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Coarsening and thermalization properties of a quenched ferromagnetic spin-1 condensate

Lewis A. Williamson and P. B. Blakie
Department of Physics, Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand

(Received 12 May 2016; published 8 August 2016)

We examine the dynamics of a quasi-two-dimensional spin-1 condensate in which the quadratic Zeeman energy
q is suddenly quenched to a value where the system has a ferromagnetic ground state. There are two distinct
types of ferromagnetic phases, i.e., a range of q values where the magnetization prefers to be in the direction of
the external field (easy axis) and a range of q values where it prefers to be transverse to the field (easy plane). We
study the quench dynamics for a variety of q values and show that there is a single dynamic critical exponent to
characterize the scale-invariant domain growth for each ferromagnetic phase. For both quenches we give simple
analytic models that capture the essential scale-invariant dynamics and correctly predict the exponents. Because
the order parameter for each phase is different, the natures of the domains and the relevant topological defects in
each type of coarsening are also different. To explore these differences we characterize the fractal dimension of
the domain walls and the relationship of polar-core spin vortices to the domains in the easy-plane phase. Finally,
we consider how the energy liberated from the quench thermalizes in the easy-axis quench. We show that local
equilibrium is established in the spin waves on moderate time scales, but continues to evolve as the domains
anneal.

DOI: 10.1103/PhysRevA.94.023608

I. INTRODUCTION

After a rapid quench through a symmetry-breaking phase
transition, a many-body system will form causally discon-
nected spatial domains, each making an independent choice
for the symmetry-broken order parameter. The coarsening
dynamics of how such a system subsequently evolves towards
equilibrium is an area of broad interest [1]. At long times
after the quench a universal scaling regime can develop:
Correlation functions of the order parameter collapse to a
universal scaling function (independent of time t) when space
is scaled by a characteristic length L(t). The growth law for this
characteristic length L(t) ∼ t1/z yields the dynamic critical
exponent z.

While most classical theories for coarsening dynamics have
been developed for dissipative models related to temperature
quenches, recently there has been growing interest in the dy-
namics of systems under conservative Hamiltonian evolution,
particularly due to developments with ultracold atomic gases
[2–7]. Here we will focus on the coarsening dynamics of a
ferromagnetic spin-1 condensate. Such spinor condensates are
unique in that they exhibit both superfluid and magnetic order
[8,9] and have a rich set of zero temperature phases which
can be conveniently explored in experiments. A motivating
experiment was performed by the Berkeley group with a
87Rb condensate that was quenched from a nonmagnetized
(polar) phase into a ferromagnetic phase by a sudden change
in the quadratic Zeeman energy (q) of the atoms [10] (also
see Refs. [11–15]). More generally, depending on the value
of q quenched to, the magnetization that develops can have
easy-axis or easy-plane symmetry. In previous work [16] we
numerically demonstrated that the late time coarsenings in
these two cases are described by the hydrodynamic binary
fluid and model E dynamic universality classes, respectively.

In this paper we expand upon our earlier work and
provide a fuller description of the coarsening dynamics of
the ferromagnetic spin-1 condensate. We simulate quenches
for a wide range of q values in the easy-axis and easy-plane

regimes and demonstrate that the exponents obtained are
universal. To support these results, we develop models of
the key processes governing coarsening and apply scaling
arguments to obtain the same exponents. We consider the mean
value and fluctuations of the magnetization in the postquench
system to reveal the thermalization of the energy liberated
by the quench. For the easy-axis case we develop a scheme
for thermometry using spin waves and demonstrate that these
modes thermalize on a much faster time scale than the order
parameter evolution governed by the coarsening dynamics.
We also consider the domain wall structure by evaluating
the order parameter structure factor, where the domain wall
properties are revealed by a Porod tail feature. Interestingly
the analysis of the Porod tail for the easy-plane case suggests
that the domain walls have a fractal structure. We verify this
by directly applying a box-counting algorithm to the spatial
domains of the coarsened system. The easy-plane phase has
an order parameter that supports vortices (polar-core vortices)
as topological defects. We evaluate the number of topological
defects during the coarsening evolution and show that this is
directly related to the coarsening length scale of domains.

