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Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates
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We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein
condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices
incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they
can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the
multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of
the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration
between the components. In the frustrated state, domain walls in the relative phases can persist between some
components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the
three-component condensate effectively approaches a two-component condensate with only density-density
interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither
in the two-component counterpart nor in the purely density-density-coupled three-component system.
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I. INTRODUCTION

Since the experimental creation of large vortex lattices in
rotating single-component Bose-Einstein condensates (BECs)
of atomic gases [1–3], there has been growing interest in
exploring the rotational response of BECs with multiple
components [4]. The physics of such superfluid mixtures is
more involved because the competing effects enter not only
via the self-interaction of a single component but also through
intercomponent interactions [5,6]. In terms of finding the
energy-minimizing vortex configuration, this means that the
relative positioning of vortices in different components also
profoundly affects the total energy. In addition, two different
regimes can be distinguished: the immiscible regime, where
the components segregate into nonoverlapping phases, and the
miscible regime with interpenetrating BECs [6].

The versatility of the emerging ground-state vortex struc-
tures is apparent already in the simplest multicomponent
case, the two-component BEC, which has been realized
experimentally, e.g., with two hyperfine spin states of atoms
of the same species [7–14]. A rapidly rotating miscible
two-component BEC with equally populated and repulsively
interacting components was shown to form vortex lattices
whose geometry can change from the usual triangular (or, as it
is also called, hexagonal) to square, with the lattice unit cells
of the two components displaced relative to each other [15,16].
Subsequently, a two-component mass-imbalanced BEC with
attractive intercomponent interactions was shown to host
vortex lattices that vary from a square lattice to a triangular
lattice of vortex pairs (dimers) [17]. In the immiscible regime
corresponding to strong intercomponent repulsion, rotating
harmonically trapped two-component BECs undergo phase
separation, which can lead to serpentine vortex sheets [18]
or, when the components are unequally populated, to a giant
vortex surrounded by a ring of single-quantum vortices [19].
The ground states of rotating two-component BECs can also
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host spin-texture skyrmions [19–22] or solitary multiquantum
vortices [22].

Moreover, a two-component BEC consisting of two hyper-
fine spin states of the same atom can be coupled not only
by density-density interactions but also coherently, so that the
phases of the complex-valued condensate wave functions are
no longer independent of each other. When rotated, such Rabi-
coupled two-component BECs were found to contain vortex
dimers (which can also be interpreted as meron pairs [23,24])
and multidimer bound states composed of four or six individual
vortices from different components [25]. The dimer and
multidimer bound states were shown to emerge due to the
Rabi coupling giving rise to energy-costing domain walls in the
relative phase between the two components [25,26]. In effect,
the domain walls confine vortices in different components into
bound vortex molecules [25,26]. With increasing strength of
the Rabi coupling, the domain wall between the bound vortices
shrinks and eventually vanishes, merging the constituent
vortices into an “integer vortex” (with the same, coincident
phase winding in each component) [25–27]. Thus, the Rabi
coupling induces an attractive interaction between same-sign
vortices in different components. For detailed studies of
vortex-vortex interactions in multicomponent BECs, we refer
to the works of Eto et al. [28] and Dantas et al. [29].

The sign of the Rabi coupling does not play a role in the
ground state of the two-component system, since the Rabi
energy can always be reversed in sign, while leaving all other
energies unchanged, by multiplying either one of the two
condensate wave functions by −1. This implies that the overall
Rabi coupling in the two-component ground state will always
be nonrepulsive. However, the situation becomes significantly
more involved when there are more than two coherently
coupled components in the system. For instance, in the case
of three Rabi-coupled BEC components, there exist parameter
regimes where it is impossible for all three pairwise Rabi
energies to be maximally attractive at the same point in space,
leading to intrinsic phase frustration. The subtle interplay
between the various interactions suggests that when such a
frustrated system is set in rapid rotation, highly unconventional
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ORLOVA, KUOPANPORTTI, AND MILOŠEVIĆ PHYSICAL REVIEW A 94, 023617 (2016)

vortex lattices may appear in the rotating ground state. So far,
studies of vortices in Rabi-coupled three-component BECs
have focused on states with only a few vortices and have
demonstrated, for example, the existence of stable vortex
trimers [29–32]. The possible structures of ground-state
vortex lattices in these systems, however, have remained
unexplored.

In this work, we investigate the rotational response of
coherently coupled three-component BECs in the parameter
regime where the Rabi energies necessarily exhibit intrinsic
phase frustration. Specifically, we show that the interplay of
the intrinsic Rabi frustration with the other interactions and
superfluidity of the BEC can result in the emergence of exotic
vortex lattices in the rotating ground state of the harmonically
trapped system. Fixing the relative phases of two pairs already
fixes the relative phase of the remaining pair. This can result in
the suppression of some of the three pairwise Rabi couplings
and generally leads to the existence of phase-frustrated vortex
lattices with unconventional features such as zig-zag patterns,
vortex chains, and doubly quantized vortices. In the limit of
strong Rabi coupling, the phase frustration causes the three-
component BEC to behave effectively as a two-component
BEC with only density-density interactions. Consequently,
we also observe a hexagonal-to-rectangular transition in the
ground-state vortex lattice in agreement with previous results
for the two-component system [15,16,21].

The overall repulsive intercomponent interaction tends to
favor interlacing of vortices in different components, splitting
integer composite vortices into separate entities. Although
each component still has the same vortex density determined
by the external rotation frequency, the interlaced vortex lattices
of the multicomponent system acquire a skyrmionic character
and therefore can no longer be satisfactorily described by
mere vortex winding numbers. For this reason, we invoke
a skyrmionic topological index defined in terms of a CP 2

invariant [33] and use it to classify the observed nontrivial
states. This classification has a broader scope in multicompo-
nent quantum physics, since the relative phase frustration and
vortex interlacing appear not only in multicomponent BECs
but also in multiband superconductors [34–38], where they
are associated with, e.g., fractional vortices [39], solitons [27],
skyrmions [33,40,41], and vortex sheets [42].

