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Finite-temperature vortices in a rotating Fermi gas
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Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

(Received 27 November 2015; published 16 August 2016)

Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These
superfluids can be described in terms of an effective field theory for a macroscopic wave function representing
the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish
how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the
rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling
strength of this vector potential to the macroscopic wave function depends on the interaction strength between the
fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization
derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein
condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture
of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to
study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived
and they are in good agreement with available results of the Bogoliubov–de Gennes theory and with experimental
data.
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I. INTRODUCTION

Vortices and vortex matter in superconductors and super-
fluid atomic gases have been subjects of a great interest for a
long time [1]. Stable vortices in superconductors appear under
the presence of an external magnetic field. In superfluid atomic
Bose and Fermi gases, vortices are stabilized when a trapped
gas rotates, because the superfluid cannot support rigid-
body rotation [2,3]. Stable vortices and vortex arrays have
been successfully generated experimentally in condensates of
bosonic [4–7] and fermionic cold atoms [8].

The experimental progress stimulated theoretical efforts to
describe the physics of vortex formation in rotating trapped
quantum gases. Different theoretical methods were applied to
describe the physics of the vortex matter in these systems:
the Gross-Pitaevskii (GP) equation for Bose gases [9,10], the
Ginzburg-Landau (GL) formalism [11], the Bogoliubov–de
Gennes (BdG) theory [12–15], and the superfluid density-
functional theory [16] for Fermi gases. The first calculation
of the critical rotational velocity for a trapped Fermi gas was
performed in Ref. [11] using a thermodynamic calculation of
the energy of a vortex state. A similar calculation for the Bose
gases was performed earlier in Ref. [17]. The rotating Fermi
condensates were investigated using macroscopic hydrody-
namic equations in Refs. [18,19]. In Refs. [20–22] the vortex
formation in a rotating trapped Fermi gas was studied using
the BdG equations. In Ref. [23] vortex arrays in rotating Fermi
condensates were analyzed using the coarse-graining method
for the BdG equations developed in Ref. [24] and referred to
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as a local-phase-density approximation (LPDA) to the BdG
equations.

The BdG theory has been successfully extended to su-
perfluid Fermi gases in the whole BCS-BEC crossover.
However, from the computational point of view, the solution
of the BdG equations for the fermionic wave functions is far
more involved than the solution of, e.g., the Gross-Pitaevskii
equation or any similar effective-field approach describing the
superfluid through a macroscopic wave function. As a result,
the application of the BdG formalism is mostly limited to the
zero-temperature properties of single-vortex states [12–14]. To
circumvent this limitation there has been a great deal of interest
in the development of effective-field theories (EFTs), which
describe a superfluid system in terms of a macroscopic wave
function (order parameter). The common key approximation
for all branches of the EFT is the gradient expansion of the
pair field, assuming it to be slowly varying in time and space.
For example, the GL and GP theories can be considered as
versions of the EFT that are applicable in different ranges of
parameters.

Effective-field theories have been established for different
cases in a number of works (see, e.g., Refs. [24–28]) and
used to describe nonuniform excitations (e.g., vortices and
solitons) in Fermi gases in the BCS-BEC crossover. A notable
example is the coarse-grained approximation to the static BdG
formalism of Ref. [24], which allows us to extend the analysis
to the whole temperature range below Tc.

The present study is based on the finite-temperature EFT for
quantum gases in the BCS-BEC crossover formulated in our
previous works [29,30]. This development of the EFT, based
on a gradient expansion of the pairing order parameter at finite
temperatures, is dynamic, accounting for both first-order and
second-order time derivatives of the pair field. This allows us
to treat both equilibrium and time-dependent phenomena in
superfluid Fermi gases. The gradient expansion is a common
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intrinsic element of an EFT. Therefore, all advantages and
shortcomings of this approach are not specific to the present
work but are common for all EFTs (including the GL and
GP theories). Our derivation of the basic expressions of the
finite-temperature EFT [29,30] is based on a straightforward
extension of the first-nonvanishing-order expansion of the pair
field action in powers of the pair field � by a complete exact
summation of the series in powers of �. It does not contain
any additional hypothesis or model with respect to the well-
established EFT derived previously for quantum gases in the
BCS-BEC crossover near Tc, e.g., in Refs. [26–28,31,32]. The
finite-temperature EFT has been tested by several successful
applications to quantum gases [25,30,33], which confirmed its
validity.

The method described in Refs. [29,30] was applied to
solitons in a fermionic superfluid [25], where its advantage
becomes clear: An analytic solution to the field equation
is available. This is the Klimin-Tempere-Devreese (KTD)
approach, which will be shown to compare successfully to
the BdG formalism in the appropriate limit. Comparing this
result to the numerical BdG simulations has shown that the
effective-field theory of [29,30] is applicable throughout the
BCS-BEC crossover except for the combination of the BCS
regime and temperatures far below Tc [33], as expected (see
the corresponding discussion in Ref. [24]).

In order to clearly indicate the place of the present work
in a scientific context, we stress that extensions of the BdG
and Gor’kov theories that embrace BCS to BEC regimes for
cold quantum gases were developed before in many works
starting from the Nozières–Schmitt-Rink (NSR) scheme (see,
e.g., Refs. [31,34]). Within the Gaussian pair fluctuation
(GPF) approximation, the path-integral description of BCS
to BEC crossover treats the pairing channel at the level of the
saddle point and the Gaussian fluctuations are incorporated
into a renormalized chemical potential. There is no real
feedback of these fluctuations to the saddle-point results as
noted in Ref. [32]. However, the EFT that we developed
in Refs. [29,30] is not completely equivalent to the GPF
approach. We go beyond the GPF approach in terms of
the amplitude of the fluctuations: It is not assumed to be
small.

A complementary approach for Fermi gases in the
BCS-BEC crossover is based on the BCS-Leggett ground
state [35,36]. The main difference between these two meth-
ods is that the NSR-based scheme reaches the BCS-BEC
crossover by starting from the BEC limit and the BCS-Leggett
based scheme reaches this crossover by starting from the
BCS limit (for a detailed comparison, see Ref. [37]). Our
recent works [25,29,30,33] lie within the context of the
former.

The new elements of our version of the EFT and particularly
the message of the present paper can be described as follows.
The GL approach with microscopically derived coefficients
uses the pair field as a small parameter. Therefore, it is
valid only near Tc. On the one hand, the extension of the
GL approach for quantum gases valid near Tc in the whole
BCS-BEC crossover and at T = 0 in the BEC limit was
developed in Ref. [31]. On the other hand, an all-temperature
extension of the GL method for BCS superconductors was
developed by Tewordt [38] and Werthammer [39] using

the gradient expansion for the order parameter. Our recent
treatment [29,30] partly fills an existing gap, finding a similar
extension of the GL method for quantum gases in the BCS-
BEC crossover.

