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Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates
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Motivated by recent experiments, we study theoretically the dynamics of vortices in the crossover from two
dimensions to one in atomic condensates in elongated traps. We explore the transition from the dynamics of
a vortex to that of a dark soliton as the one-dimensional limit is approached, mapping this transition out as a
function of the key system parameters. Moreover, we probe this transition dynamically through the hysteresis
under time-dependent deformation of the trap at the dimensionality crossover. When the solitonic regime is
probed during the hysteresis, significant angular momentum is lost from the system, but remarkably, the vortex
can reemerge.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) provide rich
insight into superfluidity, buoyed by their purity and immense
ability to control and image the coherent matter wave [1]. Of
particular interest are coherent macroscopic excitations in the
form of quantized vortices [2,3] and dark solitons [4]. Quan-
tized vortices represent defects in the quantum-mechanical
phase about which the superfluid flows with quantized circula-
tion and appear pointlike in two dimensions and as vortex lines
or rings in three dimensions. Early landmark demonstrations
of single vortices [5,6], vortex arrays and lattices [7–9], and
vortex rings [10] have been supplemented more recently by the
deterministic generation of vortex dipoles [11,12], real-time
observation of vortex dynamics [13], and turbulent states of
disordered vortices [14–16]. Meanwhile, atomic dark solitons
are one-dimensional (1D), nondispersive matter waves charac-
terized by a notch in the atomic density and a nontrivial phase
slip [4,17]. They are favored under repulsive s-wave atomic
interactions, which give rise to the required defocusing mean-
field nonlinearity. Experiments have controllably generated
dark solitons [18–26], including long-lived solitons at ultralow
temperatures in tightly 1D geometries [23], and studied their
oscillations, interactions, and collisions [23,25,26].

Dark solitons and vortices are formally distinct objects with
differing dimensionalities and topological properties; vortices
can only disappear at a boundary or by annihilating with an
opposite-circulation vortex, while dark solitons have no such
constraint. In a harmonic trap, a dark soliton tends to oscillate
axially at a fixed proportion of the trap frequency [27–30],
while a vortex precesses about the trap center at a frequency
with a nontrivial dependence on its position and system
parameters [31–35]. Remarkably, however, dark solitons and
vortices show many analogous behaviors, underpinned by their
common nature as phase defects, such as their spontaneous
creation under the Kibble-Zurek mechanism [36–38], their
emergence during the breakdown of superflow [11,16,22,39–
41], their instability to acceleration [42,43], and their interac-
tion with phonons [44,45].
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The intimate connection between vortices and dark solitons
is perhaps best revealed at the dimensionality crossover.
While dark solitons are dimensionally stable in quasi-1D
geometries [46], three-dimensional (3D) dark solitons are
unstable to transverse perturbations; the nodal line undergoes
the snake instability (known from earlier studies in optics [47])
and decays into one or more vortex rings (or vortex-antivortex
pairs in two dimensions) [10,20,48,49]. Close to the 1D
boundary, hybrid dark-soliton–vortex-ring excitations have
been observed [50]. Theoretical analysis of the possible
solutions confirmed this behavior but also predicted the
existence of solitonic vortex solutions [51–53], that is, a
single vortex confined to move along the long axis. This
excitation is predicted to be favored when the transverse size
is large enough to make the dark soliton unstable but not so
large as to support vortex rings. In recent experiments these
solitonic vortices have been reported in both Bose [54,55]
and Fermi gases [56]. Moreover, recent theoretical work
has shown that solitonic vortices are part of a larger fam-
ily of higher-energy solitary wave defects termed Chladni
solitons [57].

