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Cotrapping different species in ion traps using multiple radio frequencies
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We consider the stability of systems subjected to periodic parametric driving in the context of ions confined
by oscillating electric fields. The behavior of these systems can be understood in terms of a pseudopotential
approximation and resonances arising from parametric excitation. We investigate the key properties of a way of
operating a linear Paul trap with two radio frequencies that simultaneously confines two species with extremely
different charge-to-mass ratios. The theoretical calculations have been verified by molecular dynamics simulations
and normal modes analysis.
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I. INTRODUCTION

Paul traps have been incredibly successful at confining
charged particles, ranging from atomic ions to macroscopic
charged objects [1]. The intrinsic sensitivity of the Paul trap
mechanism on the charge-to-mass ratio of trapped particles
is exploited in mass spectrometry [2,3]. While it is possible
to simultaneously confine species with markedly different
charge-to-mass ratios in a Paul trap, this results in the more
weakly confined species being pushed away from the trap
center [4]. In this article, we describe a method of operating
a Paul trap, with two radio frequency (RF) driving fields, in
which two ions of extremely different charge-to-mass ratios
experience harmonic pseudopotentials with similar spring
constants [5]. In this way, both species can be tightly confined
near the center of the trap so that their interactions are
enhanced. Although the additional driving frequency can
induce more parametric resonances, it is possible to find
parameter values where the system is unconditionally stable
even in the absence of any applied damping. The addition of
damping, from, e.g., laser or buffer gas cooling, acts to enlarge
the stability region.

Gas-phase chemistry of ions at millikelvin temperatures
involves the study of reaction rates and thermodynamic
properties in the regime where quantum effects are important.
Previous experiments and numerical simulations have used
single frequency Paul traps and were limited to species
with similar charge-to-mass ratios. Typically, the lighter
species is a singly charged atomic ion, with a suitable laser
cooling transition, cotrapped with a small molecule with
mass of a few hundred amu [6]. Our scheme opens the
way to working with much heavier charged particles such
as biomolecules, nanodiamonds, and graphene [7,8]. Paul
trapping of large biomolecular ions has also been discussed for
DNA, but in an aqueous solution rather than the usual vacuum
environment [9].

The article is organized as follows. Section II summarizes
the well-established theory of operation of the Paul trap in
terms of the Mathieu equation and the pseudopotential approx-
imation. The conditions for stable trapping are calculated using
Floquet theory. We discuss parametric resonances and how
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they are affected by the addition of linear damping. In Sec. III
we turn to the two-frequency Hill equation and show how the
spring constants of two cotrapped species can be independently
adjusted. In Sec. IV we present an example of cotrapping and
sympathetically cooling a large charged particle with a handful
of atomic ions. We use molecular dynamics and normal mode
analysis to simulate the full dynamics of the system. Finally,
we conclude in Sec. V with a discussion of the experimental
relevance of our results and future prospects.

II. KINEMATICS OF THE PAUL TRAP

The Paul trap, invented by Wolfgang Paul, confines ions
with an oscillating electric quadrupole field [10,11]. It has
many diverse applications including frequency standards
and quantum computing. The development of laser cooling
techniques had an important impact on the use of ion traps, and
even charged particles without suitable optical transitions can
be cooled sympathetically by exchanging energy with atomic
ions that are amenable to laser cooling techniques.

In the following we consider a linear Paul trap with
alternating voltage V (t) = V1 cos(�1t) applied to four parallel
rod-shaped electrodes and the end caps held at a constant
voltage U0. The total electric field produced by such an
arrangement is

E(x; t) = −V (t)

(
xx̂ − yŷ

R2
0

)
+ U0

Z2
0

(xx̂ + yŷ − 2zẑ), (1)

where R0, Z0 are the characteristic lengths along the radial
and axial directions, respectively.