This work we report here provides a thorough analysis of the
coarsening dynamics for the ferromagnetic spin-1 condensate
and establishes a firm basis and set of tools for future work on
other quenches (e.g., temperature quenches) and for work on
the antiferromagnetic and higher spin cases.

The outline of this paper is as follows. In Sec. II we in-
troduce the Gross-Pitaevskii formalism, and the relevant order
parameters and their symmetries for the two phase transitions
we explore. We also outline the numerical methods we use to
simulate the phase transition dynamics. The main results are
presented in Sec. III. We begin by examining the growth of
local order following a quench in the quadratic Zeeman energy.
We then introduce the order parameter correlation functions
and examine the nature of dynamic scaling in the postquench
coarsening dynamics. We examine the role of vortices in the
easy-plane quench and also examine the fractal dimension
of domain boundaries in quenches via the order parameter
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structure factor and by applying a box-counting algorithm
directly to the domains. For both phase transitions we develop
analytic models for the relevant degrees of freedom during
the coarsening regime. Dimensional analysis of these models
yields the dynamic critical exponents found in the simulations.
Finally, we examine the thermalization that occurs in the
easy-axis quench. We find that spin waves in the easy-axis
system thermalize on a rapid time scale compared to the
order parameter coarsening dynamics. Finally, in Sec. IV we
conclude and discuss the outlook for future work in this area.

II. FORMALISM

A. The spin-1 Gross-Pitaevskii equations

The system we consider is a homogeneous quasi-two-
dimensional (quasi-2D) spin-1 condensate described by the
Hamiltonian [17,18]

H =
∫

d2x
[
ψ†

(
−�

2∇2

2M
− pfz + qf 2

z

)
ψ + gn

2
n2 + gs

2
|F|2

]
.

(1)

Here ψ ≡ (ψ1,ψ0,ψ−1)T is a three-component spinor describ-
ing the condensates in the three spin levels and p and q are,
respectively, the linear and quadratic Zeeman shifts arising
from the presence of an external field along z. The term
gnn

2 describes the density interaction with coupling constant
gn, where n ≡ ψ†ψ is the areal density. The term gs |F|2
describes the spin interaction with coupling constant gs , where
F ≡ ψ† f ψ is the areal spin density for the spin-1 matrices
(fx,fy,fz) ≡ f . For the system to be mechanically stable we
require gn > 0. The coupling gs can be positive or negative,
resulting in antiferromagnetic or ferromagnetic interactions,
respectively. Here we consider the case of ferromagnetic
interactions, i.e., gs < 0, as realized in 87Rb condensates [19].
In spinor condensate experiments the quasi-two-dimensional
(quasi-2D) regime has been realized by using a trapping
potential with tight confinement in one direction (e.g., see
Ref. [10]). Our interest is in homogeneous systems where
the phase transition dynamics are simpler, noting that recent
experiments have realized flat-bottomed optical traps for this
purpose [20,21] (also see Ref. [22]).

The dynamics of the system can be described by the three
coupled Gross-Pitaevskii equations (GPEs),

i�
∂ψ

∂t
=

(
−�

2∇2

2M
− pfz + qf 2

z + gnn + gs F · f
)

ψ . (2)

The linear Zeeman term can be removed by moving to a
rotating frame, ψ → eipfzt/�ψ , so that from here on we set
p = 0.

B. Phase diagram, symmetries, and conservation laws

The Hamiltonian (1) gives rise to different magnetic ground
states depending on the value of q [8]. It is convenient to
express these ground states in the form ψ = eiθ√n0ξ , where
n0 is the (uniform) condensate density, θ is a global phase,
and ξ is a normalized spinor (i.e., ξ †ξ = 1). Here our primary
interest is in the spin order that develops in the system, and
hence in the properties and symmetries of ξ . A schematic phase

FIG. 1. Phase diagram and ground states of a spin-1 condensate
for p = 0. The spheres show the direction of magnetization in the
three states. (a) For q < 0 the magnetization lies along the Fz axis
and the state is termed easy axis. (b) For 0 < q < q0 the magnetization
lies in the transverse (Fx-Fy) plane and the state is termed easy plane.
(c) For q > q0 the m = ±1 levels are unoccupied and the system is
unmagnetized. This state is termed polar.

diagram and representation of the ground states important to
this paper are shown in Fig. 1. There are two ferromagnetic
phases (a) and (b), which differ in their symmetries, and a
nonmagnetized polar phase (c).