Finally, the specific message of the present paper is an
incorporation of rotation into the effective-field theory of
Refs [29,30]. This is done in Sec. II by including the rotating
potential at the level of the fermionic degrees of freedom and
deriving the modified EFT for the macroscopic wave function.
As we will show, the vector potential of rotation contains
the renormalization factor for the pair mass, which is in
agreement with results of the functional renormalization-group
theory [40]. In Sec. III we show the equilibrium vortex state
diagrams and determine the critical rotation frequencies as
a function of temperature and interaction strength, compare
the results with those of Refs. [20,21,23], and analyze their
connection with the experimental data [8]. Our results are
summarized in Sec. IV.

II. EFFECTIVE FIELD ACTION

In the present work we consider a rotating Fermi gas
confined to an anisotropic parabolic trap described by the
confinement frequencies ωj (j = x,y,z) within the KTD
approach described in Refs. [29,30] and based on the path-
integral description of the interacting Fermi gas. The Hubbard-
Stratonovich transformation is used to introduce the bosonic
pair field � and the action functional for these fields is
obtained by integrating out the fermionic degrees of freedom.
In the resulting action, a gradient expansion is performed, not
around � = 0 as in the Ginzburg-Landau approach, but around
the coordinate-dependent saddle-point value to be determined
self-consistently. The bosonic pair field is then interpreted
as a macroscopic wave function for the superfluid pair
condensate.

The regimes of validity of this method have been studied
in detail in Ref. [33]. It is relevant to discuss once more the
criterion of validity of the EFT in the present work. A necessary
condition for the validity of this approach is the same as that
for known effective-field methods, e.g., the Ginzburg-Landau
and Gross-Pitaevskii formalisms: The bosonic field � must
vary sufficiently slowly in space and in time. This condition
is consistent with a large number of particles in the superfluid
system. Therefore, we restrict the treatment to Fermi gases
with a sufficiently large number of particles or sufficiently
strong coupling in order to ensure Rj � ξ and Rc,j � ξ ,
where Rj = (�/mωj )1/2 is the characteristic scale for the
trap potential along the j th axis, Rc,j is the size of the
superfluid cloud along the same axis, and ξ is the characteristic
scale of nonuniform excitations. The parameter ξ can then be
interpreted as the healing length for these excitations, e.g.,
vortices or solitons.

In order to determine the range of applicability of the EFT,
other length scales must also be taken into account, such as the
particle spacing, the scattering length, and the pair size. Two of
them are crucial for the criterion of applicability for effective-
field approaches: the healing length and the pair size. The
latter can be estimated through the pair coherence length ξpair,
which was determined in [41,42] through the pair correlation
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function of the fermion field operators ψσ (r) and ψ†
σ (r),
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†
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(
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using the definition

ξpair =
√∫

dr r2g↑↓(r)∫
dr g↑↓(r)

. (2)

Effective-field approaches are applicable when the pair size
is small with respect to the size of a nonuniform solution
itself, i.e., when ξpair � ξ (see also the similar discussion in
Ref. [24]). As found in Ref. [33], the domain of applicability of
the KTD effective-field theory is extended with respect to the
GL approach (valid at T close to Tc) towards low temperatures
and with respect to the GP approach (valid in the BEC limit)
towards BCS. The KTD effective-field theory is thus not valid
in the BCS regime combined with low temperatures T � Tc.

In order to incorporate rotation into the KTD approach, we
first consider the single-particle Hamiltonian for a fermionic
atom with mass m confined to an anisotropic parabolic trap
in the rotating frame of reference. The rotation leads to
the appearance of the term −ωL̂z, where ω is the rotation
frequency and L̂z is the z component of the orbital angular
momentum of the particle. Therefore, the single-particle
Hamiltonian in the rotating frame of reference is [43,44]

H = − [∇ − iA(r)]2

2m
+ m(ω2

⊥ − ω2)

2
(x2 + y2) + mω2

z

2
z2,

(3)
with the rotational vector potential for fermions

A(r) = m[ω × r] (4)

and the rotation vector

ω ≡ ωez. (5)

The effect of rotation in this Hamiltonian is explicitly
subdivided into the Coriolis and centrifugal contributions.
The Coriolis contribution results in the appearance of the
vector potential (4), for which ∇r · A = 0. The centrifugal
potential leads to the softening of the confinement potential
through ω2

⊥ → ω2
⊥ − ω2. The trapped atomic configuration

can be stable when ω2
⊥ − ω2 > 0. In the context of our

earlier assumption of a slowly varying field, the local-density
approximation is suitable to take into account the confinement
for a rotating Fermi gas through a coordinate-dependent
chemical potential:

μω(r) = μ0 − m(ω2
⊥ − ω2)

2
(x2 + y2) − mω2

z

2
z2. (6)

This chemical potential enters the coordinate-dependent
fermion density, which is determined from the local number
equation. Note that a parabolic confinement potential facili-
tates the applicability of the effective-field theory and of the
local-density approximation with respect to a confinement
with sharp edges, e.g., a box potential. Moreover, faster
rotation makes the confinement potential smoother, so the
rotation does not break up the applicability of the present

method. The local-density approximation for centrifugal and
Coriolis contributions has, in general, the same range of
applicability as described above.

Within the present treatment, both the superfluid and normal
components of the Fermi gas are assumed to be in equilibrium
in the rotating frame of reference. This approximation is used
in many works (see, e.g., Refs. [20,21,23] and references
therein). Recently, it was argued that rotation may cause a
phase separation between a nonrotating superfluid core and
a rigidly rotating normal gas [3]. Also, the cylindric rotation
symmetry about the z axis is broken in experiments due to a
stirring field, which provides the rotation. The study of these
effects, however, is beyond the scope of the present work.

Within the path-integral formalism of preceding
works [31,32] and following the scheme developed in
Refs. [29,30], we start the treatment from the partition function
of a fermionic system determined by the path integral over the
fermionic fields

Z ∝
∫

D[ψ̄,ψ]e−S, (7)

where the action functional S is given by

S =
∫ β

0
dτ

∫
dr

⎡
⎣ ∑

σ=↑,↓
ψ̄σ

(
∂

∂τ
+ H − μσ (r)

)
ψσ

+ gψ̄↑ψ̄↓ψ↓ψ↑

⎤
⎦, (8)

where β = 1/kBT , T is the temperature, and kB is the
Boltzmann constant. To allow for spin imbalance in the
Fermi gas, chemical potentials μσ are introduced that can be
different for spin-up and spin-down species. The coordinate-
dependent chemical potentials μσ are determined by (6) with
μ0 → μ0,σ for each component. The interaction energy with
the coupling constant g < 0 describes the model contact
interactions between fermions as in, for example, Ref. [31].
It represents the Cooper pairing channel determined by the
s-wave scattering between two fermions with antiparallel
spins. The one-particle Hamiltonian H in the rotating frame
of reference is determined by formula (3).