The remainder of the article is organized as follows. In
Sec. II, we outline the theoretical description of the coherently
coupled rotating three-component BECs. Section III presents
our main results, summarized in two phase diagrams of
skyrmionic vortex lattices, with the discovered domains illus-
trated by representative examples of ground-state solutions.
The physical interpretation of the obtained lattices is given
in terms of the topological index (Sec. III A), intrinsic phase
suppression of the Rabi coupling (Sec. III B), and domain walls
(Sec. III C). Finally, we summarize our findings and discuss
the outlook in Sec. IV.

II. THEORETICAL FRAMEWORK

Our starting point is a harmonically trapped three-
component BEC consisting of three different spin states of
a single atomic species, coupled coherently to each other.
We use the standard zero-temperature mean-field approach [5]

and describe the condensate with three complex-valued wave
functions �i , where i ∈ {1,2,3}. For simplicity, we focus on
the case of a highly oblate cylindrically symmetric trapping
potential with the harmonic trap frequencies satisfying ω(i)

z �
ω(i)

x = ω(i)
y ≡ ω, which implies that the BEC is quasi-two-

dimensional and the z dependence can be integrated out.
Assuming that the system is set into rotation about the z

axis with angular frequency �, we write the two-dimensional
Gross-Pitaevskii (GP) energy functional [30] in the rotating
frame of reference as

E =
∫ [ 3∑

i=1

(
�

2

2m
|∇�i |2 + 1

2
mω2r2|�i |2 − ��∗

i Lz�i

)

+ 1

2

3∑
i=1

3∑
j=1

gij |�i |2|�j |2 − �

∑ ∑
i �=j

ωij�
∗
i �j

]
d2r,

(1)

where m is the mass of the atoms, r2 = x2 + y2, and
Lz = −i�(y∂x − x∂y) is the angular momentum operator.
The local density-density interactions are characterized by
the intracomponent and intercomponent coupling constants
gii and gij (= gji, i �= j ), respectively. We assume that
g11 = g22 = g33 and g12 = g13 = g23. The additional cou-
pling constants ωij (= ωji ∈ R) in Eq. (1) interlink the
phase angles of the three wave functions and are re-
ferred to in the literature as the effective Rabi frequencies
[23–26,43,44]. Accordingly, we call the last term in Eq. (1)
the Rabi energy and denote the corresponding energy density
as εR = ∑∑

i<j εij , where εij = −�ωij (�∗
i �j + �∗

j �i) are
the pairwise Rabi energy densities. The Rabi term describes
a coherent coupling induced by an external driving field,
which allows atoms to change their internal state coherently,
and has been achieved experimentally for two-component
BECs by means of two-photon transitions as reported, e.g.,
in Refs. [7–9].

Variation of Eq. (1) with respect to each �∗
i leads to three

coupled time-independent GP equations:

(
− �

2

2m
∇2 + 1

2
mω2r2 − �Lz − μ +

3∑
j=1

gij |�j |2
)

�i

− �

∑
j (�=i)

ωij�j = 0, (2)

where i ∈ {1,2,3}. Here μ is a chemical potential enforcing
the constraint

∫ 3∑
i=1

|�i(r)|2d2r = N, (3)

since we consider a coherently coupled system whose Hamil-
tonian conserves the total particle number N = ∑

i Ni but not
the componentwise numbers Ni = ∫ |�i |2d2r .

In order to obtain dimensionless quantities for the nu-
merics, we measure length in units of the radial harmonic
oscillator length ar = √

�/mω and energy in units of �ω.
We parametrize the interactions by the two dimensionless
quantities g = g11mN/3�

2 and σ = g12/g11 and consider only
the repulsively interacting miscible system with 0 < σ � 1.
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Then dimensionless GP equations take the form(
−1

2
∇̃2 + 1

2
r̃2 + g|�̃i |2−�

ω
L̃z − μ

�ω
+ σg

∑
j (�=i)

|�̃j |2
)

�̃i

−
∑
j (�=i)

ωij

ω
�̃j = 0, (4)

where �̃i = N−1/2
√

3ar�i and r̃ = r/ar . Our numerical
analysis of the three-component BEC is based on solving
Eqs. (4) with link-variable discretization [45] and a relaxation
method.

III. NUMERICAL RESULTS

We have numerically solved the GP equations of the rotating
three-component BEC in the presence of both density-density
and Rabi couplings [Eqs. (4)]. In all the states we present,
we have fixed the intracomponent coupling strength to g =
g11mN/3�

2 = 2115 and the rotation frequency to � = 0.97ω.
On the other hand, we treat the relative intercomponent
density-density coupling strength σ = g12/g11 and the Rabi
frequency ω12 as tunable parameters in order to study their
effect on the ground-state vortex lattices of the system. We
limit our analysis to repulsive intercomponent interactions
in the miscible regime, 0 < σ � 1, and take ω12 < 0. We
assume the other two Rabi frequencies ω13 and ω23 to be
equal and consider two different fixed positive values, ω13 =
ω23 = 0.01ω and ω13 = ω23 = 0.05ω, since these already
convey many of the key phenomena associated with the
phase-frustrated Rabi coupling. Hence, we end up with two
different fixed parameter sets (g,�/ω,ω13/ω,ω23/ω) and the
dimensionless variables σ and ω12/ω.

Our numerical results for the two parameter sets are
presented as two phase diagrams in the plane of σ and ω12/ω

in Figs. 7 and 14. In the remainder of this section, we will
first construct the phase diagrams in detail (Sec. III A) and
then discuss the emerging phenomena of Rabi suppression
(Sec. III B) and domain walls (Sec. III C). We recall from
Ref. [46] that when the Rabi couplings are not present, only
triangular lattices were observed in the rotating ground states
in the range 0 � σ < 1.