Easy-axis ferromagnetic ground state (a) has the normalized
spinor

ξEA =
⎛
⎝1

0
0

⎞
⎠ or

⎛
⎝0

0
1

⎞
⎠, (3)

with a magnetization of +1 or −1 along z, respectively. This
state is degenerate under reflections in the x-y plane, giving
rise to a Z2 manifold of ground states. This state is the ground
state of the system for q < 0.

Easy-plane ferromagnetic ground state (b) has

ξEP = 1

2

⎛
⎜⎜⎜⎝

e−iϕ
√

1 − q/q0

√
2(1 + q/q0)

eiϕ
√

1 − q/q0

⎞
⎟⎟⎟⎠, 0 � ϕ < 2π, (4)

where we have defined q0 = 2|gs |n0. This state has a magneti-
zation of length F = n0

√
1 − (q/q0)2 lying in the x-y plane, at

an angle ϕ to the x axis. It is degenerate under rotations about
the Fz axis, giving rise to a SO(2) manifold of ground states.
The easy-plane phase is the ground state for 0 < q < q0, with
a critical point at q = q0 separating it from the polar phase.

Polar ground state (c) has

ξP =
⎛
⎝0

1
0

⎞
⎠, (5)

with all components of the spin density being zero.
Evolution under Eq. (2) preserves Z2 symmetry corre-

sponding to reflections in the transverse plane and SO(2) sym-
metry corresponding to rotations about the z axis. Therefore
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an initial state adhering to these symmetries will maintain
these symmetries. For the ferromagnetic states (a) and (b), a
symmetry in the system is broken when the system chooses
a ground state within the ground-state manifold. The nature
of the ground-state manifold determines this symmetry. In the
easy-axis phase the order parameter is ∝ Fz and a choice of
ground state breaks the Z2 symmetry. In the easy-plane phase
the order parameter is ∝ (Fx,Fy) and a choice of ground
state breaks the SO(2) symmetry. The order parameter in
the easy-axis phase is conserved under the evolution of (2),
whereas the order parameter in the easy-plane phase is not. The
symmetry and conservation properties of the order parameter
determine the critical behavior of the transition to each phase.

C. Details of simulation method

In this work we consider the phase ordering dynamics after
a quench of the quadratic Zeeman energy from an initial value
qi > q0 where the ground state is polar to a final value q < q0,
as shown schematically in Fig. 1. The system will then order
into either the easy-axis phase (for q < 0) or the easy-plane
phase (for 0 < q < q0). We simulate the dynamics using the
GPEs (2) with noise added to the initial state to seed the growth
of symmetry-breaking domains.

For the initial state we take

ψ(x) = √
n0

⎛
⎝0

1
0

⎞
⎠ + δ(x), (6)

where
√

n0(0,1,0)T is the polar condensate wave function and
δ is a small noise field given by

δ(x) =
∑

k

⎛
⎜⎜⎜⎝

α+
k eik·x

α0
kuke

ik·x − α0∗
k vke

−ik·x

α−
k eik·x

⎞
⎟⎟⎟⎠. (7)

Here the {αm
k } are independent complex Gaussian random

variables with 〈
αm′∗

k′ αm
k

〉 = 1
2δmm′δk′k, (8)

and we take α0
0 = 0 to omit adding noise to the condensate

mode. The amplitudes {uk,vk} are given by

uk =
√

εk + gnn0

2
√

εk(εk + 2gnn0)
− 1

2
, vk =

√
u2

k − 1, (9)

with εk = �
2k2/2M . The noise added this way corresponds to

adding a half-quantum of occupation to the Bogoliubov modes
for the polar phase at large qi [23] as per the truncated Wigner
presciption [24].

In experiments with 87Rb the spin interaction is much
weaker than the density interaction with gn/|gs | ∼ 100 [8]. To
observe universal dynamics we must simulate our system over
many spin times ts ≡ �/2|gs |n0. With large density interaction
the system has to resolve fast but largely unimportant density
fluctuations. This slows down the numerics substantially. To
allow faster simulations, we use the more moderate ratio
of interaction parameters gn/|gs | = 10. We have also run

simulations with gn/|gs | = 3 and obtained consistent results
[16]. Density fluctuations may add noise to order parameter
correlations for a single simulation, but results obtained by
averaging over simulations should remove this. We expect little
change in the phase ordering dynamics for higher interaction
parameter ratios, which would reduce the density fluctuations,
leading to less noise in single simulations.