A more detailed description of the derivation is given in
the Appendix. After the Hubbard-Stratonovich transformation,
which introduces the bosonic pair fields (�̄,�), integrating
over the fermionic fields, and the gradient expansion for the
pair field with a complete summation of the series in powers
of |�|2 in each term of the gradient expansion, we arrive at the
effective-field action in the rotating reference frame

Seff =
∫ β

0
dτ

∫
dr

{[

s(w) + D

2

(
�̄

∂�

∂τ
− ∂�̄

∂τ
�

)

+Q
∂�̄

∂τ

∂�

∂τ
− R

2w

(
∂w

∂τ

)2

+ C(∇r�̄ · ∇r�)

−E(∇rw)2 + iDA · (�̄∇r� − �∇r�̄)

]}
. (9)

The coefficients of this effective-field action and the thermo-
dynamic potential 
s are determined in the Appendix. They
can depend on coordinates through the squared amplitude
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of the pair field w = |�|2 and the chemical potentials μ =
(μ↑ + μ↓)/2 and ζ = (μ↑ − μ↓)/2. The linear term in the
gradient expansion appears due to rotation, because rotation
breaks the local inversion symmetry. Note that this linear
term is derived in a straightforward way, without any ad hoc
assumption beyond the effective-field approach.

It can be shown that the present approach is in agreement
with well-established results of the functional renormalization-
group theory [40,45] in terms of the effective pair mass. In
the microscopic theory of superconductivity [46,47], the pair
charge was determined as e∗ = 2e. As proven by Alben [48],
the rotation of a superconductor brings a contribution to the
vector potential with the same charge to mass ratio for a pair
as for a free electron. Therefore, the total vector potential
in the GL equation is twice the vector potential for an
electron, for both rotating and nonrotating superconductors.
In theories of rotating Fermi gases based on the GL or
BdG equations [23,43], this principle is kept. Contrary to
the GL or BdG based descriptions, effective-field theories
developed within the NSR-like formalism [26–28] and within
the renormalization-group theory [40,45] necessarily contain
the renormalized pair effective mass m∗

p, which tends to 2m

only in the extreme BEC case. The present study lies within
the latter two aforementioned paradigms. Hence we will arrive
at a renormalized pair mass.

The derivation of the renormalized pair mass for Fermi
gases in the BCS-BEC crossover is described in the Appendix.
It is shown that the renormalization factor ẽ (associated with
the ratio of the effective pair mass to the fermion mass ẽ ≡
m∗

p/m) is expressed through the coefficients of the effective
action (9) by

ẽ = 1

C

∂(wD)

∂w
. (10)

Figure 1 conveys the fact that the present EFT is in line
with well-established results of the functional renormalization-
group theory [40,45]. Here the inverse of the renormalization
factor 1/ẽ is plotted as a function of the inverse scattering
length 1/kF as (where kF is the Fermi wave vector) and the
temperature, when T passes from zero to Tc for a three-
dimensional Fermi gas confined to a cylindrically symmetric
parabolic confinement potential, with the number of particles
per unit length set to N = 1000.

As shown in Fig. 1, the inverse renormalization factor only
slightly depends on the temperature and tends to 1/2 in the
BEC limit, where the Fermi superfluid can be described as a
Bose gas of molecules with the mass m∗

p = 2m. Moving away
from the BEC limit, 1/ẽ gradually increases. The behavior of
the renormalization factor obtained as a function of the inverse
scattering length is in good agreement with the prediction of
the functional renormalization-group theory of Ref. [40]. This
is one of the key results of the present approach, which we
apply to rotating Fermi gases. Thus, besides a renormalization
of the chemical potential, an important element of the BCS-
BEC crossover in the present work is a renormalization of
all coefficients of the effective-field action, including the
renormalization of the pair mass.

Finally, the effective-field action for a two-band system is
straightforwardly determined in the same way as in Ref. [30].
We obtain action functionals for the separate fields and a

FIG. 1. (a) Inverse renormalization factor 1/ẽ as a function of
the dimensionless inverse scattering length 1/kF as and the relative
temperature T/Tc for a three-dimensional Fermi gas in a cylindrically
symmetric parabolic confinement potential, with the number of
particles per unit length N = 1000. (b) Inverse renormalization factor
obtained within the functional renormalization-group theory [40] for
T = 0. The renormalization factor ẽ is associated with the effective
pair mass, as shown in the Appendix.

coupling given by an interband Josephson term

S
(2b)
eff =

∑
j=1,2

S
(j )
eff −

∫ β

0
dτ

∫
dr

√
m1m2

4π
γ (�̄1�2 + �̄2�1),

(11)
Here S

(j )
eff is the single-band effective-field action for the j th

band determined by (9) with j = 1,2 and γ is the strength of
the interband coupling. As derived in Ref. [30], the coupling
parameter γ is fixed by the interband scattering lengths

γ = 2

(
1

as,3
− 1

as,4

)
, (12)

where the scattering lengths as,3 and as,4 are related to the
interband scattering for the fermions with antiparallel and
parallel spins, respectively.

III. VORTEX FORMATION

In order to study the formation of vortices and vortex pairs
in rotated superfluid Fermi gases, we use the amplitude-phase
representation for the pair field similarly to Refs. [25,33],

�(r) = |�∞|a(r)eiθ(r). (13)

023620-4



FINITE-TEMPERATURE VORTICES IN A ROTATING . . . PHYSICAL REVIEW A 94, 023620 (2016)

In this expression, |�∞| is the uniform background ampli-
tude determined by solving gap and number equations for
the uniform system. The amplitude modulation (the “hole”
in the modulus of the order parameter at the vortex core) is
modeled by the real function a(r). The phase pattern is taken
into account by θ (r); for a vortex aligned with the z axis, this
is the angle around the z axis. With this representation for �,
the free energy corresponding to the effective action becomes

F =
∫

dr
{[


s(w) + 1

2
ρ(qp)(∇ra)2

]

+ 1

2
ρ(sf )a2(∇rθ − e̊A)2 − 1

2
ρ(sf )(ae̊A)2

}
, (14)

with

ρ(sf ) = 2C|�∞|2, (15)

ρ(qp) = 2(C − 4E)|�∞|2. (16)

The parameters ρ(sf ) and ρ(qp) represent, respectively, the
superfluid density and the quantum pressure coefficient, as
established in Refs. [25,30]. In order to find the conditions of
stability for the vortex solutions, we consider the difference
between two free energies

δF ≡ Fvortex − F0, (17)

where Fvortex and F0 are given by (14) with and without vor-
tices, respectively. The bounds for the equilibrium vortex state
diagrams with several vortex configurations are determined
from the comparison of the free energies corresponding to
these configurations.

From here on, we focus on vortex stability conditions
for a one-band Fermi gas in three dimensions, trapped in
a cylindrically symmetric parabolic potential characterized
by the confinement frequency ω0 and rotating around the
symmetry axis at a frequency ω. We do not consider at the
present stage the case when the population imbalance ζ is other
than zero. The area of existence of vortices lies, in general,
inside the area of existence for a superfluid state in a rotating
Fermi gas. The latter extends from the zero rotation frequency
ω = 0 to a critical rotation frequency for the superfluid state
ωmax < ω0. For ω > ωmax, the system turns into the normal
state [44,49,50].