A. Mathieu equation

The equation of motion for a single charged particle in the
electric field of Eq. (1), including linear damping β, can be
written in the form of a Mathieu equation [12,13]:

d2ui

dt2
1

− β1
dui

dt1
+ (ai − 2qi cos (2t1))ui = 0, (2)

where 2t1 = �1t is the effective time, i indexes the three spatial
coordinates, and β1 = 2β/�1. The constants ai and qi depend
on the ratio of charge Q and mass M of the trapped ion and the
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amplitudes of the static and oscillating voltage components:

ax = ay = −1

2
az = − 4QU0

MZ2
0�

2
1

, (3)

and similarly for q:

qx = −qy = 2QV1

MR2
0�

2
1

, qz = 0. (4)

The nonsingular solutions of Eq. (2) are the Mathieu char-
acteristic functions [14–16]. They are the elliptic equivalent
of the trigonometric functions and were first discussed by
Mathieu in 1868 [17,18] in the context of finding the normal
vibration modes of an elliptic membrane. An approximate
solution to Eq. (2) can be found by separating the fast and
slow oscillating components of the atomic motion, assuming
the amplitude of the fast component is small. This is referred
to as the pseudopotential approximation. The frequency of
the secular motion of the ion is then related to the driving
frequency by

ωi � �1

2

√
ai + 1

2
q2

i . (5)

In the above we have assumed that the ion is unconditionally
stable which is true for a � 1 and q � 0.9. This constitutes
the first stability region of the Mathieu equation where ion
traps normally operate. Figure 1 shows the stability diagram
for the one-dimensional Mathieu equation which is calculated
using Floquet theory as described in Appendix A. Note that
for the remainder of the article we only consider motion and
stability along the y axis and drop the i subscript from the
Mathieu coefficients.

B. Damping and critical lines

The condition for parametric resonance is 2ω = �1m,
where the integer m is the order of the resonance. Parametric
resonance causes the tongues of instability that emanate from
the vertical axis in Figs. 1 and 2 (dark colored regions). For q =
0, the parametric resonances occur at a = m2 as can be seen
by inserting the resonance condition into Eq. (5). In the two-
frequency trap parametric resonances arise from both driving
frequencies, however, if they are widely separated the behavior
can be interpreted in terms of the Mathieu equation albeit using
values of a and q that are much higher than usually considered
relevant to ion trapping. The stability diagram of the Mathieu
equation shown in Fig. 2(a) includes the area shown in Fig. 1
but on a scale where the fine detail is not visible. For the
large number of resonances shown in Fig. 2 there are obvious
general features, i.e., the system is predominantly stable above
the critical line a = 2q and mostly unstable below [19].

The critical line is defined as the line that separates the
stability diagram into regions of equal stable/unstable density
[20,21]. Since the Paul trap is normally operated at small
values of a and q, such a definition does not constitute a strict
constraint from stable to unstable behavior. A more useful
criterion can be formulated by including damping.

The addition of damping enlarges the region where the
system is stable as shown in Appendix A. The parametric
resonances now extend only to finite values of q, rather
than q = 0, as can be seen in Fig. 2(b). The boundaries

FIG. 1. The stability diagram of the Mathieu equation. The lightly
colored regions indicate where the system is stable. The diagram
corresponds to a single transverse axis of a linear Paul trap. Full radial
confinement is possible only where the stable regions for motion along
the x and y axes overlap with each other. The usual operating regime
for linear ion traps lies very close to the origin a, q � 1.

of the undamped resonance lie along a = 1 ± q for q � 1
and β1 = 0. These boundaries change with added damping
and the threshold amplitude for exciting the parametric
resonance becomes approximately equal to β1. The width of
the instability tongues is the difference between the odd and
even eigenvalues of the Mathieu equation which for q � 1
scales as qm(1 + O(q2)) [22,23]. The asymptotic behavior of
the width close to the q = 0 line indicates that a small value
of damping is sufficient to suppress the parametric resonance
especially for higher order resonances. Damping guarantees
that a resonance will not be excited unless the drive strength
exceeds the threshold value,

q|th. = Cm

(
ω

�1

)2(
β

ω

)1/m

, (6)

as has been shown in [24–26]. Using the series expansion
for the difference between odd and even eigenvalues of the
Mathieu function the coefficient Cm = m−2(22m−1(m!)2)

1/m
.

III. STABILITY OF THE TWO-FREQUENCY PAUL TRAP

The equation of motion along the y axis of a trapped
ion subjected to an oscillating voltage of the form V (t) =
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FIG. 2. (a) The stability diagram of the Mathieu equation for large
a and q. The resonances cutting through the stable region a > 2q

cause instability. They are drawn as lines of constant thickness for
clarity, whereas in reality their width becomes vanishingly small.
Similarly for the lines cutting through the predominantly unstable
region. (b) A close-up of the first parametric resonance located
at a = 1. The boundaries of the undamped resonance lie along
a = 1 ± q for q � 1 and β1 = 0. The addition of damping lifts
the parametric resonances off of the q = 0 axis, thus enlarging the
stability region. The different shaded regions correspond, from left to
right, to damping values β1 = 0.3, 0.6, 0.9.