We use a condensate density of n0 = 104/ξ 2
s , where ξs ≡

�/
√

2|gs |n0M is the spin healing length. To numerically
evolve the GPEs we represent each component of the spinor
field ψ on a 2D square grid with dimensions l × l covered
by an N × N grid of equally spaced points. For simulations
of quenches to the easy-axis phase we use grids of size
l = 800ξs with N = 1024 points. For the easy-plane cases we
use l = 1600ξs with N = 2048 points. We evolve the spin-1
GPEs (2) using an adaptive step Runge-Kutta method that uses
fast Fourier transforms to evaluate the kinetic energy operators
with spectral accuracy. The quadratic Zeeman energy is set at
the final quench value q < q0 for the duration of the simulation
dynamics, so that the quench is effectively instantaneous at
t = 0.

III. RESULTS AND ANALYSIS

A. Postquench growth of magnetization

Following the quench to either the easy-axis or easy-plane
phase, the system develops local magnetization (i.e., the spin
density becomes nonzero). The development of the magnitude
of the transverse F⊥ = (Fx,Fy) and longitudinal Fz magne-
tization is shown in Fig. 2. The initial growth is exponential
[25,26] (also see Refs. [23,27–29]) and is similar for quenches
to values of q in the easy-axis and easy-plane regimes [see
Figs. 2(a) and 2(b)]. The exponential growth ceases after a time
t ∼ 10ts . On longer time scales the magnetization develops an
easy-axis [i.e., Fz dominates, Fig. 2(c)] or easy-plane [i.e.,
F⊥ dominates, Fig. 2(d)] character, revealing the preferred
order of the phase the system has been quenched into.
The magnetization reaches a steady magnitude after a time
t ∼ 200ts .

Immediately after the quench, the system is still in the polar
phase and so is out of equilibrium. This gives the system an
energy in excess of that of the ground state. The excess energy
can be calculated from (1), yielding

�E =
⎧⎨
⎩

(
1
4q0 − q

)
n0l

2, q < 0,

1
4q0(1 − q/q0)2n0l

2, 0 < q < q0.

(10)

This excess energy is available for thermalization and heats
the system. This results in fluctuations in the magnetization
[Figs. 3(a) and 3(b)] and a reduction in the magnitude of
the magnetization from the ground-state value [Figs. 3(c) and
3(d)]. Both effects are more pronounced for deeper quenches
(i.e., to lower q values), which have higher values of �E.

B. Universal coarsening dynamics

The magnetization dynamics clearly show that the longi-
tudinal (transverse) magnetization dominates at times suffi-
ciently long after the quench for the easy-axis (easy-plane)
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FIG. 2. Growth of magnetization following a quench of a spin-1 condensate. Plain lines correspond to Fz magnetization; lines with
dots correspond to F⊥ magnetization. Short-time dynamics for a quench to the (a) easy-axis phase (q = 0.3q0) and (b) easy-plane phase
(q = −0.3q0). Long-time dynamics for the (c) easy-axis phase and the (d) easy-plane phase. In all cases the (local) magnetization is calculated
as a spatial average over the system at each time, i.e., 〈F 2

ν 〉 = l−2
∫

d2r F 2
ν (r) for ν = z, ⊥. In (c), red data are for q = −0.3q0, green data are

for q = −0.6q0, light blue data are for q = −1.2q0, and purple data are for q = −1.2q0. In panel (d), red data are for q = 0.1q0, green data
are for q = 0.3q0, light blue data are for q = 0.6q0, and purple data are for q = 0.9q0.

quenches. As discussed in Sec. II B this motivates us to define
the order parameters

φ(r) = 1

n0
Fz(r), easy axis, (11)

φ(r) = 1

n0
F⊥(r), easy plane, (12)

to characterize the development of order. Crucially, our interest
lies not in the emergence of local order (as characterized by
the local magnetization), but in the evolution of the ordered
domains on long time scales. Examples of these domains and
their evolution are shown in Fig. 4, revealing the tendency of
the domains to grow with time. These domains are described
by the order parameter correlation function

G(r,t) = 〈φ(0) · φ(r)〉t , (13)

where the average is taken at a time t after the quench. In
practice we can calculate this correlation function utilizing the
translational invariance of our simulations to spatially average,

i.e., calculate,

G(r,t) = 1

l2

∫
d2r′φ(r′) · φ(r′+r), (14)

and also use isotropy to perform an angular average over all
points at a distance r . To further improve statistical sampling
we also average over 8 simulation trajectories conducted with
different initial noise.