A. Lattice phase diagrams

Let us first consider the parameter set with ω13 = ω23 =
0.01ω, and vary the interspecies interaction strength and
the remaining Rabi frequency in the ranges 0.1 � σ � 1
and 0.01ω � −ω12 � 0.12ω, respectively. This results in a
diverse set of ground-state vortex lattices, examples of which
are depicted in Figs. 1–6. For each solution, we present the
density |�i |2 of each component, the total density ntot =∑

i |�i |2, and the Rabi energy density εR; we also present
the relative phase angles between the components using
the quantities sgn(ωij ) cos(ϕi − ϕj ), where sgn is the sign
function, i < j , and ϕi = arg(�i). In addition, we locate the
vortices as the singular points of the superfluid velocity fields
�∇ϕi/m; the uncertainty in their position is of the order of the
grid spacing, which is 0.0875ar throughout this work. We will
refer to Figs. 1–6 when discussing the related phenomena in
the subsequent sections.

min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

25
a

r

FIG. 1. Rotating ground state for the intercomponent interac-
tion strength σ = g12/g11 = 0.2 and the dominant Rabi frequency
ω12/ω = −0.01. The panels show (a)–(c) atomic densities |�1|2,
|�2|2, and |�3|2, respectively; (d) total density ntot; (e) negative
Rabi energy density −εR; (f) vortices of each component on top
of −εR, with (blue) squares, (magenta) dots, and (green) triangles
denoting vortices in the wave functions �1, �2, and �3, respectively;
(g) − cos ϕ12, where ϕij = arg (�i) − arg (�j ); (h) cos ϕ13; (i) cos ϕ23.
Panel (f) also indicates the elementary unit cell of the combined
lattice formed by the three kinds of vortices. The average topological
index Q̄ = 1 for this state [see Eq. (6)]. This state corresponds
to the intracomponent interaction strength g = g11mN/3�

2 = 2115,
rotation frequency �/ω = 0.97, and Rabi frequencies ω13 = ω23 =
0.01ω. The field of view in panels (f)–(i) is 11ar × 11ar , where
ar = √

�/mω, showing the central portion of the harmonic trap. The
range of the colormap is from −1 to +1 in panels (g)–(i), but varies
between panels (a)–(f).

For 0.1 � σ � 0.9 and sufficiently small values of |ω12|,
all three components host triangular vortex lattices that are
interlaced with one another. An example of such a state is
presented in Fig. 1 for σ = 0.2 and ω12 = −0.01ω. However,
for 0.1 � σ � 0.2 and increased |ω12|, vortices in compo-
nents 1 and 2 move on top of each other to form overlapping
triangular vortex lattices, which are in turn interlaced by the
triangular lattice in component 3 (Fig. 2). Together, the three
components constitute a honeycomb lattice of local minima in
the total density ntot [Fig. 2(d)].

For stronger intercomponent repulsion within the miscible
regime, 0.3 � σ � 0.9, and increased |ω12|, the triangular
vortex lattices in components 1 and 2 become replaced by
almost overlapping square lattices of vortex dimers, while
component 3 hosts a square lattice of solitary vortices that
interlaces both dimer lattices. Ground states of this type are
shown in Figs. 3 and 4. In the range 0.3 � σ � 0.7, the
alignment of the dimers tends to exhibit small distortions
across the system, as is evident from Figs. 3(a) and 3(b).
Note, however, that neither ntot [Fig. 3(d)] nor the Rabi energy
density εR [Fig. 3(e)] shows the lattice distortions appearing in
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FIG. 2. Rotating ground state for σ = g12/g11 = 0.2 and
ω12/ω = −0.09. Other parameter values are the same as in Fig. 1.
The panels depict (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23.
Panel (f) also indicates the elementary unit cell of the combined vortex
lattice. The average topological index Q̄ = 2/3 for this state. The field
of view in panels (f)–(i) is 11ar × 11ar . The colormap ranges from 0
to a varying positive maximum in panels (a)–(f) and from −1 to +1
in panels (g)–(i).
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FIG. 3. Rotating ground state for σ = g12/g11 = 0.7 and
ω12/ω = −0.09. Other parameter values are the same as in Fig. 1.
The panels depict (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23.
Panel (f) also shows the elementary unit cell of the combined vortex
lattice. The average topological index Q̄ = 4/3 for this state. The
field of view in panels (f)–(i) is 11ar × 11ar . The colormap ranges
from 0 to a varying positive maximum in panels (a)–(f) and from −1
to +1 in panels (g)–(i).
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(g) (h) (i)

x

y

25 ar

25
a

r

FIG. 4. Rotating ground state for σ = 0.9 and ω12/ω = −0.09.
Other parameter values are the same as in Fig. 1. The panels show
(a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f) also indicates
the elementary unit cell of the combined vortex lattice. The average
topological index Q̄ = 4/3 for this state. The field of view in panels
(f)–(i) is 11ar × 11ar . The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in panels
(g)–(i).
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FIG. 5. Rotating ground state for σ = 1 and ω12/ω = −0.01.
Other parameter values are the same as in Fig. 1. The panels
correspond to (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23.
Panel (f) also shows the elementary unit cell of the combined vortex
lattice. The average topological index Q̄ = 2 for this state. The field
of view in panels (f)–(i) is 11ar × 11ar . The colormap ranges from 0
to a varying positive maximum in panels (a)–(f) and from −1 to +1
in panels (g)–(i).
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min max
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FIG. 6. Rotating ground state for σ = 1 and ω12/ω = −0.09.
Other parameter values are the same as in Fig. 1. The panels
correspond to (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR;
(f) vortices superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23.
Panel (f) also indicates the elementary unit cell of the combined vortex
lattice. The average topological index Q̄ = 4/3 for this state. The field
of view in panels (f)–(i) is 11ar × 11ar . The colormap ranges from 0
to a varying positive maximum in panels (a)–(f) and from −1 to +1
in panels (g)–(i).

components 1 and 2. For 0.8 � σ � 0.9, on the other hand, the
dimers tend to be uniformly aligned, as in Figs. 4(a) and 4(b).

The case σ = 1, corresponding to strong intercomponent
repulsion, can be considered as the border that separates
miscible and immiscible regimes. Here, two lattice phases
can be distinguished with varying ω12. For 0.01ω � −ω12 �
0.04ω, we obtain interlaced triangular vortex-dimer lattices
in components 1 and 2, while a triangular lattice of doubly
quantized fused-core vortices appears in component 3 (Fig. 5).
A fused-core vortex comprises two singly quantized vortices
practically coalesced into one doubly quantized defect, or at
least to within a distance smaller than the core diameter of
the constituent vortices. The appearance of doubly quantized
vortices in the ground state of the system exemplifies the
versatile rotational behavior of multicomponent BECs and is
to be contrasted with single-component condensates, where
multiply quantized vortices tend to be highly unstable against
splitting [47–50] unless specifically stabilized by confine-
ment [50–52]. The distinct elliptical shape of the combined
defect [Fig. 5(c)] is due to the small separation of the phase
singularities within the fused core. In the second lattice phase
at σ = 1, which occurs for 0.05ω � −ω12 � 0.12ω and is
illustrated in Fig. 6, component 1 hosts a honeycomb vortex
lattice, component 2 a triangular lattice of vortex dimers,
and component 3 a triangular lattice of fused-core vortices.
Furthermore, we note that the Rabi energy density exhibits a
honeycomb spatial structure [Fig. 6(e)].