Figure 2 shows the behavior of the radius of the superfluid
state Rc and the half-distance between vortex centers Rv for
a vortex pair (inset) as a function of the relative rotation
frequency ω/ω0 for a rotating Fermi gas with 1/as = 0
and N = 103 confined to a cylindrically symmetric parabolic
potential. The dependence of the radius of the superfluid state
versus ω is nonmonotonic. When rotation gradually becomes
faster but ω is not yet very close to its critical value ωmax < ω0

(where the superfluid state disappears), Rc slowly increases,
because the confinement weakens due to the centrifugal force.
When ω is sufficiently close to ωmax, the superfluid core
shrinks, turning to zero at ω = ωmax. The critical value ωmax

decreases with increasing temperature, in accordance with the
predictions of other works [21,50].

Figure 2 allows us to see also the temperature dependence
of the size of the superfluid state and of the half-distance for the
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FIG. 2. Radius of the superfluid state as a function of the rotation
frequency for a rotating Fermi gas with 1/as = 0 and N = 103

confined to a cylindrically symmetric parabolic potential, at different
temperatures. The inset shows the half-distance between vortex
centers for a vortex pair at two temperatures.

vortex pair. When ω is not close enough to ωmax, the radius Rc

decreases rather slowly with rising temperature. In the vicinity
of ωmax, this decrease becomes much faster. The half-distance
between vortices for a pair weakly depends on the temperature,
except near ωmax, where Rv falls together with Rc.

For a nonrotating Fermi gas and at sufficiently low rotation
frequencies, vortices are not stable as long as the free
energy (14) without vortices is lower than the free energy
with vortices. When increasing ω, vortices can become stable
starting from a certain critical rotation frequency ω = ωc,1.
There may exist also an upper critical rotation frequency
ωc,2 < ωmax such that the vortex state turns back to the
superfluid state for ωc,2 < ω < ωmax. The appearance of an
upper critical rotation frequency was also predicted by the
BdG theory [21]. The existence of a superfluid without any
vortex at a fast rotation may seem counterintuitive, but it
has a transparent physical explanation. As can be seen from
Fig. 2, starting from sufficiently large rotation frequencies, the
radius of the superfluid state decreases. When the size of the
superfluid is of the same order as the vortex size (or smaller),
the formation of vortices can be energetically unfavorable.
This explains the existence of a superfluid without vortices at
a fast rotation.

The area of existence for vortices for a system with different
numbers of particles N per unit length at T = 0.01TF (where
TF = EF /kB) is shown in Fig. 3. When comparing our results
with those of Ref. [21], one should note different units for
the number of particles per unit length in that work than in
the present treatment. Here the lengths are measured in units
of 1/kF and in Ref. [21] the unit length is chosen as the
oscillator length lo ≡ (�/mω0)1/2, where ω0 is the confinement
frequency. We denote by N the number of particles per unit
length according to Ref. [21] and ours by N . Therefore, these
two numbers are related to each other as N = NkF lo. In
our units, lo = (2/ω0)1/2, with ω0 = √

8/15πN , and hence
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FIG. 3. Area of existence for vortices for a Fermi gas trapped in
a cylindrically symmetric parabolic potential at T = 0.01TF , with
different numbers of particles per unit length.

N = (15π/2)1/4N5/4. In particular, the value N = 134 corre-
sponds to N ≈ 1000 in Ref. [21].

We do not perform a quantitative comparison of the
equilibrium vortex state diagrams calculated within the current
approach with those obtained by the BdG method [21] since
the study in Ref. [21] was performed for the BCS regime,
while the quantitative results of the current effective-field
theory, as discussed in Refs. [25,30], are hardly applicable
in the BCS regime at T � Tc. Nevertheless, the qualitative
behavior of the boundary for the area of stable vortices is
in agreement with the predictions of the BdG theory even in
the BCS side. In particular, we can see a bend of the critical
rotation frequency and hence the existence of both a lower
and an upper critical rotation frequency at weak coupling. At
higher coupling strengths, the upper critical rotation frequency
for the vortex formation tends to the critical rotation frequency
for the superfluid state.

The region of vortex stability extends deeper into the
BCS side and to smaller values of ωc,1 when increasing the
number of particles. For sufficiently large N � 104, stable
vortices as predicted by the current formalism can be observed
in the entire experimentally available BCS-BEC crossover
region (−1.2 < 1/kF as < 3.8), in line with the experimental
observations [8]. We have checked numerically that the lower
critical rotation frequency ωc,1 for a single vortex in a Fermi
gas with a large number of particles behaves in accordance
with the estimation [11,51]

ωc,1|N�1 ∝ ωB ≡ 1

R2
c

ln

(
Rc

ξ

)
, (18)

where Rc is the radius of the superfluid state in a trap and ξ is
the healing length that characterizes the vortex size. The result
of this numerical check is shown in Fig. 4. It shows the lower
critical rotational frequency for a Fermi gas as a function of the
number of particles per unit length and the ratio of the critical
frequency compared to the analytic expression (18). We see
that the ratio ωc,1/ωB only slightly varies when N passes from
N = 10 to N = 100, so the asymptotic trend (18) is clearly
visible already when N is not very large.
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FIG. 4. The left-hand axis (indicated by the arrow for two lower
curves) shows the lower critical rotation frequency ωc,1 (in units of
the trapping potential parameter ω0) for a trapped Fermi gas as a
function of the number of particles per unit length for 1/kF as = 0,
at two temperatures kBT = 0.01EF and 0.1EF . The right-hand axis
(indicated by the arrow for two upper curves) shows the ratio ωc/ωB ,
where ωB is given by formula (18).

A similar asymptotic dependence for a Fermi gas trapped
in a three-dimensional spherically symmetric confinement
potential was predicted in Ref. [11] for a Fermi gas at
zero temperature. In the present treatment, we find that the
trend (18) is kept also at finite temperatures.

We can compare the obtained critical rotation frequency
with the LPDA results of Ref. [23], using the parameters
of the experimental setup of Ref. [52], where the unitary
Fermi gas (1/kF as = 0) is trapped in an elongated trap with
the confinement frequencies ω⊥ ≈ 2π × 680 Hz and ωz ≈
2π × 24 Hz. When approximating this setup by a cylindrical
confinement potential, we arrive at the number of particles
per unit length N ∼ 104. As can be seen from Fig. 4, for this
number of particles, ωc,1 ≈ 0.045, which is in good agreement
with the lower critical rotation frequency obtained in Ref. [23].

When the rotation frequency is increased beyond ωc,1, a
second vortex may enter the superfluid. In the equilibrium
vortex state diagram of Fig. 5, we distinguish the superfluid
states with no vortex, one vortex, and two or more vortices,
in a trapped Fermi gas with N = 1000 at the temperature
T = 0.1TF . This temperature is higher than that for Fig. 3
and as a consequence the BCS-side boundary for vortex
formation is found to shift to stronger coupling strengths.
The boundary between the regimes with one and two vortices
behaves similarly to the critical rotation frequency for a single
vortex. It also exhibits a bend. The lower critical rotation
frequency for a vortex pair is higher than the lower critical
rotation frequency for a single vortex. On the contrary, the
upper critical rotation frequency for a vortex pair is lower than
the higher critical rotation frequency for a single vortex. Also,
the weak-coupling bound of 1/as for a single vortex lies more
towards the BCS side with respect to that for a vortex pair.
Thus the area where two or more stable vortices can exist lies
entirely inside the area of stability for a single vortex.
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FIG. 5. Equilibrium vortex state diagram for a trapped rotating
Fermi gas in a cylindrically symmetric parabolic confinement
potential, showing the critical rotation frequencies as a function of the
inverse scattering length for T = 0.1TF and the number of particles
per unit length N = 103. The critical rotation frequencies are plotted
for a single vortex and for a vortex pair. Also shown is the upper
bound for the rotation frequency, which restricts the area of existence
for the superfluid state.