V1 cos �1t + V2 cos �2t is

d2y

dt2
1

+ (a1 − 2q1 cos (2t1) − 2p1 cos (2nt1))y = 0, (7)

where time has been rescaled so that �1t = 2t1 and the rest of
the parameters are defined as for Eq. (2) with q1 ∝ V1 and p1 ∝
V2. The subscripts on the parameters indicate which driving
frequency is being used to rescale Eq. (7). Here, the second
driving frequency is a harmonic of the first �2 = n�1, but
fractional relations lead to similar results [27]. To facilitate the
presentation and interpretation of relevant results we consider

FIG. 3. The first region of stability of the two-frequency Hill
equation on the a1-p1 plane for n = 5, 11, 25, 33 and q1 = 0.04.
Every panel contains n − 1 parametric resonances, but for larger
values of n many of the resulting tongues are not visible at this
resolution, since their width is exponentially small [28]. Comparison
with Fig. 1 shows that the second frequency causes instability within
regions that were stable before.

only moderate values of n. The introduction of the driving
frequency �1 leads to n − 1 parametric resonances that slice
through the previously stable regions as shown in Fig. 3.

We identify two regimes of operation based on the value
of n. When n is small the parametric resonances are well
defined and a stable configuration for the system can be found
simply by avoiding them. Damping is less critical in this
regime since stable points can be accessed by a judicious
choice of system parameters. For higher values of n, the
system enters a universal regime where the density of the
instability tongues cutting through the stable region increases
significantly, making it difficult to avoid them. However, the
width of the resonances is exponentially small and they can
be suppressed by modest amounts of damping as shown by
Eq. (6). We then only need to consider the threshold excitation
of the system to determine its stability. A similar picture arises
if we take a slice of the stability diagram along the a1 = 0 line
on the q1-p1 plane (Fig. 4).

Cotrapping two species

Having established the criteria for stability we show how
to simultaneously trap two species MA,MB where MB > MA

with the two ion clouds overlapping. This can be achieved in
a single-frequency trap only if the ions have the same Q2/M

since the spring constant is κ = Mω2 ∝ Q2/M . However, the
charge-to-mass ratio generally decreases for heavy ions and
putting them into a higher charge state might not balance the
spring constants because of the discretization of charge. The
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FIG. 4. The region of stability of the two-frequency Hill equation
along a = 0 on the q1-p1 plane for n = 5, 11, 25, 33. The system
parameters can be chosen so that any parametric resonances are
avoided for the top row. This is not the case for larger values of
n where the concept of a threshold line becomes useful.

required ratio of the dominant spring constants for the clouds
to overlap is

κA

κB

=
(

V2/�2

V1/�1

)2

× Q2
A/MA

Q2
B/MB

� 1. (8)

In previous works with single-frequency Paul traps the
heavier ions were pushed to the outside of the atomic species
cloud since κB � κA [4,6]. The two-frequency trap offers
a significant improvement since the additional frequency
dimension enables the two species to have the same spring
constants κA = κB , hence similar displacements from the
center of the trapping potential |xA| ≈ |xB | and larger overlap.
By adjusting the values of Vi/ωi in Eq. (8) we can achieve a
precise balance of the spring constants for the two species so
that both species congregate within a similar distance from the
trap center since by equipartition of energy, κ〈x2〉 � kBT , for
ion clouds at temperature T .

For n � 1 the system can be thought of as two individual
nested Paul traps, since when the two frequencies are suffi-
ciently different there exist conditions for which one of the
oscillating terms can be considered as a minor perturbation
acting on the system dominated by the other. The trap can be
designed such that κB � κB,1 and κA � κA,2 which indicates
that the dominant contribution for the ion MB comes from
the lower frequency �1, and the higher frequency �2 � �1

mostly affects MA. The field at �2 has a negligible effect
on MB since κB,2/κB,1 � 1 and acts to increase trapping
in any case. Thus for ions of species B, the two-frequency
operation gives a pseudopotential very similar to a standard
single-frequency Paul trap. On the other hand, the fact that

the variation of the trapping potential corresponding to �1

is slow enough to be adiabatic with respect to �2 implies
that κA � κA,2. The quadrupole field at �1 induces additional
parametric resonances.