All the states discussed above can actually be topologically
characterized as containing skyrmions, which have attracted
considerable attention in the context of multicomponent

BECs [19–22,31,53–57]. As detailed in Ref. [33], skyrmions
in a K-component model in two spatial dimensions can be
defined by the CP K−1 topological invariant

Q =
∫

iεβα

2π |�|4 (|�|2∂α�†∂β� + �†∂α�∂β�†�)d2r, (5)

termed the topological index.CP K−1 is the complex projective
space whose points label the complex lines through the origin
of the space CK . In Eq. (5), �† = (�∗

1 ,�∗
2 , . . . ,�∗

K ), εβα

is the two-dimensional Levi-Civita symbol, and summation
over α,β ∈ {x,y} is implied. For our states, the integration in
Eq. (5) is carried over an elementary unit cell of the combined
three-component vortex lattice, which we determine from the
central region of the trap by treating the vortex array as a system
of three types of point particles. The chosen elementary unit
cells are indicated by the black solid lines in panels (f) of
Figs. 1–6. The unit cell is also used to categorize the overall
lattice geometry as either rectangular or hexagonal: we identify
the geometry as rectangular if the elementary unit cell can be
chosen so that its largest angle is closer to π/2 than it is to 2π/3;
otherwise, the geometry is identified as hexagonal [58]. We
note in passing that, from a topological point of view, the ex-
istence of two-dimensional skyrmions is allowed in the model
because the second homotopy group π2(CP K−1) for K � 2 is
isomorphic to the additive group of integers, Z [59,60].

The topological index Q is zero for an integer vortex, i.e.,
when there is an equally charged vortex in every component
at the same point in space (or, in fact, when the vortices
are separated by distances significantly smaller than their
core radii). In our case, we deal with two types of states:
In the first type, which corresponds to small values of |ω12|,
there are three mutually interlaced lattices, as, for example,
in Fig. 1. In the second type, which appears when |ω12| is
increased, we find increasingly overlapping vortex lattices in
components 1 and 2, as in Fig. 2. If we calculate the CP 2

topological index for the states in Figs. 1 and 2, we obtain the
same Q = 1 per combined-lattice unit cell, although these two
examples clearly constitute two distinct phases. Therefore, in
order to better distinguish between different phases, we instead
calculate pairwise CP 1 topological indices Qij , i < j , by
using Eq. (5) separately for each pair of the components [61],
and then calculate an average topological index Q̄ for the entire
three-component state as

Q̄ = Q12 + Q13 + Q23

3
. (6)

We stress that each Qij is calculated over the same unit cell of
the three-component lattice. In all the cases we consider here,
Qij ∈ {0,1,2}.

To illustrate the use of Eq. (6), let us consider, for example,
the state shown in Fig. 1, for which the elementary unit
cell is chosen as the rhombus that connects four vortices of
component 3 [Fig. 1(f)]. The unit cell encloses one vortex of
each component. As a result, the pairwise topological indices
are Q12 = Q13 = Q23 = 1, and hence the average topological
index for the state is Q̄ = 1. On the other hand, calculating the
average topological index for the state shown in Fig. 2 in the
same manner gives Q̄ = 2/3, because the individual vortices
of components 1 and 2 reside on top of each other and hence
Q12 = 0.
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2/3

Q̄ = 1

Q̄ = 4/3

2

H

R−
ω

1
2
/
ω

σ

FIG. 7. Phase diagram of skyrmionic vortex lattices as a function
of the intercomponent interaction strength σ and the Rabi frequency
ω12, for fixed intracomponent interaction strength g = 2115, external
rotation frequency �/ω = 0.97, and Rabi frequencies ω13 = ω23 =
0.01ω. Each asterisk corresponds to a numerically solved ground state
of the rotating three-component Bose-Einstein condensate. The gray
solid lines demarcate regions with different indicated values of the
average topological index Q̄ [Eq. (6)]. The (red) dashed lines indicate
the boundary across which the geometry of the elementary unit cell
of the three-component vortex lattice changes from hexagonal (H) to
rectangular (R) or vice versa.

By calculating the average topological index Q̄ from Eq. (6)
for all the obtained states and collecting the results, we obtain
the phase diagram shown in Fig. 7. It classifies the different
types of ground-state skyrmionic vortex lattices for the fixed
Rabi couplings ω13 = ω23 = 0.01ω in the two-dimensional
domain 0.1 � σ � 1 and 0.01ω � −ω12 � 0.12ω. In addition
to indicating the changes in Q̄, Fig. 7 shows the boundary
across which the geometry of the combined vortex lattice
changes from hexagonal to rectangular or vice versa.

The states with Q̄ = 1 correspond to skyrmionic lattices
with one vortex per component in a rhombic unit cell that
results from three mutually interlaced triangular vortex lattices
[Fig. 1(f)]. This phase occurs for σ � 0.9 and small |ω12|. For
σ � 0.2 and large |ω12|, the states with Q̄ = 2/3 also have
a rhombic unit cell but with overlapping triangular lattices
in components 1 and 2 [Fig. 2(f)]. However, for σ � 0.3, the
states with Q̄ = 2/3 are described by a square unit cell instead.
The rectangular lattice phase with Q̄ = 4/3, which occurs
for 0.3 � σ � 0.9 at intermediate values of |ω12|, originates
from almost overlapping square lattices of vortex dimers in
components 1 and 2 that are interlaced by a square vortex
lattice in component 3, implying a rectangular unit cell that
contains two vortices of each component [Figs. 3(f) and 4(f)].
The states with Q̄ = 2 appearing at σ = 1 for small values of
|ω12| have a hexagonal unit cell that includes two vortices of
each component [Fig. 5(f)]; with increasing |ω12|, the vortices
of component 1 begin to coincide with those of component 2,
resulting in a hexagonal lattice phase with Q̄ = 4/3 for σ = 1
and −ω12 � 0.06ω [Fig. 6(f)].