The temporal evolution of the correlation function is shown
in the insets to Figs. 5(a) and 5(b). The length scale over
which the correlation function decays can be taken to define
a characteristic domain size. As time progresses this length
scale is seen to grow as order extends over large regions.
As anticipated by the theory of phase-ordering kinetics,
we find that this growth exhibits dynamic scale invariance:
Correlations of the order parameter at late times collapse onto
a single universal curve f (r) when lengths are scaled by a
large characteristic length scale L(t), i.e.,

f (r) = G[r/L(t),t]. (15)
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FIG. 3. Normalized distribution of magnetization long after the quench. The distribution of the (a) longitudinal magnetization for easy-axis
quenches and (b) transverse magnetization for easy-plane quenches. These results are evaluated by making a histogram of the magnetization
magnitudes sampled over space. In (a), red (dot-dashed) data are for q = −0.3q0, green (dotted) data are for q = −0.6q0, light blue (dashed)
data are for q = −1.2q0, and purple (solid) data are for q = −1.2q0. In (b), red (dot-dashed) data are for q = 0.1q0, green (dotted) data are
for q = 0.3q0, light blue (dashed) data are for q = 0.6q0, and purple (solid) data are for q = 0.9q0. In panels (c) and (d) the mean value and
spread (standard deviation) obtained from the results in panels (a) and (b) are compared to the ground-state magnetization (solid black lines).
We note that for the easy-plane phase the ground-state transverse magnetization depends on q as |F⊥| = n0

√
1 − (q/q0)2. Results (a) and (c)

are calculated at t = 3770ts , while (b) and (d) are calculated at t = 1131ts .

For the easy-axis phase, we take L(t) to be the first zero
crossing of G(r,t). For the easy-plane phase, we take L(t)
to be the point where G(r,t) = 0.25G(0,t). Using these length
scales we demonstrate the correlation function collapse in
Figs. 5(a) and 5(b).

The growths of L(t) for the easy-axis quenches are shown
in Fig. 5(c). Here we find that for a range of q values
L(t) ∼ t1/z with z = 3/2. This is consistent with the dynamic
critical exponent of a binary fluid in the inertial hydrodynamic
regime [30]. The scale-invariant dynamics can be ascribed to
a process of hydrodynamic flow of the Fz superfluid velocity;
see Sec. III D 1.

In the easy-plane phase, we find that L(t) ∼ t/ ln(t/5ts) for
a range of q values, giving a dynamic critical exponent of z = 1
with a logarithmic correction; see Fig. 5(d). A dynamic critical
exponent of z = 1 is consistent with the model E universality
class, which describes a 2D nonconserved order parameter
coupled to a second conserved field. This fits our system well,
where the second conserved field is Fz; see Sec. III D 2 and
Ref. [23]. The logarithmic correction is included to account
for the presence of vortices, in analogy with the XY model.
Much work has shown that vortices in the XY model slow the

rate of coarsening and give rise to a logarithmic correction to
scaling [31–38] (see also Refs. [39,40]) so that true dynamic
scale invariance L(t) ∼ t1/z is only obtained after a very long
time. In the easy-plane phase the order parameter supports
polar-core vortices. These vortices consist of a phase winding
in the (in-plane) magnetization around an unmagnetized core.
The state of a polar-core vortex is