Motivated by these recent experiments, we examine the
crossover from vortices to solitonic vortices in trapped con-
densates. Based on numerical simulations of the 2D Gross-
Pitaevskii (GP) equation, we investigate the propagation of
the vortex and solitonic vortex in static traps with differing
aspect ratios. We map out how the oscillation frequency of the
excitation changes with the trap ratio; as the latter increases,
the oscillation frequency saturates to that expected for a dark
soliton, marking the onset of the solitonic vortex regime. This
occurs when the transverse harmonic oscillator length becomes
roughly equal to twice the healing length (the characteristic
size of the vortex). While the transition from a dark soliton
to a solitonic vortex has also been mapped out numerically
in Ref. [53] in terms of the excitation density profile, here
we focus on the dynamical behavior of the wave through
its oscillation frequency, a quantity which can be accurately
measured experimentally (to within a few percent) using
real-time vortex imaging [13]. Furthermore, we examine the
dynamics in traps with a time-dependent trap ratio, exploring
the hysteresis across the vortex–solitonic-vortex crossover. We
find that observable deviations of the angular momentum from
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its initial value can occur if the vortex–solitonic-vortex limit
is crossed.

II. THEORETICAL MODEL

We consider a weakly interacting BEC at zero temperature
composed of atoms of mass m and confined by a harmonic
potential V (x,y,z) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2), where ωx,y,z

are the trap frequencies in the respective directions. The
atomic interactions are modeled by the contact pseudopotential
g0δ(r − r′), where g0 = 4π�

2as/m and as is the atomic s-wave
scattering length. For simplicity we adopt a 2D model. The
trapping along z is assumed to be sufficiently strong to render
the condensate dynamics as quasi-two-dimensional [58].
Then, the two-dimensional (2D) condensate wave function
ψ(x,y,t) (normalized to the total particle number N ) satisfies
the effective 2D GP equation

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 + V (x,y,t) + g0√

2πlz
|ψ |2

]
ψ, (1)

where lz = √
�/mωz is the harmonic oscillator length along

z. The energy scale of the condensate is characterized by
the chemical potential μ, the eigenvalue associated with the
Hamiltonian in Eq. (1). We present length, time, and energy
in units of lx = √

�/mωx , ω−1
x , and �ωx , respectively. We

quantify the atomic interactions by the dimensionless pa-
rameter g = mNg0/

√
2π�

2lz. After obtaining the vortex-free
condensate solution [time-independent solution to Eq. (1)], a
vortex is imposed, and the subsequent dynamics are simulated
by numerical integration of the GP equation (further details
are given in the Appendix). For a cigar-shaped geometry,
we note that it is possible to describe the condensate fea-
turing a vortex through a 1D nonpolynomial Schrödinger
equation [59].

III. RESULTS: EVOLUTION FOR VARIOUS
ASPECT RATIOS

To illustrate the crossover from vortices to solitonic vor-
tices, we show the condensate evolution (density and phase) in
Fig. 1 under three different trap ratios, with the vortex initially
at (xV,0,yV,0) = (1.5lx,0). For a circular trap (ωy/ωx = 1) and
a weakly elongated trap (ωy/ωx = 4), the vortex precesses in
circular and elliptical paths, respectively. This is to be expected
since, in the absence of thermal dissipation, vortices follow
equipotential trajectories [60], which can be understood in
terms of the Magnus force acting on the vortex due to the
inhomogeneous density. The vortex maintains a circular core
and a 2π corkscrew phase profile. For considerably higher trap
ratio (ωy/ωx = 15), however, the initially imprinted vortex
rapidly deforms into a stripelike density depression, and the
phase profile becomes more steplike (with a rapid variation at
the poles and almost uniform at the sides). As we will show,
this structure behaves as a solitonic vortex.

To assess how vortexlike or solitonlike the dynamics of
the excitation is, we monitor its oscillation frequency ωV .
The excitation’s trajectory {xV (t),yV (t)} is tracked according
to its density minimum [61]; ωV is determined from the
Fourier frequency spectrum of xV (t). A single vortex is
predicted to precess with a relatively small frequency which

FIG. 1. Evolution of the condensate (i) density and (ii) phase
profiles for trap ratios (a) ωy/ωx = 1, (b) 4, and (c) 15. We take
g = 400 and the vortex initial position (xV,0,yV,0) = (1.5lx ,0). From
left to right the columns represent t = 0, TV /4, TV /2, and 3TV /4,
where TV = 2π/ωV is the vortex precession period [calculated from
Eq. (4)]. All units are dimensionless.

depends nontrivially on its position, the trap frequencies,
and the atomic interactions [62], as predicted using asymp-
totic expansions [31,32] and variational techniques [33,34].
Meanwhile, for a 1D condensate in the Thomas-Fermi (TF)
limit (Nas/lx � 1), a dark soliton is expected to oscillate
at a frequency ωS = ωx/