We now turn to the second parameter set, which differs
from the first by having ω13 = ω23 = 0.05ω instead of 0.01ω.
Representative ground-state solutions for 0.03ω � −ω12 �
0.16ω and 0.1 � σ � 1 are depicted in Figs. 8–13. When
all the obtained solutions from this range are classified in
terms of the average topological index Q̄ [Eq. (6)], we obtain

min max

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar

25
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r

FIG. 8. Rotating ground state for the intercomponent interac-
tion strength σ = g12/g11 = 0.2 and the dominant Rabi frequency
ω12/ω = −0.09. The panels show (a)–(c) atomic densities |�1|2,
|�2|2, and |�3|2, respectively; (d) total density ntot; (e) negative Rabi
energy density −εR; (f) vortices of each component on top of −εR;
(g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f) also shows the
elementary unit cell of the combined vortex lattice. The average
topological index Q̄ = 4/3 for this state. This state corresponds
to the intracomponent interaction strength g = g11mN/3�

2 = 2115,
rotation frequency �/ω = 0.97, and Rabi frequencies ω13/ω =
ω23 = 0.05ω. The field of view in panels (f)–(i) is 11ar × 11ar . The
colormap ranges from 0 to a varying positive maximum in panels
(a)–(f) and from −1 to +1 in panels (g)–(i).

the skyrmionic-lattice phase diagram presented in Fig. 14. In
addition to indicating the observed values of Q̄, the diagram
categorizes the ground states as hexagonal or rectangular
according to the geometry of the elementary unit cell. Below,
we provide a detailed account of the discovered phases.

We first consider the small-σ regime (Figs. 8 and 9). For
small |ω12|, components 1 and 2 host zig-zag vortex lattices
and component 3 exhibits a conventional triangular lattice.
All three lattices interlace one another, and the unit cell of
the combined vortex lattice is a rectangle containing two
vortices of each component; hence, the average topological
index is Q̄ = 2. With increasing |ω12|, the zig-zag lattices in
components 1 and 2 begin to overlap more and more, while
the triangular lattice in component 3 remains interlaced with
the other two, giving rise to Q̄ = 4/3 (Fig. 8). In the limit
of large |ω12|, the lattices in components 1 and 2 become
locked together and lose their zig-zag character, which results
in a two-component-like phase with Q̄ = 2/3 and a rhombic
unit cell (Fig. 9). The total density exhibits a plane-wave-like
modulation in both Figs. 8(d) and 9(d).

The states occurring for intermediate strengths of the
intercomponent repulsion, 0.5 � σ � 0.8, correspond to two
components hosting zig-zag lattices and one component hav-
ing a square lattice. For small |ω12|, all three lattices interlace
one another and Q̄ = 2 (Fig. 10). With increasing |ω12|, the
separation distance between component-1 and component-2
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FIG. 9. Rotating ground state for σ = 0.1 and ω12/ω = −0.16.
Other parameter values are the same as in Fig. 8. The panels
show (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices
superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f)
also indicates the elementary unit cell of the combined vortex lattice.
The average topological index Q̄ = 2/3 for this state. The field of
view in panels (f)–(i) is 11ar × 11ar . The colormap ranges from 0 to
a varying positive maximum in panels (a)–(f) and from −1 to +1 in
panels (g)–(i).
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FIG. 10. Rotating ground state for σ = 0.7 and ω12/ω = −0.03.
Other parameter values are the same as in Fig. 8. The panels
show (a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices
superposed on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f)
also indicates the elementary unit cell of the combined vortex lattice.
The average topological index Q̄ = 2 for this state. The field of view
in panels (f)–(i) is 11ar × 11ar . The colormap ranges from 0 to a
varying positive maximum in panels (a)–(f) and from −1 to +1 in
panels (g)–(i).

min max
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FIG. 11. Rotating ground state for σ = 0.7 and ω12/ω = −0.12.
Other parameter values are the same as in Fig. 8. The panels show
(a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f) also shows
the elementary unit cell of the combined vortex lattice. The average
topological index Q̄ = 4/3 for this state. The field of view in panels
(f)–(i) is 11ar × 11ar . The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in panels
(g)–(i).
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FIG. 12. Rotating ground state for σ = 0.9 and ω12/ω = −0.06.
Other parameter values are the same as in Fig. 8. The panels depict
(a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f) also shows
the elementary unit cell of the combined vortex lattice. The average
topological index Q̄ = 2 for this state. The field of view in panels
(f)–(i) is 11ar × 11ar . The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in panels
(g)–(i).

023617-7
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FIG. 13. Rotating ground state for σ = 1 and ω12/ω = −0.09.
Other parameter values are the same as in Fig. 8. The panels show
(a) |�1|2; (b) |�2|2; (c) |�3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cos ϕ12; (h) cos ϕ13; (i) cos ϕ23. Panel (f) also shows
the elementary unit cell of the combined vortex lattice. The average
topological index Q̄ = 2 for this state. The field of view in panels
(f)–(i) is 11ar × 11ar . The colormap ranges from 0 to a varying
positive maximum in panels (a)–(f) and from −1 to +1 in panels
(g)–(i).

vortices decreases and the average topological index eventually
falls to Q̄ = 4/3 (Fig. 11). In both phases, the unit cell is
a rectangle that encloses two vortices of each component
and approaches a square with increasing |ω12| [Figs. 10(f)
and 11(f)]. We also note that while the spatial profile of the

2/3

Q̄ = 2

Q̄ = 4/3

R H

H

−
ω

1
2
/
ω

σ

FIG. 14. Phase diagram of skyrmionic vortex lattices in the plane
of the intercomponent interaction strength σ and the Rabi frequency
ω12 for fixed intracomponent interaction strength g = 2115, external
rotation frequency �/ω = 0.97, and Rabi frequencies ω13 = ω23 =
0.05ω. Each asterisk corresponds to a numerically solved ground
state of the three-component Bose-Einstein condensate. The gray
solid lines demarcate regions with different indicated values of the
average topological index Q̄ [Eq. (6)]. The (red) dashed lines mark
the boundary across which the geometry of the elementary unit cell
of the three-component vortex lattice changes from to rectangular (R)
to hexagonal (H) or vice versa.