ψvort =
√

n

2

⎛
⎜⎝

sin βe−iθ

√
2 cos β

sin βeiθ

⎞
⎟⎠, (16)

where far from the vortex core cos β = √
(1 + q/2|gs |n)/2

[8]. The in-plane magnetization angle θ rotates by 2πκ

(κ ∈ Z) around the vortex center. These vortices are known
as polar-core vortices because the particle density is in the
ψ0 component at the center of the vortex, to avoid the phase
singularity in the ψ±1 components. We only observe polar-core
vortices of charge κ = ±1 during the coarsening regime,
noting that higher values of |κ| are unstable. We find that
the domain growth is associated with the annihilation of these
vortices [see Fig. 4(b)], and that the number of vortices is
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FIG. 4. Growth of domains for (a) the easy-axis phase and (b) the easy-plane phase. Color scales are indicated by the respective spin
spheres. Positive (black circles) and negative (white diamonds) polar-core spin vortices are present in the easy-plane system. Vortex-antivortex
annihilation accompanies the growth of domains in this phase.

correlated with L(t). As L(t) grows, the density of vortices
and therefore the total vortex number decay as L(t)−2; see
Fig. 6.

A phase winding of the spin angle θ corresponds to a
circulation of the Fz superfluid current, since Fz ∝ ∇θ [41].
It is feasible to also have circulation in mass and other spin
currents, which would give rise to other types of vortices. We
only observe polar-core spin vortices during the coarsening
regime (see also Ref. [42]).

We note that the exponents obtained in Figs. 5(a) and
5(d) vary slightly with q. This is consistent with finite-size
effects [7,43] and statistical sampling over the time range
we can simulate. For the easy-axis quench we obtain a
range of 1/z = 0.66–0.70. For the easy-plane quench we
obtain a range of 1/z = 0.98–1.01. A fit of the form L(t)t1/z

also fits the numerical data in Fig. 5(d) well, and yields
1/z = 0.71–0.78, depending on q. To differentiate this fit
from one with z = 1 and a logarithmic correction would
require simulation times t > 104 ts , which is well beyond the
range of our simulations. Furthermore, including a logarithmic
correction in the easy-plane quench shrinks the range of expo-
nents obtained to 1/z = 0.98–1.01, consistent with universal
scaling.

C. Fractal dimension of domains

The order parameter domains in Fig. 4 are separated by do-
main boundaries. By examining the correlation function (13)
at length scales r < L(t), we are able to extract information

about these boundaries. In particular, we can determine the
dimension of the domain boundaries, which can be noninteger
if the boundary has a fractal structure. It can be shown that
the small r/L behavior of the correlation function behaves
as [44]

1 − G(r,t) ∼
(

r

L(t)

)D−Db

, (17)

where Db is the fractal dimension of the domain boundary
and D is the system dimension. For the smooth case in two
dimensions, i.e., D = 2, Db = 1, Eq. (17) reflects the intuitive
result that the probability that two points a distance r apart
will lie in opposite domains is ∼ r/L for r � L. In general,
the probability that two points a distance r apart will lie in
opposite domains is ∼ (r/L)D−Db for r � L, from which one
can derive Eq. (17).

In principle it is possible to extract the small r/L behavior
directly from the correlation functions in Figs. 5(a) and
5(b). Equivalently, we instead choose to examine the order
parameter structure factor, which is the Fourier transform of
the correlation function,

S(k,t) =
∫

d2r G(r,t)eik·r = L2f̂ [kL(t)]. (18)

The scaling form follows from setting G(r,t) = f [r/L(t)],
with f̂ being the Fourier transform of f . Behavior of the
correlation function at length scales r < L(t) then appears at
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FIG. 5. Collapse of the order parameter correlation function onto a single curve when lengths are scaled by the growing length scale L(t)
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the length scales L(t) used for the correlation function collapse in panels (a) and (b), respectively. Solid lines indicate power law growths with
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high wave numbers kL(t) > 1. Fourier transforming the result
(17) results in a high-wave-number Porod tail in the structure
factor [44–46],

S(k) ∼ k−2D+Db . (19)

Results for the structure factor for the easy-axis and easy-plane
quenches are shown in Figs. 7(a) and 7(b), respectively. For the
easy-axis case we observe a “knee” in the structure factor at
kL ∼ 1.3 followed by a Porod tail S(k) ∼ k−3 for L > k−1 �
ξs that indicates the presence of smooth domain walls, i.e.,
Db = 1. We also observe a Porod tail for the easy-plane case,
but with a noninteger exponent, S ∼ k−2.5. This suggests that
the easy-plane domain boundaries are fractal, with a dimension
of Db ≈ 1.5.