Some constraints on the values of Vi and �i are imposed
from the following considerations. The secular oscillation fre-
quency of the light ions is ωA � qA�2/(2

√
2). The frequency

of this mechanical motion sets an upper limit for the lower
radio frequency �1. The first parametric resonance occurs
when the secular frequency of the system is half the slowest
driving frequency. This implies a lower limit of the mass
ratio at MB/MA � n2. This limit can be established more
precisely by numerical simulations in specific cases. The radio
frequency �1 is chosen such that �1 < ωA in order to avoid
the parametric excitation of species MA by the radio frequency
field that confines MB . The resulting natural hierarchy of
frequencies ωB < �1 < ωA < �2 leads to two nested Paul
traps capable of confining overlapping clouds of two species
with very different charge-to-mass ratios.

IV. EXAMPLE OF COTRAPPING AN ATOMIC ION
WITH A BIOMOLECULE

We demonstrate the feasibility of cotrapping atomic
138Ba+ions with MA = 140 amu, QA = 1 and a heavy particle
with MB = 1.4 × 106 amu, QB = 33, e.g., a nanoparticle or
a macromolecule [29]. The choice of this extreme difference
in charge-to-mass ratios fully illustrates the potential of this
method. We choose �2 = 2π × 10 MHz as the main driving
frequency. The maximum driving frequency ratio is set by
�1 < �2 × (MA/MB). To achieve the same spring constant
for both species we choose n = 100 which makes �1 =
2π × 100 kHz. The values of the applied voltages are chosen
so that both species nominally experience a single-frequency
Paul trap with q � 0.3.

A. Rescaling the equations of motion

Appropriate rescaling of Eq. (7) is crucial for an intuitive
understanding of the system. There are two ways of rescaling
the equations of motion for each species, as shown in Table I.
The intuitive physical picture that the heavy (light) ion is
mainly affected by the slow (fast) frequency arises only when
using the appropriate scaling for each atom.

TABLE I. Rescaling of the equations of motion for two species
trapped in a two-frequency trap. Both species effectively experience
a single frequency Paul trap with q � 0.3 as indicated by the numbers
in bold in the first and third row.

MB,�1 aB,1 qB,1 pB,1

−0.0003 0.307 10.758
MB,�2 aB,2 qB,2 pB,2

−3.35× 10−8 2.952 × 10−5 0.001
MA,�2 aA,2 qA,2 pA,2

−1.03 × 10−5 0.009 0.318
MA,�1 aA,1 qA,1 pA,1

−0.107 94.5 3307.4
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FIG. 5. (a) Part of the stability region for the 138Ba+ions. The point S = (0.318,0.009) corresponds to the parameters used to give stable
confinement. The tongues of instability extend from the cusps down to the horizontal axis, however, they are not visible due to the finite
resolution of the plot even in the absence of any applied damping. The critical line (solid black) is the best fit line q1 = −0.002 + 0.29p2

1

for this region. The dashed line corresponds to the threshold drive needed to excite a resonance as calculated by Eq. (11). (b) An example
configuration of light ions arranged in a linear chain with the heavy ion (red) is displaced from the axis due to E⊥. (c) Characteristic trajectory
of the heavy ion. Both axial and radial motion are damped at similar time scales of a few hundred ms. (d) The spectral density of the normal
modes of the system. The mid-frequency normal modes are not allowed to cross into the region highlighted in red to avoid parametric excitation
by �1.

Different physical pictures emerge depending on the choice
of effective time t1 or t2 with the coefficients being rescaled
with n2, e.g., qA,2 = qA,1/n2. Species MB is mainly confined
by the electric field at �1 with qB,1 � 0.3 as shown in the first
row of Table I. Although pB,1 has a much larger value it does
not significantly contribute to trapping. This becomes clear if
we omit �1 and rescale time to 2t2 = �2t . The equation of
motion for the species MB is then the Mathieu equation,

d2yB

dt2
2

+ (aB,2 − 2pB,2 cos (2t2))yB = 0, (9)

with pB,2 = 0.001, which provides negligible trapping
(Table I, second row). The stability region for MB is thus
only slightly perturbed by the presence of the high frequency
term and the trapping comes predominantly from �1.