Rabi energy density εR depends noticeably on ω12 [Figs. 10(e)
and 11(e)], the total density ntot exhibits a square pattern in
both phases [Figs. 10(d) and 11(d)].

When the intercomponent interaction strength σ ap-
proaches unity, the overall geometry of the three-component
lattices changes back to hexagonal. For σ = 0.9 and
0.03ω � −ω12 � 0.09ω, the system hosts triangular dimer
lattices in components 1 and 2 and parallel straight chains
of vortices in component 3, as illustrated in Fig. 12 for
ω12 = −0.06ω. For σ = 1 and 0.03ω � −ω12 � 0.09ω, the
dimers in components 1 and 2 become more tightly bound
and turn into fused-core vortices, while component 3 hosts a
triangular lattice of dimers (Fig. 13). As shown in Figs. 12(f)
and 13(f), the unit cell for both of these states is a rhomboid
containing two vortices of each component, and the average
topological index is Q̄ = 2. With increasing |ω12|, the vortices
in component 1 move on top of those in component 2, resulting
in the hexagonal lattice phase with Q̄ = 4/3 observed for
0.12ω � −ω12 � 0.16ω.

B. Rabi suppression in the three-component system

In the Gross-Pitaevskii model for rotating Rabi-coupled
two-component BECs, which is obtained from Eq. (1) by
assuming �3 ≡ 0, the sign of the Rabi frequency ω12 is
irrelevant for the ground-state energetics because changing
the sign of ω12 can be exactly balanced by changing the
sign of either �1 or �2. Therefore, ω12 = ω0 and ω12 =
−ω0 (ω0 ∈ R) will yield physically identical ground-state
solutions with the same attractive Rabi energy ER � 0 that
favors coincidence of same-sign vortices between the two
components. In the three-component counterpart, however,
the signs of ωij make a difference, and can result in intrinsic
frustration and consequent suppression of some or all of the
three pairwise Rabi couplings.

In order to heuristically see how the Rabi suppression
emerges in the three-component BEC, consider the wave
functions in the vicinity of a vortex, for example, in
component 1. In local polar coordinates (r ′,φ′) with the
vortex at r ′ = 0, we write the wave functions as �j (r ′,φ′) =
exp [i(κjφ

′ + Cj )]fk(r ′), where the constants Cj ∈ R only
affect the Rabi term in Eq. (1). The Rabi energy density then
becomes

Eloc
R

πr2
0

= − 2

r2
0

∑ ∑
i<j

ωij δκi ,κj
cos Cij

∫ r0

0
fifj r

′dr ′, (7)

where δκi ,κj
is the Kronecker delta, Cij = Ci − Cj , and r0

defines the small disk over which the local Rabi energy Eloc
R is

averaged. In the case κ1 = κ2 = κ3 = κ , i.e., a κ-quantum in-
teger vortex (or no vortices at all if κ = 0), all three terms in the
sum can be nonzero. If we further assume f1 = f2 = f3, the
minimization of the above Rabi energy density implies maxi-
mization of the function h(C12,C13) = ∑∑

i<j ωij cos Cij =
ω12 cos C12 + ω13 cos C13 + ω23 cos (C12 − C13) with respect
to C12 and C13. This function has an upper bound of∑ ∑

i<j |ωij |. However, depending on the values of ωij ,
maxCij

h(C12,C13) may be significantly below this upper
bound, indicating that some or all of the Rabi couplings
are suppressed by the relative phase frustration between the
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FIG. 15. Pairwise Rabi energies Eij = −�ωij

∫
(�∗

i �j +
�∗

j �i) d2r as functions of the Rabi frequency ω12 for fixed σ = 0.7,
g = 2115, and �/ω = 0.97. Here Eij are for ω13 = ω23 = 0.01ω

and E′
ij for ω13 = ω23 = 0.05ω.

particular components. In general, the upper bound can be
reached if and only if ω12ω13ω23 � 0, which is never satisfied
by the parameter values used in this work (all the presented
states have ω12 < 0 < ω13 = ω23).

Of course, the above calculation based on Eq. (7) is only
a crude approximation to the intricate behavior we have
obtained from the full GP equations (4). But at least it shows
that even with fully overlapping vortex lattices in all three
components, corresponding to nonskyrmionic states with
Q̄ = 0, the amount of energy gained by minimizing the
Rabi energy would be strongly suppressed by the inherent
phase frustration; this in turn explains why the interlacing
of vortices and the consequently rich skyrmionic-lattice
and relative-phase structures feature so prominently in the
system. The approximation suggests that for the parameter
set used in Fig. 7, the phase frustration would occur
symmetrically between all three pairs at ω12 = −0.01ω,
for which the above maximization yields cos C12 = −0.5
and cos C13 = cos C23 = 0.5 (Figs. 1 and 5 show examples
with such ω12). At ω12 = −0.09ω (Figs. 2–4 and 6), the
optimal relative phases would yield cos C12 = −0.99 and
cos C13 = cos C23 = 0.056, so that maxCij

h(C12,C13) =
0.091ω < 0.11ω = ∑∑

i<j |ωij |. This means that the Rabi
couplings within the pairs 1-3 and 2-3 would be strongly
suppressed, whereas the coupling within the pair 1-2 would
be almost maximal. The prediction is in line with Figs.
2–4 and 6, where locking of the vortex lattices is observed
within the pair 1-2 but not within the other two pairs. For the
parameter set used in Fig. 14, the phase frustration is expected
to be symmetric between all three pairs at ω12 = −0.05ω (cf.
Fig. 12, where ω12 = −0.06ω) and to occur dominantly within
the pairs 1-3 and 2-3 for ω12 � −0.09ω (Figs. 8, 9, 11, and 13).