In Fig. 6 we plot the equilibrium vortex state diagrams
as a function of the variables (ω/ω0,T /Tc) for two num-
bers of particles per unit length N = 103 and 104 and for
three values of the inverse scattering length 1/kF as = −0.5
(the BCS case), 1/kF as = 0 (unitarity), and 1/kF as = 1 (the
BEC case). It should be noted that different areas in the
equilibrium vortex state diagrams do not refer to genuine
thermodynamical phases, which are superfluid and normal
phases. Also, equilibrium vortex state diagrams in a uniform
superfluid (such as 3He) would be different from those in a
trapped Fermi gas.

In this equilibrium vortex state diagram, the transition lines
between the regimes with no vortex, one vortex, and two
or more vortices bend, leading to reentrant behavior of the
critical rotation frequencies as a function of temperature. This
reentrant dependence has a clear physical sense. On the one
hand, at higher temperatures, the radius of the superfluid phase
(which is surrounded by the normal phase) decreases. On the
other hand, the healing length, which determines the vortex
size, increases when the temperature rises towards Tc. When
the healing length is sufficiently large, the existence of stable
vortices becomes energetically nonfavorable with respect to
the superfluid state. The equilibrium vortex state diagrams
obtained exhibit a clear similarity to those obtained in Ref. [21]
(where they are calculated in the far BCS regime and at lower
temperatures than those considered in the present work) and in
Ref. [23]. When moving from the BCS to the BEC regime and
increasing the number of particles, the area for a single vortex,

as well as the area for a superfluid state without vortices,
becomes gradually narrower.

In Fig. 6 the temperature is measured in units of the critical
temperature Tc at the zero rotation. The critical temperatures
calculated using the background chemical potential in the
mean-field approach are overestimated with respect to ex-
perimental data, e.g., the mean-field value at unitarity Tc ≈
0.4TF , while in the experiment [53], Tc ≈ 0.17TF . Taking
Gaussian fluctuations into account [54] results in Tc ≈ 0.21TF ,
in better agreement with the experimental estimate [53] for
the critical temperature. However, this will not qualitatively
change the equilibrium vortex state diagrams when T is scaled
to Tc.

The equilibrium vortex state diagram shown in Fig. 6(d)
corresponds to the same experimental setup as in Ref. [52],
theoretically considered in Ref. [23]. For comparison, we plot
there also the critical rotation frequencies ωc,1 and ωc,2 from
Fig. S2 of the Supplemental Material to Ref. [23], shown by
symbols. The calculations in the present work are performed
for a cylindrical confinement, which only approximately
simulates an elongated trap considered in Ref. [23]. Thus
we expect only qualitative agreement between our results and
those of Ref. [23]. However, the critical rotation frequencies in
Fig. 6(d) appear to be close to those in the equilibrium vortex
state diagram calculated within the LPDA [23]. It is also worth
noting the good agreement between the KTD effective-field
theory and the LPDA on the upper critical temperature for the
vortex formation, as can be seen in Fig. 6(d).

There are also some differences between the critical rotation
frequencies derived within these two approaches. In the BdG
method, there are two definitions of the lower critical rotation
frequency. A lower value of ωc,1 corresponds to the critical
angular frequency at which an isolated vortex placed initially
close to the trap center is attracted toward the trap center, while
the upper value of ωc,1 corresponds to the critical rotation
frequency at which an isolated vortex placed initially at the
edge is attracted toward the trap center. This appearance of
different critical rotation frequencies is apparently related
to the fact that the LPDA equation determines a dynamic
stability of vortices. In the EFT, the condition for the vortex
formation follows from the comparison of the free energies
with and without vortices. In other words, we consider only
the thermodynamic stability of the vortex configurations.
Therefore, a single critical rotation frequency is obtained in
the present work. The upper value of ωc,1 can thus correspond
to a thermodynamically metastable configuration. As soon as
the experimental preparation of the states of quantum atomic
gases and the measurements are performed during a finite time,
both thermodynamically stable and metastable configurations
can be observable. Which critical rotation rate is relevant for
a particular experiment depends on the way in which the
experiment is performed.

According to the results shown in Figs. 4 and 6(d), the
critical rotation frequency ωc,1 given by the present EFT
is in excellent agreement with the lowest of two values of
ωc,1 provided by the coarse-grained BdG theory [23]. This
may shed light on which of the two values of ωc,1 indicated
in Ref. [23] corresponds to the thermodynamically stable
state: The lower one is stable while the higher one can be
thermodynamically metastable.
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FIG. 6. Equilibrium vortex state diagrams for a trapped rotating Fermi gas in a cylindrically symmetric parabolic confinement potential,
showing the critical rotation frequencies as a function of the temperature for two numbers of particles per unit length and three inverse scattering
lengths (indicated in the figure). The notation is the same as in Fig. 5. Symbols in (d) show the critical rotation frequencies ωc,1 (circles) and
ωc,2 (squares) from the Supplemental Material to Ref. [23].

A comparison with the observations of vortices in the
experiment of Ref. [8] indicates that the ranges of applicability
of the BdG formalism combined with the Thomas-Fermi
approximation [20,21] and the KTD effective-field theory
are complementary to each other. The KTD field theory
becomes more accurate towards the BEC regime [30], while,
as concluded in Ref. [21], the BdG method is quantitatively
more reliable towards the BCS regime. It was found in
Refs. [20,21] that within the BdG theory, vortices in rotating
Fermi gases are formed only for relatively large negative
scattering lengths. On the contrary, the current formalism
predicts the formation of stable vortices in rotating Fermi
gases in the whole BCS-BEC crossover, in agreement with
the experimental observations [8].

The inverse scattering length was varied in the experiment
of Ref. [8] in a wide range from 1/kF as = −1.2 to 1/kF as =
3.8 and vortices were observed in the whole range of 1/kF as

between those values. In the experiment [8], 6Li atoms were
trapped in an approximately parabolic trap with the confine-
ment frequencies ω⊥ ≈ 2π × 57 Hz and ωz ≈ 2π × 23 Hz.
This gives us an estimation of the trap length along the z axis
lz ≡ (�/mωz)1/2 ≈ 8.5 μm. The total number of atoms was
N ∝ 106. Thus we can estimate the number of particles per
unit length in order to qualitatively match the experiment as
N ∝ N/lz ∝ 104. The highest number of vortices at a given
stirring frequency was obtained at 1/kF as ≈ 0.35, which is
rather close to the position of the minimum of the critical
rotation frequency for N = 104 in Fig. 3. It is hard to extract

the critical rotation frequency for a single vortex from the
experimental data of Ref. [8]. However, it is suggestive that the
minimum of the critical rotation frequency and the maximum
of vortices at a given (higher) rotation frequency lie close
each other. Thus the above results of the present work are in
line with the experiment [8] in terms of the most favorable
scattering length for the vortex formation in a rotating Fermi
gas. Also, the estimate of the optimal rotation frequency within
the modified finite-temperature EFT is in good agreement
with the result of the coarse-grained BdG theory [23] and
with the experiment [8]. This agreement is remarkable despite
the fact that the rotation is incorporated in the LPDA equation
of Ref. [23] and in the present work in different ways.

