect is independent of the actual number of
defects present in the same condensate, then the overall effect
of the decay would be a decreasing of 〈Nd〉 with te independent
of the quench rate, but keeping a Poissonian distribution.
Conversely, if the decay time of the single defect depends on
the presence of other defects in the condensate, due to mutual
interactions, then 〈Nd〉 would decrease with te differently
for different quench rates, thus producing a non-Poissonian
distribution of the observed defects.

In Ref. [35] we indeed found that the lifetime of a vortex
is the same if a condensate has one (τ1, of the order of 1 s)
or two (τ2 � τ1) vortices, but it is shorter if the vortices are
three (τ3, of the order of 0.5 s) or more. We can now use
this information in combination with Figs. 8 and 9. Let us
consider the results in Fig. 8 in the slow quench regime (large
τQ), where the majority of the condensates host just one or
zero vortices. In this regime, the post-quench dynamics is

10−1 100

τQ [s]

10−1

100

〈N
d〉

KZ scaling
te = 250 ms

te = 400 ms
te = 750 ms

FIG. 10. Predictions for the average defect number versus quench
time, including the effects of defect decay during the evolution
time after the BEC transition (see text). The dashed line is the KZ
power-law scaling as in Fig. 8. The solid curves, from top to bottom,
correspond to the average defect numbers expected after an evolution
time te = 250, 400, and 750 ms, respectively.

expected to be mostly determined by the single lifetime τ1,
thus causing only a vertical shift of 〈Nd〉, without changing
the power-law scaling. Then, let us assume that the same
scaling law (purple dashed line in in Fig. 8) would also apply
even for faster quenches, if the defects were observed just
after the transition. Under this assumption, for each τQ, we
calculate the Poisson distribution of defects corresponding to
such extrapolated value 〈Nd〉. Then, we reduce the occurrence
P (Nd) of each defect number Nd in the distribution by using
an exponential decay function with the lifetimes τ1, τ2, and
τ3 taken from Ref. [35]. We also assume that the lifetime
of a vortex in configuration with four or more vortices is
much shorter than any other relevant timescales (in practice
we truncate the Poissonian distribution for Nd � 4 and then
renormalize it before applying the time evolution). In this way,
the initial Poissonian distribution, at a given τQ, is deformed
and the average number of defects after the evolution time
te is lowered by an amount which depends on the quench
rate. This effect is larger for fast quenches, because the initial
number of defects is larger, thus making their decay faster.
Using this extrapolation protocol, we obtain a prediction for
the average defect number which would be observed after an
evolution time te starting from a Poissonian distribution fixed
by the KZ scaling. The resulting curves are shown in Fig. 10.
The overall qualitative behavior of the curves predicted by this
simple model is rather similar to the experimental observations
in Fig 8: a clear saturation for fast quenches emerges and the
time scale of the transition between the two regimes falls in
the same range of τQ. Despite the strong assumptions made,
which would require extensive measurements and simulations
to be validated, this analysis suggests indeed that the defect
lifetime can be a possible explanation for the saturation that
we observe in the KZ scaling.

V. CONCLUSIONS

In this work, we measure the number of defects sponta-
neously created in a BEC after cooling a trapped bosonic gas
of sodium atoms across Tc with different quench rates and
for several transverse confinements. We clearly distinguish
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two regimes: (a) For slow cooling rates (large τQ) a power-
law behavior of the average defect number is observed as
predicted by the KZM. In the case of strong confinement,
our results are consistent with the exponent predicted for
a harmonically trapped elongated gas in which vortices are
spontaneously produced. On the other hand, in the case of
weaker confinement, the exponent turns out to be slightly
smaller. (b) For fast cooling rates (small τQ) we see a clear
saturation of the measured average defect number to a value
around 2.4, almost independent of the transverse confinement.
We provide a qualitative interpretation in terms of the post-
quench dynamics and interaction between vortices.

These results, which extend and improve our previous
observations of Ref. [18], represent a further step toward a
better understanding of the KZM in inhomogeneous bosonic
systems. They can also stimulate the investigation of the

dynamics of quantized vortices in quenched superfluid with
boundaries. A possible approach consists of performing exten-
sive numerical simulations of the condensate dynamics at finite
temperature using, for instance, the stochastic Gross-Pitaevskii
equation in conditions similar to that of our system. Work in
this direction is in progress [36].
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