Figure 15 shows the behavior of the pairwise Rabi energies
E12 and E13 as functions of −ω12 for fixed σ = 0.7, g = 2115,
and �/ω = 0.97, as obtained from the numerical solution
of Eqs. (4). Unprimed quantities are for ω13 = ω23 = 0.01ω

and primed quantities for ω13 = ω23 = 0.05ω. We observe
that −E12 and −E′

12 are superlinearly increasing functions of
−ω12, whereas −E13 and −E′

13 have a maximum at a finite
−ω12. The decrease of −E13 and −E′

13 with −ω12 is a direct
consequence of the relative phase suppression between the
particular components. The Rabi energies for other values of
σ show qualitatively similar behavior.

C. Domain walls in the relative phases

The Rabi coupling leads to well-defined relative phases
between the condensates, and therefore, to the possibility of
domain walls, i.e., one-dimensional defects [62], in the relative
phase fields [26]. The Rabi term breaks the U(1) symmetries
associated with the relative phases ϕij ≡ ϕi − ϕj , where
ϕi = arg(�i) and i < j , by rendering the value for which
sgn(ωij ) cos ϕij = 1 energetically favorable. This prompts us
to define a domain wall to lie along the path that connects two
oppositely charged vortices in ϕij (i.e., same-sign vortices in ϕi

and ϕj ) and satisfies cos ϕij = −sgn(ωij ), i.e., maximizes the
phase-dependent part of the pairwise Rabi energy. Together,
the repulsive density-density coupling gij > 0 and the Rabi
coupling ωij �= 0 give rise to an energy minimum at a
finite domain-wall length [23]. Increasing |ωij | decreases this
optimal length until the two oppositely charged vortices in ϕij

merge and the domain wall vanishes.
Let us now investigate the behavior of domain walls in the

states discussed in the preceding sections (Figs. 1–6 and 8–13).
To this end, we consider the three components in pairs and their
corresponding pairwise relative phases ϕ12, ϕ23, and ϕ13. The
relative phases are presented in panels (g)–(i) of said figures
using the quantities sgn(ωij ) cos ϕij , with domain walls shown
in black; the positions of vortices of the relevant components
are also indicated.

The properties of the domain walls depend on the strength
of the Rabi coupling. For example, their characteristic width
(analogous to the core size of vortices) in ϕij is proportional
to |ωij |−1/2 [26]. In Fig. 16, we show how the domain walls
change when ω12 is varied in the range 0.01ω � −ω12

� 0.12ω while the other parameters are kept constant (so that
the depicted states lie along the vertical line σ = 0.7 in Fig. 7).
At ω12 = −0.01ω, the domain walls are fairly delocalized,
appearing wide between the oppositely charged vortices
in each ϕij [Fig. 16(a)]. Increasing |ω12| to 0.03ω narrows
the domain walls in ϕ12, while ϕ13 and ϕ23 remain nearly
unchanged [Fig. 16(b)]. In this regime, the pairwise Rabi
energies −E12, −E13 and −E23 all increase with increasing
−ω12, as shown in Fig. 15. Figures 16(a)–16(c) all correspond
to the lattice phase that consists of three mutually interlaced
triangular lattices, has Q̄ = 1, and is illustrated in Fig. 1. At
ω12 = −0.06ω, the strong Rabi coupling between components
1 and 2 shrinks the domain walls in ϕ12, with vortices in
ϕ1 and ϕ2 almost coinciding [Fig. 16(d)]. Simultaneously,
the Rabi energies −E13 and −E23 reach their maximum and
gradually start decreasing due to the relative phase frustration
occurring for these pairs (Fig. 15). The state in Fig. 16(d) has
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FIG. 16. Relative phases between the three condensate compo-
nents shown in terms of sgn(ωij ) cos ϕij , where ϕij = arg (�i) −
arg (�j ) and the sgn function makes small values (shown in black)
correspond to maximally repulsive pairwise Rabi energy density
εij . The first column is for − cos ϕ12, the second for cos ϕ13, and
the third for cos ϕ23. The rows correspond to different values of
ω12/ω: (a) −0.01, (b) −0.03, (c) −0.04, (d) −0.06, and (e) −0.12.
Other parameters are fixed at σ = 0.7, �/ω = 0.97, g = 2115, and
ω13 = ω23 = 0.01ω. The field of view in each panel is 11ar × 11ar ,
and the vortices in �1, �2, and �3 are marked with (blue) squares,
(magenta) dots, and (green) triangles, respectively.

Q̄ = 4/3 and a rectangular vortex-lattice unit cell enclosing
two vortices of each component. Finally, at ω12 = −0.12ω

[Fig. 16(e)], the coincidence of vortex positions between
components 1 and 2 has become almost perfect and the
domain walls have essentially vanished in ϕ12 [63]; this also
halves the size of the elementary unit cell, yielding Q̄ = 2/3.
Thus, we arrive at a peculiar state in which the domain walls
persist in ϕ13 and ϕ23, but vanish completely in ϕ12. The
effective locking of components 1 and 2 with ϕ12 
 π implies
that ϕ13 ≡ ϕ23 + ϕ12 
 ϕ23 + π , in agreement with Fig. 16(e).

D. Lattice phases revisited

Equipped with the insight gained from the previous two
subsections, let us return to the phase diagrams in Figs. 7
and 14, and the various skyrmionic phases therein. One can
see that in the limit of large |ω12|, both phase diagrams exhibit a

hexagonal-to-rectangular transition in the underlying vortex-
lattice geometry, which is qualitatively similar to the tran-
sition observed in density-density-coupled two-component
BECs [15,16]. In order to understand how it comes about in the
three-component system, note that when |ω12| is large enough
to overcome the density-density repulsion due to g12 > 0
and dominate over the other Rabi couplings, components 1
and 2 become effectively locked together such that �1 =
sgn(ω12)�2 = −�2. At the same time, the Rabi coupling
becomes very weak for the pairs 1-3 and 2-3 because of the
suppression effect; in fact, since we have ω13 = ω23, �1 =
−�2 implies that ε13 = −ε23, leading to cancellation of these
Rabi couplings from the energy functional. As a consequence,
in this fully locked limit components 1 and 2 can be viewed
as a single component, and the system starts to behave like
a repulsive two-component system with only density-density
interactions. Then the hexagonal-to-rectangular transition is
expected in the overall lattice geometry, and the ensuing
ground states can be classified according to the results of
Refs. [15,16].