√
2 [27–30]. Figure 2(a) plots ωV

measured across multiple simulations with varying trap ratio.
For each interaction strength g considered, ωV is seen to
increase with the trap ratio ωy/ωx , saturating at a value close
to the expected dark-soliton frequency ωS = ωx/

√
2 (blue

dashed line). This demonstrates the solitonlike behavior of
the excitation for sufficiently high trap ratios. Note that ωV

does not exactly tend to ωx/
√

2; this prediction assumes the
one-dimensional and TF limits. Away from these limits the
soliton frequency can deviate by up to 10% [46], consistent
with our observations.

It is evident from Fig. 2(a) that, for higher g values, the
solitonic limit requires higher trap ratios. It is expected that the
solitonic (quasi-1D) limit is reached when the transverse size
of the system becomes of the order of the healing length, ξ =
�/

√
2mg, which characterizes the size of the vortex [51]. Since
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FIG. 2. (a) Vortex and solitonic vortex oscillation frequency ωV versus trap ratio ωy/ωx for interaction strengths g = 100 (blue triangles),
200 (red crosses) and 400 (magenta circles), according to simulations (markers) and Eq. (4) (lines). The inset shows the relationship between
ly/ξ and the trap ratio. The vortex is started at (xV,0,yV,0) = (1.5lx ,0). Shading indicates the solitonic regime. (b) As in (a) but with ωV plotted
versus ly/ξ and also versus Ry/ξ (inset). (c) Oscillation frequency versus trap ratio for different initial positions xV,0 as per the legend (and
g = 400). The black dashed lines indicate the predicted soliton frequency ωS = ωx/

√
2. All units are dimensionless.

the healing length scales as 1/
√

g, for larger values of g tighter
confinement in y is required to reach this limit. We formalize
this criterion as follows. In the TF approximation, density
gradients are neglected, and the resulting density from Eq. (1)
takes the form n(x,y) = n0(1 − x2/R2

x − y2/R2
y), where n0 is

the central (2D) density and R2
x,y = 2μ/mω2

x,y define the TF
radii in the respective directions. Applying the normalization
N = ∫

n(x,y)dxdy leads to

μ = �ωx

√
2

√
2

π

asN

lz

ωy

ωx

. (2)

Then, the ratio of the transverse harmonic oscillator length
ly = √

�/mωy (which characterizes the transverse condensate
width) to the healing length ξ follows as

ly

ξ
=

√
2μ

�ωy

=
(

4gωx

πωy

)1/4

. (3)

This is plotted as a function of the trap ratio in Fig. 2(a) (inset).
Upon plotting the oscillation frequency ωV as a function of
ly/ξ (rather than trap ratio), the data fall onto a common curve
[Fig. 2(b)]. Moreover, the solitonic limit is commonly reached
when ly/ξ � 2 (shaded region). One may instead define the
transverse condensate as the scaled TF radius Ry/ξ [inset of
Fig. 2(b)]; again, the data fall onto a common universal curve,
with the solitonic limit reached for Ry/ξ � 5 (shaded region).
The transition between a dark soliton and a solitonic vortex
has also been mapped theoretically in Ref. [53], also revealing
a universal behavior as a function of trap ratio; however, there
the transition was mapped out in terms of the density profile
of the excitation, rather than the dynamical characterization
herein in terms of its oscillation frequency.

In the 2D regime (ly/ξ � 2) the excitation should behave as
a true 2D vortex. Using a variational Lagrangian method in the
TF limit, Kim and Fetter [62] predicted elliptical vortex tra-
jectories under nonaxisymmetric 2D harmonic confinement,
governed by the equations ẋV (t) = −(ωy/ωx)ωV yV (t) and
ẏV (t) = (ωx/ωy)ωV xV (t), where the precession frequency ωV

of the vortex is defined as

ωV = 3

2

�

mRxRy

ln

(
R⊥
ξ

)
1

1 − r2
0

, (4)

with R2
⊥ = 2R2

xR
2
y/(R2

x + R2
y) and r0 being the radial coordi-

nate of the vortex scaled in TF units, i.e., r2
0 = (xV,0/Rx)2 +

(yV,0/Ry)2. This agrees well with vortex precession frequen-
cies measured experimentally [63] for a vortex line in an
elongated 3D condensate. It also agrees well with the present
simulated vortex dynamics up to moderate trap ratios, beyond
which ωV is underestimated [solid lines, Fig. 2(a)]. This
difference is likely due to both the deviation from a TF state
as the trap ratio increases and also the breakdown of the
assumption of a vortex phase profile used for the variational
ansatz that underlies Eq. (4).