IV. CONCLUSION

In the present work we extended the effective-field theory
developed in Refs. [29,30] for fermionic superfluids to the case
of rotating Fermi gases. The treatment was performed within
the same path-integral formalism as in the theoretical studies
of cold quantum gases that embrace BCS to BEC regimes,
performed in preceding works. The new physics in our recent
works on the EFT is related to an extension of the GL theory
below Tc in the BCS-BEC crossover.

The rotation has been incorporated in the effective-field
action in a straightforward way, leading to the appearance
of an effective vector potential as in other effective-field
theories. Therefore, the physical picture, e.g., for the formation
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of vortices, is qualitatively one and the same in different
formalisms (see, e.g., [21,23]). The new results consist in a
concrete form of the coefficients of the EFT action, which are
not phenomenological, but they are derived microscopically,
starting from the initial fermionic Hamiltonian. Therefore,
when describing the formation of vortices, the novelty consists
in a quantitative description of the vortex system in a rotating
trap.

One of the nontrivial physical results obtained in the present
work is the fact that the vector potential of the rotation
in the effective-field action can be different from twice the
vector potential for bare fermions. This difference is due to
a renormalization of the effective mass for the pair field.
It is directly related to the fact that the description of an
interacting quantum atomic Fermi gas differs from the known
BCS formalism for superconductors even in the BCS regime,
which was pointed out already in Ref. [31].

In detail, the rotation leads to a shift in the local chemical
potential μω and to the appearance of the rotational vector
potential A in the covariant derivative −i∇r → −i∇r − e̊A,
which leads to the renormalization factor ẽ in the equations of
motion for the pair field. The renormalization factor tends to
2 in the BEC limit, in agreement with the physical picture of
a molecular Bose gas with the boson mass m∗

p = 2m. Moving
away from the BEC limit, this value diminishes. The change of
the renormalization factor from the BEC limiting value ẽ = 2
has a clear physical explanation. The fermion pair in a rotating
Fermi condensate moves similarly to a point particle only in
the deep BEC regime. However, beyond the BEC limit, the
fermion pair cannot be considered as a point particle, especially
in the BCS regime, where the Cooper-pair size is large. As a
result, the pair effective mass diminishes when the inverse
scattering length moves from the BEC to the BCS side.

The renormalization of the effective mass that we obtain is
in agreement with the previous effective-field theory of atomic
Fermi gases, as checked by the comparison of the effective-
field action derived in particular cases T → Tc and T → 0
with reliable works [26,28,31,32]. It is also in agreement with
results of the functional renormalization-group theory [40].

Using the obtained formalism, we investigate equilibrium
vortex state diagrams where we identify regions for the
superfluid state with no vortices, one vortex, and two or
more vortices. For the equilibrium vortex state diagrams in the
variables (ω,1/as), the transition curves between these regions
bend in the BCS regime, in agreement with the results found
using BdG calculations in this regime [21]. As the number
of particles is increased, the region of the equilibrium vortex
state diagram where vortices are stable extends deeper into
the BCS regime. Increasing the temperature, on the other
hand, shrinks the region of stable vortices. The obtained
dependence of the renormalization factor on the inverse
scattering length is essential for these equilibrium vortex state
diagrams, especially for sufficiently weak couplings.

The range of applicability of any kind of effective-field
theory (including, e.g., GL and GP methods) is intrinsically
related to the common assumption for them, that the order
parameter smoothly varies in time and space. In terms of the
space variation, this means that the EFT can be applicable
when the characteristic scale of the variation of the order
parameter (e.g., the size of vortices or solitons) exceeds the

Cooper-pair correlation length, as discussed in Ref. [24].
The range of applicability of the present finite-temperature
EFT was estimated quantitatively in Ref. [33]. The rotation
considered in the present work does not crucially influence the
range of applicability of the EFT.

The equilibrium vortex state diagrams in the variables
(ω,T ) exhibit clear similarity to the results of the BdG
method (both the complete BdG theory [20,21] and the coarse-
graining approximation for the BdG theory [23]), where good
quantitative agreement has been found between the critical
rotation frequencies obtained within the present theory and
the coarse-grained BdG theory. The lowest critical frequencies
calculated in both the EFT and LPDA approaches lie very close
to each other despite the fact that our calculation lies within
the NSR-like picture (where the effective mass of dressed pairs
is renormalized), while the LPDA treatment is in agreement
with the BCS-Leggett picture, where masses of pairs are
nonrenormalized. This coincidence is remarkable and may be
useful to make a connection between these two paradigms.

We have also arrived at the optimal inverse scattering length
for the vortex formation corresponding to the lowest critical
rotation frequency. This value of the inverse scattering length
is in good agreement with the coupling strength at which the
maximal number of vortices is generated in the experiment [8].

In the present work we considered the equilibrium con-
figurations of vortices in rotating traps. The time-dependent
phenomena can also be investigated within the EFT, in general
combined with equations for the quasiparticle distributions.
These equations are not an intrinsic part of the EFT and can be
added as an independent ingredient. We have, however, treated
some particular time-dependent phenomena (traveling dark
solitons and collective excitations in quantum Fermi gases) in
Refs. [25,30] and the KTD effective-field approach appears to
be in line with the BdG theory and with experiments.

It is worth noting that an advantage of the present method
with respect to the BdG theory is much shorter computational
time and lower memory consumption. This advantage persists
even with respect to the coarse-grained BdG, because the
minimization of the free energy is substantially simpler and
faster than a numerical solution of the differential equations.
Moreover, effective-field approaches allow for analytic so-
lutions in many interesting cases, as shown in our work on
dark solitons [25]. An extension of the treatment of nonlinear
excitations in condensed Fermi gases within the EFT, involving
other factors of interest, such as spin imbalance, two-band
Fermi gases, and spin-orbit coupling, is left for future work.
The spin imbalance has been already incorporated analytically
in the coefficients of the effective action (9); the analysis of
effects provided by the imbalance combined with the rotation
is yet to be made. The spin-orbit coupling will be taken into
account at the microscopic level, similarly to Ref. [55]. Finally,
as shown in Sec. II, the extension of the present approach to
two-band Fermi gases is straightforward.