In a similar manner, MA is mainly trapped by �2 since
qA,2 � pA,2 (Table I, third row). The effect of �1 on MA,
however, is more difficult to assess from Eq. (7) since �1 can
excite parametric resonances. The system is stable as long as
the amplitude of qA,2 does not exceed the threshold amplitude
(see Sec. IV B).

The fourth row of Table I illustrates the connection between
the large a-q regime and the two-frequency driving. The large
values of the coefficients are potentially misleading but, by
treating the fast oscillating term as an effective harmonic
pseudopotential term that arises from a static quadrupole, we
can map Eq. (7) to the Mathieu equation,

d2yA

dt2
1

+ (aeff − 2qA,1 cos (2t1))yA = 0, (10)

where aeff indicates the effective static potential term. The
width of the induced parametric resonances decreases rapidly

with increasing order number m and thus the higher order
resonances are readily suppressed by weak damping.

B. Stability diagram

Figure 5(a) shows a portion of the stability diagram of
the system for n = 100. The critical line can be calculated
analytically to be q1 = 0.27p2

1 for 0 < p1 < 0.7. Shown in
Fig. 5(a) is the best fit line q1 = −0.002 + 0.29p2

1. Numerical
calculations for 0.7 < p1 < 0.9 show that the critical line has
a maximum at p1 = 0.7 and can be approximated by q1 =
0.57(0.9 − p1). The stability region extends up to p1 = 0.9
as in the Mathieu equation. Parametric excitation of MA by
�1 produces tongues of instability which are too fine for the
numeric calculations to capture. Since the light ions experience
a pseudopotential with secular frequency ω ≈ pA,2�2/(2

√
2)

we can use Eq. (6) to put an upper limit to the amplitude of
the �1 term,

qA,2|th. = 2p2
A,2

e2

(
πβ

�1

)1/m

, (11)

where the order of the resonance is m = pA,2�2/(
√

2�1)
and using Stirling’s approximation for m!. For n = �2/�1 =
100 and pA,2 = 0.32 the parametric resonance happens at
m = 23. For this high order resonance even light damping
β/�1 = 10−6 leads to a threshold value qA,2 = 0.016 which
is comfortably above our chosen operating value qA,2 = 0.01
[see Fig. 5(a)]. For even larger driving frequency ratios, the
lower frequency can be considered as dc compared to the
secular motion of the lighter species leading to the stability
criterion qA,2 < 0.5p2

A,2.
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C. Numerical results

We have carried out extensive numerical simulations using
the open-source software package LAMMPS [30] to verify that
the ions are confined in all three dimensions by a quadrupole
field oscillating with two frequencies. Using the single-ion
case as a guide for the stability region of the system we
simulated the full dynamics of the equations of motion,

Mj ẍj = (E(xj ; t) + E⊥)Qj +
N∑

i,j = 1
i �= j

1

8πε0

QiQj

(xj − xi)2
, (12)

for ion j , where E(xj ; t) is the electric field from Eq. (1)
with V (t) = V1 cos �1t + V2 cos �2t , E⊥ is an optional dc
transverse electric field, and ε0 is the permittivity of vacuum.
The full-range Coulomb interaction is included.

For our choice of parameters, the radial and axial oscillation
frequencies for MB are 11.4 kHz and 0.7 kHz, respectively. For
MA, the radial frequency is ωA = 2π × 1 MHz and ωA,z =
ωB so as to promote resonant energy transfer between the
two species. This frequency matching is easily achieved when
the number of ions and hence the number of normal modes
of the system becomes larger. We have explored the behavior of
the system for different values of E⊥ and different numbers
of ions and have always observed energy being exchanged
between the two species.

The radial electric field E⊥ breaks the symmetry of the
system and couples the radial and axial motion of the ions
which leads to more efficient energy exchange between the
large ion and the linear chain of smaller ones [Fig. 5(b)].
This needs to be balanced against RF-induced heating due
to the ions being displaced from the RF-null nodal line and
thus experiencing larger micromotion. However, the system
is tolerant against heating due to the much larger Coulomb
interactions. The crystallization transition temperature of the
Coulomb crystal is much higher than typical atomic systems,
as can be estimated using the Lindemann criterion by equating
the average amplitude of the thermal vibrations of the ions to
their mean separation. This leads to transition temperatures of
a few mK, which are larger by a factor of QB = 33 than those
of Coulomb crystals with a single ion species.