Figure 2(c) shows the oscillation frequency for different
initial vortex positions, xV,0 = {1,2,3}lx , at fixed interaction
strength, g = 400 (for comparison, Rx ≈ 5lx). The data have
a similar behavior for all three positions, with the curves
shifting up slightly compared to the prediction of Eq. (4) for
increasing xV,0. The solitonic limit is reached at a similar
trap ratio, ωy/ωx ≈ 20. Good agreement with Eq. (4) is found
for vortices placed close to the trap center. The agreement
worsens for vortices placed off center. This is to be expected
since off-center vortices probe more of the non-TF tails of
the condensate. Importantly, the insensitivity of the solitonic
limit to the vortex position underpins the primary role of
the condensate aspect ratio (quantified via ly/ξ or Ry/ξ in
this work) in controlling the effective dimensionality of the
excitation.

IV. RESULTS: EVOLUTION UNDER TRAP
DEFORMATION

We now turn our attention to the fate of the vortex in a trap
that is dynamically deformed from an initially axisymmetric
geometry to a highly elongated (along x) one and back again,
seeking to address the persistence of the vortex and the
hysteresis of the system. ωy is made time dependent so as
to evolve the trap ratio ωy(t)/ωx as per Fig. 3(a): after an
initial wait (t1 = 16ω−1

x , approximately one vortex precession
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FIG. 3. Dynamics under the trap deformation. (a) The imposed
time-dependent deformation of the trap ratio. (b) Evolution of the
condensate density during a hysteresis protocol from axisymmetric
to elongated and back again. Here g = 100, (xV,0,yV,0) = (1.5,0)lx ,
ε = 8, tramp = 70ω−1

x , and thold = 40ω−1
x . All units are dimensionless.

period for g = 100), the trap ratio is ramped linearly to a
maximum value ε over time tramp, held there for thold, and
then linearly reduced back to an axisymmetric trap over tramp.
We note that such a time-dependent variation of the trap ratio
could be achieved in the laboratory using an optical atomic trap
where the applied beam waists are gradually modulated in time
(see, for instance, [64]). Taking, for example, a typical trap
frequency ωx = 2π × 20 Hz, our time unit ω−1

x is 8 ms. Then
the time scales we consider for the ramping and holding of the
deformation, which are of the order of 10–100ω−1

x , correspond
to the order of 80–800 ms. These time scales are realistic
to achieve, being long enough to comfortably modulate the
optical field while staying well within the lifetimes of typical
condensates (a few seconds).

An example case, with maximum trap ratio ε = 8 and
g = 100, is shown in Fig. 3(b). By comparison to Fig. 2(a) it is
evident that, for this maximum trap ratio, the system enters the
solitonic regime. It is useful to characterize the system through
its total angular momentum Lz = −i�〈ψ |x∂y − y∂x |ψ〉. The
evolution of Lz for this system is shown in Fig. 4(a) (left
column, pink line). As the trap ratio is increased, the precessing
vortex deforms into a 1D-like solitonic vortex, which oscillates
axially. During the increase of the trap ratio Lz decreases.

FIG. 4. Angular momentum per particle Lz versus time (left) and
trap ratio ωy/ωx (right). From (a) to (e) we show the cases for different
initial vortex positions, hold times, ramp times, interaction strengths,
and maximum trap anisotropies. For the |Lz(ωy/ωx)| hysteresis
plots the data are smoothed with Bézier curves. Unless varied, the
parameter values are g = 100, tramp = 70ω−1

x , thold = 40ω−1
x xV,0 =

1.5lx , and ε = 8. The gray triangles (here out of scale) in the top
left panel show the relative increase of the total energy of the system
E/E(t = 0) that grows as large as 3. See text for details. All units are
dimensionless.