To provide further evidence for this result, we determine a
box-counting dimension for the domain boundaries directly.
The box-counting dimension is defined through

db = − lim
lb→0

log Nb

log lb
. (20)

Here we cover the system with boxes of side length lb and
count the number of boxes Nb that contain a domain boundary.
In the limit of small lb the slope of log Nb versus log lb
gives the box-counting dimension. This naturally connects
with the probabilistic interpretation of the dimension we used
to discuss result (17). In the easy-axis phase the domain
boundaries can be identified by looking for nonzero gradients
in the sign of Fz; see Figs. 8(a) and 8(b). For the easy-plane
phase, a single domain is not as well defined because the
order parameter changes continuously. However, the domain
patterns in Fig. 4(b) do show clear regions of largely one color.
To extract boundaries between these regions, we choose a π/5
range of (in-plane) spin directions and define discrete domains
of spins that lie in this range. By assigning a 1 to spins within
the domain and a −1 to spins outside the domain we can
identify domain boundaries in an analogous way to the easy-
axis phase; see Figs. 8(c) and 8(d). Once domain boundaries
have been identified, we can perform a box-counting algorithm
to determine the box-counting dimension of the boundaries.
We do this over an order of magnitude of box sizes, which
yields a box-counting dimension of db = 1.0 for the easy-axis
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from Fig. 5(d)].

domain boundaries; see Fig. 9(a). In comparison, we obtain
a box-counting dimension of db ≈ 1.5–1.6 for the easy-plane
domain boundaries, Fig 9(b). For the easy-plane phase, we
can repeat the box-counting algorithm for different domains
of spin range, which give results consistent with Fig. 9(b).
Both the easy-axis and easy-plane box-counting dimensions
agree with the slopes of the Porod tails in Fig. 7. We note
that the Porod tail in the easy-plane phase is not accounted for
by topological defects (polar-core spin vortices), which would
result in a k−4 tail [1,35,47].

D. Analytic models of coarsening

Simple analytic models can be used to obtain the dynamic
critical exponents found numerically in the previous section.
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of smooth domain boundaries, whereas the k−2.5 tail in the easy-plane
phase is indicative of a fractal domain boundary.
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(d) are the same, indicating that the easy-plane domain boundary has
a much more convoluted structure than the smooth easy-axis domain
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for q = −0.3q0 (q = 0.3q0) and t = 3770ts (t = 1131ts).

The models describe a dynamic process that is expected to
be important in the coarsening dynamics. Imposing dynamic
scale invariance on the equation describing this process allows
one to extract a dynamic critical exponent.

1. Easy axis

The dynamic critical exponent obtained in the easy-axis
phase suggests that inertial hydrodynamics is important in
the coarsening [30,48]. We derive this inertial hydrodynamic
process by considering the hydrodynamic formulation of a
spin-1 condensate [41]. Ferromagnetic condensates support
both mass and spin superfluid currents. We assume a conden-
sate with constant number density n and zero population in
the m = 0 spin level. Note that these conditions still allow
for spatial variation in |Fz|, as long as the sum of populations
in the m = ±1 levels is constant. We assume identical phase
profiles in the m = ±1 levels. The Fz superfluid current is then

vFz
≡ �

2Mni
[ψ†fz(∇ψ) − (∇ψ)†fzψ] = Fz

n
v, (21)

where v is the mass superfluid velocity,

v ≡ �

2Mni
[ψ†(∇ψ) − (∇ψ)†ψ]. (22)
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FIG. 9. Results for Nb vs lb obtained from the box-counting
algorithm. In the small lb limit, the plots reveal a box-counting
dimension for the domain boundaries of (a) db = 1.0 for the easy-axis
phase and (b) db = 1.5 for the easy-plane phase. The vertical lines
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spatial correlation function of the order parameter. For lb � L(t), the
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results displayed are for q = −0.3q0 (q = 0.3q0) and t = 3770ts
(t = 1131ts).