We have simulated various configurations involving up to
10 Doppler cooled 138Ba+ions and a single ion of species B.
We observed that the damping rate depends strongly on the size
and degree of asymmetry of the Coulomb crystal. The axial
asymmetry of the crystal was varied by changing the initial
position of the heavy ion. More asymmetric crystals tend to
cool down faster with cooling times in the range of 100 ms
to 1 s, inversely proportional to the number of ions. The field
E⊥ can be used to improve the coupling of the translational
motion of MB to the normal modes of the light ion chain. Due
to the very different secular frequencies of the two species,
the out-of-plane motion of MB is cooled less efficiently and
limits the overall cooling rate. The optimal value for E⊥ can
be calculated within the pseudopotential approximation to be
in the intermediate regime where a linear chain of N ions
transitions to an effective N − 1 chain with the heavy ion
displaced off axis. However, RF micromotion heating limits
the maximum value of E⊥ to much lower values.

Figure 5(c) shows that 1/e cooling times of about 200 ms
can be achieved for a crystal of 10 ions. Additional MA ions
position themselves approximately along the z axis and start
forming a chain since ωA � ωA,z. The axial modes of such a
linear Coulomb crystal have higher frequency than the center-
of-mass mode whereas the opposite is true for higher-order
radial modes (see Appendix B). Adding more ions tends to
close the gap in the frequency spectrum of normal modes close
to �1 [see Fig. 5(d)]. This limits the number of ions of species
A that can be accommodated in the same potential well, as
an overlap of normal modes with �1 could lead to resonant
heating. Larger systems can still be stable by operating at
smaller values of n or increasing the damping for all species,
e.g., with buffer gas cooling.

V. CONCLUSIONS

We presented calculations on the two-frequency operation
of an ion trap carried out within the mathematical framework
of Floquet theory. Using this as a guide for the stability of the
system, we demonstrated the feasibility of confining different
species of ions with the same effective spring constant using
molecular dynamics simulations. We specifically chose an
extremely different charge-to-mass ratio to demonstrate the
usefulness of the two-frequency operation of the trap. Pushing
the charge-to-mass ratio even further apart is possible by
applying more than two frequencies. However, sympathetic
cooling is likely to be more difficult to achieve, as the
frequencies of the axial and radial normal modes become more
separated. Our method also works for lower charge-to-mass
ratios but it will be more susceptible to normal mode spectral
crowding.

Our numerical simulations show how a typical megadalton
charged particle can be sympathetically cooled by atomic
138Ba+ions. The presence of the nonfluorescing, dark ion
can be deduced from its large effect on the positions of
the observable atomic ions. Atomic ions scatter laser light
so that individual fluorescing ions can be observed, thus
permitting indirect detection of dark ions as holes in the cloud.
Pre-cooling can be achieved by means of the conventional
single-frequency operation of a linear Paul trap [6]. However,
with a single frequency the trapping of species B is very
weak so these ions might be destabilized by either repulsion
from the atomic ions or the radial component of the axial dc
field and a second driving frequency is required for stable
trapping.

Many interesting possibilities arise from being able to
extend laser techniques for sympathetic cooling of both the
translational and rotational degrees of freedom of large objects
that are not amenable to laser cooling like viruses, molecular
motors, and dust particles [29,31,32]. Cooling mesoscopic
objects like nanodiamonds to their quantum ground state
and adapting the sophisticated techniques developed for
quantum information processing with trapped ions will allow
for investigating entanglement and decoherence dynamics.
Reversing the role of the ions, antimatter can be trapped
and efficiently cooled as has been shown previously only in
Penning traps [33]. Our work inspired a re-examination of
these ideas for trapping antihydrogen [27].
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APPENDIX A: DIFFERENTIAL EQUATIONS WITH
PERIODIC COEFFICIENTS