The other ingredient that can be incorporated in the
EFT is the account of induced interactions first considered
by Gorkov and Melik-Barkhudarov [56]. Their importance
for quantum gases in the BCS-BEC crossover was recently
demonstrated [57]. The induced interactions led to substantial
corrections of the parameters of state in the BCS regime,
while being less significant in the BEC regime. Therefore, the
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account of induced interactions is expected to extend the range
of applicability of the EFT towards weak-coupling strengths
and to improve the quantitative agreement between the EFT
and experiment.
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APPENDIX: INCORPORATION OF ROTATION IN THE
EFFECTIVE-FIELD THEORY

1. Gradient expansion

The partition function of a fermionic system with two spin
states (σ =↑ , ↓) is determined by the path integral over the
fermionic fields

Z ∝
∫

D[ψ̄,ψ]e−S, (A1)

where the action functional S is given by

S =
∫ β

0
dτ

∫
dr

⎡
⎣ ∑

σ=↑,↓
ψ̄σ

(
∂

∂τ
+ H − μσ (r)

)
ψσ

+ gψ̄↑ψ̄↓ψ↓ψ↑

⎤
⎦, (A2)

where β = 1/kBT , T is the temperature, and kB is the
Boltzmann constant. To allow for spin imbalance in the Fermi
gas, chemical potentials μσ are introduced which can be
different for spin-up and spin-down species. The coordinate-
dependent chemical potentials μσ are determined by (6) with
μ0 → μ0,σ for each component. The interaction energy with
the coupling constant g < 0 describes the model contact
interactions between fermions as in, for example, Ref. [31].
It represents the Cooper-pairing channel determined by the
s-wave scattering between two fermions with antiparallel
spins. The one-particle Hamiltonian H in the rotating frame
of reference is determined by formula (3).

After performing the Hubbard-Stratonovich transforma-
tion, which introduces the bosonic pair fields (�̄,�), and
integrating over the fermionic fields, the partition function
becomes [2]

Z ∝
∫

D[�̄,�]e−Seff , (A3)

with the effective bosonic action Seff ,

Seff = SB − Tr[ln(−G−1)]. (A4)

We decompose the inverse Nambu matrix G−1 into a sum of
the matrix F proportional to the pair field �, as in Ref. [30],

F(r,τ ) =
(

0 −�(r,τ )
−�̄(r,τ ) 0

)
,

and the free-field contribution

G−1
0 (r,τ ) =

(− ∂
∂τ

− H + μ↑ 0
0 − ∂

∂τ
+ H ∗ − μ↓

)
. (A5)

In the momentum representation, the G0 is explicitly obtained
from (A5):

G0(k,n) =
(

1
iωn−ξk+ζk

0

0 1
iωn+ξk+ζk

)
, (A6)

with ξk = k2/2m − μ(r) and

ζk = ζ + 2k · A(r), (A7)

where μ = (μ↑ + μ↓)/2 and ζ = (μ↑ − μ↓)/2. As discussed
above, the coordinate-dependent vector potential is taken into
account here in the local-density approximation, assuming
that A(r) varies slowly, as does the trapping potential (which
is included here through the coordinate-dependent chemical
potential). The above procedure is quite similar for Fermi gases
in three and two dimensions.

Further on, we use the set of units with � = 1 and 2m =
1, the Boltzmann constant kB = 1, and the Fermi energy for
a free-particle Fermi gas EF ≡ �

2k2
F /2m = 1, where kF ≡

(3π2n)1/3 is the Fermi wave vector and n is the fermion density.
Therefore, in the present work, kF = 1 and the lengths are
measured in units of 1/kF .

The next step is the gradient expansion of the effective
action (A4) following exactly the same scheme as in Ref. [30],
up to the second-order derivatives in time and in space. A
complete summation in powers of the squared amplitude
of the pair field w ≡ |�|2 is performed in each term of
this gradient expansion separately. As a result, the following
effective-field action is obtained, which is structurally similar
to that derived in Ref. [30] but with a new term provided by
rotation:

Seff =
∫ β

0
dτ

∫
dr

{[

s(w) + D

2

(
�̄

∂�

∂τ
− ∂�̄

∂τ
�

)

+Q
∂�̄

∂τ

∂�

∂τ
− R

2w

(
∂w

∂τ

)2

+ C(∇r�̄ · ∇r�)

−E(∇rw)2 + iGA · (�̄∇r� − �∇r�̄)

]}
. (A8)

The coefficients in this effective-field action (generalized
here for a ν-dimensional Fermi gas with ν = 2,3) take the
form

C = 2
∫

dνk
(2π )ν

k2

ν
f2(β,Ek,ζk), (A9)

D = ∫
dνk

(2π)ν
ξk
w

[f1(β,ξk,ζk) − f1(β,Ek,ζk)], (A10)

E = 4

ν

∫
dνk

(2π )ν
k2ξ 2

kf4(β,Ek,ζk), (A11)

Q = 1

2w

∫
dνk

(2π )ν
[
f1(β,Ek,ζk)

− (
E2

k + ξ 2
k

)
f2(β,Ek,ζk)

]
, (A12)

023620-10



FINITE-TEMPERATURE VORTICES IN A ROTATING . . . PHYSICAL REVIEW A 94, 023620 (2016)

R =
∫

dνk
(2π )ν

[
f1(β,Ek,ζk) + (

E2
k − 3ξ 2

k

)
f2(β,Ek,ζk)

3w

+ 4
(
ξ 2

k − 2E2
k

)
3

f3(β,Ek,ζk) + 2E2
kwf4(β,Ek,ζk)

]
.

(A13)

The functions fp(β,ε,ζ ) have been introduced in Ref. [30].
They are defined through fermionic Matsubara sums

fp(β,ε,ζ ) ≡ 1

β

∞∑
n=−∞

1

[(ωn + iζ )2 + ε2]p
(A14)

and have been expressed explicitly using the recurrence
relations

f1(β,ε,ζ ) = 1

2ε

sinh(βε)

cosh(βε) + cosh(βζ )
, (A15)

fp+1(β,ε,ζ ) = − 1

2pε

∂fp(β,ε,ζ )

∂ε
. (A16)

The coordinate-dependent thermodynamic potential for a
rotating Fermi gas is determined by the expressions


s(w) = −
∫

dk
(2π )3

(
1

β
ln(2 cosh βEk + 2 cosh βζk)

−ξk − w

2k2

)
− w

8πas

(A17)

(in three dimensions) and


s(w) = −
∫

d2k
(2π )2

(
1

β
ln(2 cosh βEk + 2 cosh βζk)

−ξk − w

2k2 + Eb

)
(A18)

(in two dimensions), where Eb is the binding energy for a
two-particle bound state in two dimensions.

Finally, when performing the gradient expansion, rotation
leads to a new term in the effective-field action (A8),
proportional to the first-order space gradient of the pair field,

δS
(rot)
eff =

∫ β

0
dτ

∫
dr iGA · (�̄∇r� − �∇r�̄). (A19)

In the absence of rotation, this term vanishes due to inversion
symmetry. It is calculated as in Ref. [30], summing up the
whole series in powers of the amplitude of the pair field in
the coefficients at ∇� and ∇�̄. The new coefficient G, which
appears due to the rotation, is

G = D +
∫

dνk
(2π )ν

1

w

(k · A)

|A|2 ζk[f1(β,ζk,ξk) − f1(β,ζk,Ek)].