For the parameter set used in Fig. 7, an example from
the two-component-like regime with triangular lattices is
presented in Fig. 2 (σ = 0.2), while Fig. 16(e) shows a
two-component-like state with square lattices (σ = 0.7). The
locking of components 1 and 2 implies that no additional
lattice phases are expected for |ω12| > 0.12ω in Fig. 7. For
the parameter set of Fig. 14, on the other hand, the Rabi
frequencies ω13 = ω23 = 0.05ω are so large that for the values
of ω12 considered, the two-component limit with fully locked
components 1 and 2 is reached only for σ � 0.2 (Fig. 9).
Nevertheless, increasing |ω12| beyond the value 0.16 shown in
Fig. 14 is expected to eventually result in two-component-like
lattice phases with Q̄ = 2/3 also for 0.2 < σ < 1.

The states containing zig-zag vortex lattices in some of
the components (Figs. 8, 10, and 11) appeared in the regime
where all |ωij | were comparable with each other and with the
density-density repulsions. The zig-zag lattices can be viewed
as deformed Abrikosov lattices where vortices originally in
a straight row have been displaced in alternating directions.
In the state shown in Fig. 8, with σ = 0.2 and Q̄ = 4/3,
these displacements are in opposite directions in compo-
nents 1 and 2. Visual inspection of Figs. 8(g)–8(i) reveals
that the zig-zag configuration can efficiently accommodate
relatively tightly bound vortex dimers in each ϕij , rendering
it the energy-minimizing state for the comparable Rabi and
density-density couplings between the components. It also
follows from the zig-zag pattern that the dimers in each ϕij are
arranged in an antiferromagnetic order relative to one another,
maximizing the intracomponent vortex distances. The states
illustrated in Figs. 10 and 11 can be understood in a similar
way but with the vortex lattices in the individual components
having an underlying square geometry instead of the hexagonal
one observed in Fig. 8 [64]. Zig-zag vortex patterns have
previously been found for single-component BECs in highly
eccentric harmonic trap potentials [65].

IV. CONCLUSIONS

In this work, we have shown that Rabi-coupled three-
component BECs can host unconventional vortex lattices in the
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rotating ground state of the system. Such lattices were found
to involve, for example, vortices arranged in square, zig-zag,
or chain patterns, or coalesced into dimers or doubly quantized
fused-core vortices. Based on the elementary unit cell of the
combined lattice pattern in each state, we classified the ground
states as either hexagonal or rectangular. We also argued that
the emerging multicomponent lattices can be interpreted as
having a skyrmionic character, which we quantified in terms of
a topological index computed over the unit cell. By combining
these two classification schemes, we collected our results in
the phase diagrams of Figs. 7 and 14. They enable one to
identify the proper ground-state skyrmionic vortex lattice for
different values of the intercomponent interaction strength σ

and the Rabi frequency ω12, for the two different parameter
sets we have used in this work.

For certain combinations of signs and values of the Rabi
frequencies ωij , some of the pairwise Rabi energies turned out
to be heavily suppressed due to relative phase frustration. For
example, when ω12ω13ω23 < 0 and |ω12| � |ω13| ≈ |ω23|, the
Rabi coupling is significant only between components 1 and
2. Such Rabi suppression results in an effective reduction of
the three-component BEC to a density-density-coupled two-
component BEC. In this limit, the three-component system
was found to exhibit a hexagonal-to-rectangular vortex-lattice
transition in agreement with the previous results for the repul-
sively coupled two-component BECs and the classification
given in Refs. [15,16]. Similarly, a three-component multiband
superconductor, for which the Josephson-type coupling serves
as an analog of the Rabi coupling in BECs, also reduces to a
two-gap superconductor at a particular choice of the coupling
matrix [35].

Considering that we have limited our study to a specific
subset of the large parameter space (e.g., by fixing g and
assuming 0 < σ � 1), we expect the rotating ground state of
the Rabi-coupled three-component BEC to harbor many more
unforeseen vortex-lattice structures. This should be especially
true in the more general case where one relaxes the equalities
g11 = g22 = g33 and g12 = g13 = g23, which tend to favor
equal populations of the three components.

In light of the Rabi suppression, it might also be interesting
to compare and contrast the present system with a hybrid three-
component system in which two components are different spin
states of the same atom coherently coupled to each other, while
the third component is a different species with different atomic
mass and coupled only through density-density interactions to
the other two components. In the limit of strong Rabi coupling,
the hybrid system would reduce to a mass-imbalanced two-
component BEC, whose rotating ground state exhibits a variety
of unconventional ground-state vortex structures [17,22]. This
more intricate limiting behavior suggests that when the Rabi
coupling is of intermediate strength, rotation of the hybrid
system will likely produce novel ground-state vortex lattices
that do not exist in the equal-mass system.

To experimentally realize our skyrmionic vortex lattices,
one could use, e.g., 87Rb atoms in the ground-state multiplet
52S1/2. Two-component BECs have already been realized us-
ing mixtures of the |F = 1,mF = −1〉 and |2,1〉 sublevels [8],
the |1,1〉 and |2,2〉 sublevels [13], and the |2,1〉 and |2,2〉 sub-
levels [11] from this multiplet. The Rabi-coupled three compo-
nent BEC could be created by optically trapping a mixture of
three of these states and using microwave and radiofrequency
radiation to coherently couple them via two-photon processes.
The vortex lattices could then be produced by inducing rotation
in the system and letting it relax to its minimum-energy state.
Measurement of the relative phase angles between the BEC
components should also be feasible [7]. Furthermore, we note
that many of the discovered skyrmionic phases could be dis-
tinguished by imaging only the profile of the total density ntot.
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A. V. Vagov, and V. M. Axt, Phys. Rev. B 87, 134510 (2013).
[37] X. Hu and Z. Wang, Phys. Rev. B 85, 064516 (2012).
[38] T. Yanagisawa, Y. Tanaka, I. Hase, and K. Yamaji, Physica C

471, 675 (2011).
[39] M. Sigrist and D. F. Agterberg, Prog. Theor. Phys. 102, 965

(1999).
[40] D. F. Agterberg, E. Babaev, and J. Garaud, Phys. Rev. B 90,

064509 (2014).
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