Ordinary differential equations (ODEs) with periodic co-
efficients that contain an arbitrary number of frequencies
in their Fourier spectrum are ubiquitous in physics. They
describe the temporal behavior of driven systems or the
spatial character of the wave function in Hamiltonians of
crystalline structures, e.g., driven atomic systems, Bloch wave
functions, and mechanical vibrations [34–36]. Linear second-
order homogeneous ODEs with periodic coefficients have the
form,

d2u

dt2
+ B(t)

du

dt
+ S(t)u = 0, (A1)

with B(t + T ) = B(t) and S(t + T ) = S(t) where T is the
period of the system. Since any function can be expressed in
terms of even and odd functions without loss of generality we
choose S(−t) = S(t) and rewrite the S(t) term in Eq. (A1)
through its cosine Fourier representation to give

d2u

dt2
+

(
c0 + 2

∞∑
n=1

cn cos (2nt)

)
u = 0, (A2)

where B(t) = 0. Calculating the characteristic exponents of
Eq. (A2) allows us to map out the stability diagram for
the phase space spanned by the parameters cn. The Mathieu
equation is a particular case of Eq. (A2) with only the constant
and first oscillatory term being nonzero.

1. Floquet theory

The Floquet formalism can be used to solve ODEs with
periodic coefficients [28,37]. We recast Eq. (A1) as a system
of first-order equations,

d

dt
X(t) =

(
0 1

−S(t) −B(t)

)
X(t) = 0, (A3)

where X(t) = (x(t),ẋ(t))T . The stability of the system can
be analyzed by looking at the value of the propagation
matrix M = (X1(T ),X2(T )) after time equal to a period T

has transpired. At t = 0 the propagation matrix equals the
identity M = I so that its Wronskian is zero and X1, X2

are fundamental solutions of the system. The characteristic
equation det{M − λI } of the system has solutions λ1,2 given
by its characteristic polynomial,

λ1,2 = 1

2
(tr{M} ± (tr{M}2 − 4 det{M})1/2), (A4)

and the determinant of M is

det{M} = λ1λ2 = exp

(∫ T

0
−B(τ )dτ

)
. (A5)

For the case where B(t) = 0 the determinant becomes equal
to 1. This is a general property of symplectic matrices that is
directly related to the Liouville theorem and expresses the
preservation of phase space for a dynamic system. For the
system to be stable its eigenvalues must be inside the unit
circle in the complex plane max{|λ1|,|λ2|} � 1, or equivalently
|tr{M}| � 2. The trace-determinant plane fully characterizes
the stability of the system. When |tr{M}| > 2 there are two real
eigenvalues. Their product is λ1λ2 = 1 hence either λ1 > 1
or λ2 > 1, giving an unbounded, exponentially diverging
solution. On the other hand, when |tr{M}| � 2 there are two
complex eigenvalues, with |λ1| = |λ2| = 1 and λ1 = λ∗

2. They
can be written in the form λ = e±iθ so that tr{M} = 2 cos θ .
These correspond to stable, bounded solutions. In effect,
knowledge of the sign of the discriminant � = tr{M}2 − 4
is enough to determine the behavior of the system. The
stability points of the undamped Mathieu equation lie along
the det{M} = 1 line and, if stable, are bounded by the
parabola tr{M}2 = 4 det{M}. Along the transition curves at
the boundary of the above regions tr{M} = ±2 and the
discriminant is zero. The characteristic equation has a double
root and degenerate eigenvalues λ1 = λ2 = ±1 corresponding
to the system oscillating with period T or 2T , respectively.

2. Damping

For constant damping B(t) = β > 0, the stability condition
becomes |tr{M ′}| � 1 + e−βT where we have written the
propagation matrix as M ′ to differentiate it from the undamped
system. At first sight this equation seems counterintuitive
since it appears to reduce the limit on the magnitude of
tr{M ′}. However, the stability region is actually enlarged since
det{M ′} = e−βT rather than 1 as in the undamped case. The
product of the eigenvalues in this case is bounded by a circle
of radius e−βT in the complex plane. The point where one of
the eigenvalues becomes greater than 1 is eβT + 1 as can be
seen by direct substitution to Eq. (A4).

To compare the two cases we can assume that λ is the
eigenvalue of a matrix of the same form as for the undamped
equations M , but with ω2 → ω2 − (β)2. This leads to the
stability condition max{|λ1|,|λ2|} � eβT . The damping term
factors out when taking the trace of the propagation matrix, so
that M ′ = e−βT M . Although the damped system can be inves-
tigated directly its behavior is determined straightforwardly
from the corresponding undamped system [38,39].