(A20)

In summary, the effect of rotation on the effective-field
action functional derived in Ref. [30] is taken into account
through the renormalization of the averaged chemical potential
μ according to (6) and the replacement of the chemical
potential imbalance as ζ → ζk. This may create a wrong
impression that rotation can lead to polarized Fermi gases at
ζ = 0. However, this is not the case. For clarity, let us consider

a comparison between the real electromagnetic vector potential
and the rotational vector potential. A real electromagnetic
vector potential for particles with a true spin will lead to
Zeeman splitting for spin states, so the chemical potentials
of the two components can be different. The Zeeman splitting
of spin states for atomic Fermi gases due to rotation is, in
general, absent. On the contrary, splitting for the momentum
states due to rotation occurs in the same way as due to a
magnetic field [48]. Moreover, this local-momentum splitting
of the chemical potential appears in the Nambu tensor in the
same way as in the Nambu-Gorkov theory. In order to see
this, we can refer to the works [20,21,44], where the inverse
Nambu matrix appears with the same one-particle Hamiltonian
as in the present work. However, for a balanced gas, the
contributions with ζk and ζ−k cancel out in the integration over
k and hence rotation does not lead to a population imbalance.

The appearance of the local-momentum splitting of the
chemical potential is physically transparent. In a Cooper pair,
the two fermions have opposite momenta. In the presence
of rotation, their single-particle energies become unequal, in
the same way as two pairing electrons in the magnetic field
experience a Zeeman splitting. Note that for Cooper-paired
electrons in a magnetic field, the Lorentz force destabilizes the
pair already at much lower magnetic field than that where the
Zeeman splitting breaks up the pair; however, for the neutral
atoms, this effect is absent.

This physical picture assumes that the Cooper-pair size is
small with respect to a characteristic size of the superfluid
system (for example, the radius of the trap), so the back-
ground parameters within the extent of a Cooper pair are
approximately uniform. This condition needs to be fulfilled
in order for any description in terms of an effective-field
theory [24–28] to be applicable. It should be noted that,
whereas the aforementioned splitting of the fermion energy is a
standard result for the Bogoliubov–de Gennes theory, it has not
been taken into account in existing effective-field theories, so
this seems to be new with respect to other EFT-like approaches.

In accordance with Ref. [28], G = D in (A20) corresponds
to the leading order and the term in the second line corresponds
to the next-to-leading order in the effective-field theory. Also,
the splitting ζk of the chemical potential is the next-to-leading-
order correction with respect to the renormalization of μ due
to rotation. Hence these corrections must be relatively small
within the range of applicability of the effective-field theory.
Moreover, they should be neglected for consistency, because
they may lead to noncontrolled corrections beyond EFT.

A question may appear whether next-to-leading-order terms
can be important near a vortex core, where the order parameter
rises rapidly. The range of applicability of the leading-order
approximation is in fact the same as the range of applicability
of any other effective-field theory, e.g., the Ginzburg-Landau
equation, which is often used for the analysis of the vortices
in superconductors and superfluids. This question is more
general than the subject of the present study, because it is
the same for rotating and nonrotating superfluids. It was
studied in Refs. [30,33] by a comparison of the obtained
vortex parameters with results of the alternative microscopic
approach: the BdG theory.

We can also show that next-to-leading-order corrections
should be neglected in order to satisfy the gauge invariance

023620-11
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for the effective-field action. In the derivation above, we start
from the action for the fermionic field ψ in the laboratory
frame, then transform it to the rotating frame of reference, and
finally perform the Hubbard-Stratonovich transformation to
introduce the pair field �. As a check of the gauge invariance
of the obtained effective field action, we also consider inverting
the order of these operations, first obtaining the action for
the pair field � in gradient expansion and then applying the
transformation to the rotating frame of reference. In that case,
the energy term −ωLz (where L̂z is the z component of the
orbital angular momentum for the pair field �) appears in the
bosonic pair Hamiltonian directly from the condition of the
gauge invariance, similarly to the Gross-Pitaevskii theory [2].
This order of operations leads to the same final result as
obtained above (9)–(A22), but with the coefficient G = D.
The resulting effective-field action takes then the form

Seff =
∫ β

0
dτ

∫
dr

{[

s(w) + D

2

(
�̄

∂�

∂τ
− ∂�̄

∂τ
�

)

+Q
∂�̄

∂τ

∂�

∂τ
− R

2w

(
∂w

∂τ

)2

+ C(∇r�̄ · ∇r�)

−E(∇rw)2 + iDA · (�̄∇r� − �∇r�̄)

]}
. (A21)

The coefficients D,C,E,Q,R in this effective-field action are
the same as in Ref. [30]. The new term (proportional to A)
expresses the coupling of the rotational vector potential to the
current density.

2. Renormalization of the pair mass

The terms with the gradient of the pair field can be
equivalently rewritten in terms of the covariant derivatives∫

dr[C(∇r�̄ · ∇r�) + iDA · (�̄∇r� − �∇r�̄)]

=
∫

dr[C|(∇r − ie̊A)�|2 − Ce̊2A2|�|2], (A22)

with the renormalization factor e̊ = D/C. As established in
Ref. [30] the coefficient D enters the equations of motion for
the pair fields only through the combination D̃ ≡ ∂(wD)/∂w.

Consequently, physical sense can be attributed to the other
renormalization factor

ẽ = 1

C

∂(wD)

∂w
. (A23)

The physical sense of the renormalization factor ẽ can be ex-
plained using the following reasoning. Let us temporarily, just
for illustration purposes, neglect the terms with coefficients
E,Q,R (which are not necessary for this explanation) in the
EFT action. In the absence of rotation, the equation of motion
for the pair field in the real-time representation (simplifying
the equation of motion from Ref. [30]) then becomes

i
∂�

∂t
= − 1

2m∗
p

∇2
r � + 1

D̃

∂
s

∂w
�, (A24)

with the effective mass of the pair

m∗
p ≡ D̃

2C
. (A25)

This equation is similar to the Gross-Pitaevskii one and is
exactly reduced to the GP form if we expand the thermody-
namic potential in powers of |�|2 up to the second order.
In general, m∗

p �= 1. This result is not surprising, because a
renormalization of the effective pair mass with respect to twice
the fermion mass can be straightforwardly obtained from the
effective-field actions of earlier works, e.g., Refs. [31,58]. Note
that in Ref. [58] it is explicitly stated that the effective boson
mass is equal to unity only in the BEC limit. Moreover, the
renormalization of the coefficients at the space gradients and
time derivatives is predicted by the EFT formulated using the
functional renormalization-group method [40,45].

The rotation can be incorporated in the GP-like equa-
tion (A24) in the same way as in the Schrödinger equation:
considering the Bose gas of pairs, which is at rest in the rotating
frame of reference. In the same way as described above for
fermions, the rotation applied to (A24) leads to the appearance
of the rotational vector potential for the pair field

Ap(r) = m∗
p[ω × r]. (A26)

Thus the renormalization factor ẽ = 2m∗
p has the physical

sense of the renormalized effective mass for the pair field
in units of the fermion mass.
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