Upon reducing the trap ratio, the vortex is remarkably seen to
reemerge in the system, albeit with increased radial position.
Concurrent with this, the angular momentum rises again,
saturating at a value which is about one third of its initial
value, consistent with the drift of the vortex to the edge.
The time-dependent anisotropy of the system couples with
the system’s nonzero angular momentum Lz, resulting in a
smaller value of |Lz| than the initial one. The condensate
also develops considerable surface excitations during the
deformation process.

The gray dotted line [left panel of Fig. 3(a)] is the variation
in the total energy of the system (energy at time t divided by the
energy at equilibrium), here not to scale. In all cases studied,
the total energy increased up to a value that follows ∼√

ε and
then returned to a value marginally (∼0.2%–2%) higher than
the initial one, thus making the whole process a nonviolent
one. Since the vortex energy accounts only for 8%–10% of the
total energy (depending on the vortex position), this comes as
no surprise. We conclude that the hysteresis loop affects the
angular momentum but not (significantly) the energy.

For an adiabatical deformation of the trap, Lz should depend
only on the instantaneous trap ratio. It is clear here, however,
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that angular momentum is lost from the vortex during the
dynamics, giving rise to a hysteresis effect. This is revealed by
plotting a hysteresis curve of Lz versus trap ratio in Fig. 4(a)
(right column, pink line); arrows denote the direction of time.

In all cases shown in Fig. 4 (right column), Lz system-
atically decreases with the trap ratio. We can qualitatively
understand this behavior by the following simple model, an
extension of the superfluid bucket model [65] from a circular
cross section to an elliptical cross section. Consider, for
simplicity, the condensate to be 2D and of uniform density
n0 within the Thomas-Fermi perimeter defined by the ellipse
(x/Rx)2 + (y/Ry)2 = 1. Moreover, consider the condensate
to feature a singly quantized vortex at the origin, about which
the fluid velocity has the conventional radial dependence for
a bulk quantized vortex of v(r) = �/mr . Then, the angular
momentum Lz of the condensate can be evaluated in this fluid
picture as Lz = ∫

mn(x,y)v(x,y)dxdy, where the integral is
performed across the condensate region, excluding the vortex
core, which is assumed to be of negligible size. This leads to

Lz = πn0�R2
x

ωy/ωx

. (5)

While this model ignores effects from the inhomogeneous
density, the vortex core, and the modification of the vortex
due to the boundary, it nonetheless reveals the rudimentary
coupling between the angular momentum and the trap ratio,
with the angular momentum scaling with the inverse of the trap
ratio. Moreover, as the vortex is moved away from the center
of the condensate, the total angular momentum of the system
decreases, as has been established for circular traps [66].

In general, the angular momentum does not return to its
initial value at the end of the deformation cycle. The mecha-
nisms behind this hysteresis are nontrivial and likely to involve
effects including coupling to surface modes (whose spectra
will themselves be time and dimensionality dependent), as
well as emission and absorption of phonons by the defect. To
shed light on the hysteresis we next make a systematic study
of how the key physical parameters, vortex initial position,
ramping rate, interactions, and maximum trap ratio, affect the
final state of the vortex and its hysteresis. The results are
shown in Figs. 4(a)–4(e). We vary each of these quantities
in turn while keeping the remaining parameters fixed (with
values stated in the figure caption).

(a) Vortex position. We consider four initial vortex posi-
tions, xV,0 = {0.1,1,1.5,2}lx and yV,0 = 0. For comparison,
the (axisymmetric) TF radius is Rx = 3.4lx . The loss in
angular momentum increases for a vortex positioned away
from the trap center. Indeed, for positions � 0.6Rx , the
remaining angular momentum is negligible, and the vortex
is destroyed by the process. Conversely, for a vortex initially
placed close to the trap center, the vortex remains intact, and the
system recovers its original angular momentum and undergoes
an almost time-symmetric hysteresis. We hypothesize that
the fragility of vortices which are initially positioned close
to the edge is due to enhanced coupling with surface modes of
the condensate.