APPENDIX B: NORMAL MODES OF MOTION OF
DAMPED, STIFF SYSTEMS

A system is defined as stiff when at least one of the
parameters describing it can take extremely different values
that lead to rapid variations in the solution. This is the case
when calculating the normal modes of motion of a two-species
ion chain where the mass of one species is much larger than
the other. Moreover, the addition of damping leads to a matrix
equation that is not an eigenvalue equation. Here we show how
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the matrix equations can be recast to an eigenvalue equation
which can be solved using efficient numerical methods.

First we define the pseudopotential for a chain of N ions in
a linear Paul trap including the Coulomb interaction,

V (x) =
N∑

j=1

1

2
Mjω

2
r,j

(
x2

j + y2
j

) + QjE⊥xj

+
N∑

j=1

1

2
Mjω

2
z,j z

2
j +

N∑
i,j = 1
i �= j

1

8πε0

QiQj

|xj − xi | , (B1)

with the trap frequencies defined as in Eq. (5). We can find the
equilibrium positions by minimizing the above potential [40].
The field E⊥ not only displaces the atoms along the radial plane
but also alters the coupling between the modes. The system
is effectively described as a system of coupled oscillators
with the restoring forces for each particle arising through the
competition between the trapping potential and the Coulomb
repulsion of the ions. The equations of motion can be written
in matrix form and assuming oscillatory solutions we can
calculate the normal modes from the following determinant:

det {Mω2 + Gω + K} = 0, (B2)

where M is the mass matrix, G is the damping matrix, and
K is the Hessian of the system. We refer to G as classical

damping matrix if P T GP is diagonal, where P is matrix of
the eigenvectors of the Hessian. The equations of motion are
then uncoupled and the damping matrix can be factored into
the Hessian and mass matrices.

To treat more generalized (nonclassical) damping we follow
[41], whereby the problem of solving the determinant equation
is transformed into an eigenvalue problem in the 2N space. The
normal modes correspond to the eigenvalues of the determinant
of the system given by the eigenvalue equation,

(Iω−1 + U )Z = 0, (B3)

where Z = exp(−ωt)X, X = ({ẋ},{x})T with dimensions
2N × 1 and I is the identity matrix. The block matrix U takes
the form,

U =
(

0 I

−K−1M −K−1G

)
. (B4)

The eigenvalues of the system correspond to velocity-
position pairs. The mode frequencies and characteristic damp-
ing times correspond to the inverse of the imaginary and real
parts of x, respectively.

[1] W. M. Itano, J. C. Bergquist, J. J. Bollinger, and D. J. Wineland,
Phys. Scr. T59, 106 (1995).

[2] R. E. March and J. F. J. Todd, Quadrupole Ion Trap Mass
Spectrometry, Vol. 165, 2nd ed. (Wiley-VCH, New York, 2005).

[3] P. K. Ghosh, Ion Traps (Oxford University Press, Oxford/New
York, 1996).

[4] D. Offenberg, C. B. Zhang, C. Wellers, B. Roth, and S. Schiller,
Phys. Rev. A 78, 061401 (2008).

[5] A preliminary discussion on two-frequency traps appears in H.
Dehmelt, Phys. Scr. T59, 423 (1995).

[6] A. Ostendorf, C. B. Zhang, M. A. Wilson, D. Offenberg,
B. Roth, and S. Schiller, Phys. Rev. Lett. 97, 243005
(2006).

[7] S. Willitsch, M. T. Bell, A. D. Gingell, and T. P. Softley, Phys.
Chem. Chem. Phys. 10, 7200 (2008).

[8] B. E. Kane, Phys. Rev. B 82, 115441 (2010).
[9] X. Zhao and P. S. Krstic, Nanotechnology 19, 195702 (2008).

[10] Wolfgang Pauli humorously referred to him as his “imaginary
part”, G. E. Brown and C.-H. Lee, Hans Bethe and His Physics
(World Scientific, Singapore, 2006).

[11] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
[12] W. Paul, Angew. Chem., Int. Ed. Engl. 29, 739 (1990).
[13] D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King,

and D. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259
(1998).

[14] G. B. Arfken and H.-J. Weber, Mathematical Methods for
Physicists (Elsevier, Boston, 2005).

[15] L. Ruby, Am. J. Phys. 64, 39 (1996).
[16] N. W. McLachlan, Theory and Application of Mathieu Functions

(Dover, Mineola, 1964).

[17] E. Mathieu, Journal de Mathématiques Pures et Appliquées 13,
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