(b) Hold time. We fix tramp = 70ω−1
x and investigate the im-

pact of the hold time on the residual angular momentum (AM)
by considering four different values (thold = 10,20,50,70).

Note that the deformation cycles employed here and in the
following are on time scales greater than the vortex periods.
For the same initial value, the angular momentum drops at
different rates. Even though the relationship of Lz with thold is
not linear (compare thold = 70 with thold = 50), we have seen
that the general tendency of increasing thold is to increase Lz.

(c) Ramp time. We now fix thold at 40ω−1
x and vary tramp.

Slower deformation results in an increased loss in Lz. This
is counterintuitive: as the deformation cycle slows down,
one might expect the process to approach an adiabatic one
and hence the hysteresis effect to vanish. We attribute the
significant loss in angular momentum for slow deformations
to an integrative, cumulative effect over time during the long
deformation time scale. However, a full understanding of this
behavior warrants further investigation.

(d) Interaction. For moderate interactions (g = 100), angu-
lar momentum is lost during the process, while for strong
(g = 200) and very strong interactions (g = 400) almost
no angular momentum is lost, and the hysteresis curve is
time symmetric. This difference is attributed to the different
dimensionalities probed: for moderate interactions this system
crosses the border into the solitonic regime, while for the
strong and very strong cases the system remains effectively
2D throughout. This is seen by comparison to Fig. 2(a).

(e) Maximum trap ratio. Last, we compare different
maximum trap ratios, ε = {2,3,5,8}. For given interaction
strength (g = 100) these values lie around the transition from
two dimensions to the solitonic regime [see Fig. 2(a)], and it
is not surprising that the loss in angular momentum becomes
larger for larger values of ε, i.e., as the solitonic regime is
increasingly entered.

V. CONCLUSIONS

We have explored the fate of vortices in highly elongated
traps. We mapped out the transition from vortex to solitonic
vortex in terms of its oscillation frequency, a particularly
relevant quantity since it can be extracted experimentally
with accuracy. The behavior of the oscillation frequency was
characterized as a function of the key system parameters
(trap anisotropy, interaction strength, and vortex position).
The frequency increases with the anisotropy and approaches
the value ωS ≈ ωx/

√
2, characteristic of the dark soliton

oscillation.
Depending on the ratio of the healing length to the oscillator

length and the initial position (initial angular momentum), the
solitonic vortex will survive a continuous deformation of the
trap and reappear as a vortex once the symmetry of the trap is
restored (see Fig. 3), although significant angular momentum
can be lost if the solitonic regime is entered.

Deforming and resymmetrizing the trap that contains a
solitonic vortex are an achievable way to probe physics in
scales smaller than the healing length, currently considered
inaccessible to experimentalists, and could assist in current
research in quantum turbulence [67] where the participation
of several length scales is required.

Last, we mention that beyond-mean-field descriptions have
recently revealed how, in several cases, quantized vorticity
concurs with nontrivial correlations and loss of coherence

023627-5



M. C. TSATSOS, M. J. EDMONDS, AND N. G. PARKER PHYSICAL REVIEW A 94, 023627 (2016)

[68–70]. It would be interesting to extend the present studies
to fragmented condensates as well.
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APPENDIX

For the static trap simulations, the GP equation is evolved
numerically using a Crank-Nicolson scheme on a spatial
grid with typical spacing 	x = 0.05lx . The initial state ψin

can be written using the Madelung transformation as ψin =

√
n(x,y) exp[iφV (x,y)], which is found by imaginary-time

propagation of the GP equation [71] while enforcing a vortex
phase defect at {xV,0,yV,0} using

φV(x,y) = arctan

(
y − yV,0

x − xV,0

)
. (A1)

Meanwhile, for the time-dependent simulations, the initial
state ψin is defined as

ψin = ψback

√
X2 + Y 2

X2 + Y 2 + δ
exp[iφV(x,y)], (A2)

where X = (x − xV,0)/σx,Y = (y − yV,0)/σy , and ψback de-
fines the vortex-free background state (found by imaginary-
time propagation). The parameters δ,σx,σy , which determine
the shape of the vortex, are determined by energy minimiza-
tion. The system is evolved using the MCTDH-X package [72],
taking N = 100 and M = 1.
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