The current vFz
can be understood through the continuity

equation (valid when Fz is conserved),

∂Fz

∂t
+ ∇ · nvFz

= 0. (23)

Equation (21) shows that the order parameter is transported by
the mass current. The equation of motion for v is

∂v

∂t
+ (v · ∇)v = − gs

2Mn
∇F 2

z . (24)

We have omitted third-order derivative terms in Eq. (24). The
scaling properties of our system arise from gradual, large-
length-scale processes for which third-order derivatives will
be small. Equation (24) takes the form of the Euler equation
from fluid dynamics, with the term gsF

2
z /2Mn in place of the

pressure. This term is in fact a pressure, as can be seen by
considering the energy of regions A across which Fz changes
little:

E(A) = gn

2
n2A + qnA + gs

2
F 2

z A. (25)

The pressure in such a region is

P (A) = −
(

∂E

∂A

)
N,Mz

= gn

2
n2 + gs

2
F 2

z , (26)

where the partial derivative is evaluated for fixed atom number
and total z magnetization Mz = ∫

d2x Fz. With constant
number density the gradual spatial variation of P (A) arises
only from the term gsF

2
z /2. Equation (24) can therefore be

written as

∂v

∂t
+ (v · ∇)v = − 1

Mn
∇P. (27)

In mechanical equilibrium, the pressure difference, �P , across
a curved surface is related to the surface tension, σ , of the

surface through the Young-Laplace equation [49]

�P ∼ σ

R
, (28)

where R is the curvature of the surface. This relationship arises
because the excess surface energy in a curved surface gives
rise to a force on this surface, and in equilibrium this must be
balanced by a pressure difference. In the case of a condensate
with two components separated by a domain wall, the surface
energy arises from the kinetic energy across the wall [50].
We expect the balance of surface tension and pressure to be
fast in comparison to the slow hydrodynamics driving domain
growth, so that we can use Eq. (28) in Eq. (27).

We now want to impose dynamic scale invariance on
Eq. (27). We carry out a scaling transformation of this equation,
rescaling times by T , i.e., t → t/T , and lengths by L(T ). We
note that �P scales as L [from Eq. (28)] so that ∇P scales as
L2. This gives

T 2

L

∂v

∂t
+ T 2

L
(v · ∇)v = −L2 1

Mn
∇P, (29)

Imposing dynamic scale invariance amounts to Eq. (27) being
preserved under this transformation. This can only occur if
L(T ) = T 2/3. To write this in the usual scaling form L(t) ∼
t1/z we choose T ∝ t , giving z = 3/2 [1,7,30].

2. Easy plane

For systems in the model E dynamic universality class,
the dynamics of spin waves dynamically coupled to a second
conserved field are argued to be the important process during
coarsening [51–53]. Here dynamically coupled means that
there is no direct coupling between these two fields in the
Hamiltonian, but there is a nonvanishing Poisson bracket
relation between them that leads to coupling in the dynamic
equations.

To show how spin waves arise in our system we begin with
a variational ansatz [26]

ψ(x,t) = √
n0

⎛
⎝ sin βe−iθ cos (π/4 + χ )

cos β

sin βeiθ sin (π/4 + χ )

⎞
⎠, (30)

with cos(2β) = q/q0 and variational parameters θ (x,t) and
χ (x,t). In the ground state we would have χ = 0 and
uniform θ . Spatial variation in θ corresponds to fluctuations
in the direction of transverse spin and will give rise to spin
waves. Nonzero χ describes fluctuations in the (conserved) Fz

magnetization.1

We assume fluctuations of χ are small and so consider
fluctuations up to quadratic order in χ only. The Hamiltonian

1In the ansatz (30), we have ignored gapped modes and modes
with a steep spectrum (Ek ∼ cn�k, with cn = √

gnn0/M) [54]. Long-
wavelength gapped modes will have higher energy and therefore
faster dynamics than the gapless modes in (30). The gapped modes
will therefore be less important in the slow coarsening dynamics.
Modes with a steep spectrum will also have higher energy at any
given k, and lower occupation.
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then takes the form

H =
∫

d2x
[

�
2n0 sin2 β

2M
(|∇θ |2 + |∇χ |2)

− 2gsn
2
0 sin2 β cos(2β)χ2

]
. (31)

The Lagrangian is obtained through a Legendre transformation
of the Hamiltonian with respect to the conjugate variables ψ

and iψ†. This gives L = i(ψ†ψ̇) − H [26,55]. To second order
in χ and θ̇ we obtain

L = 2n0 sin2 β

∫
d2x

[
χθ̇ − �

2

4M
(|∇χ |2 + |∇θ |2)

+ gsn0 cos(2β)χ2

]
. (32)

Formulating the problem in this form gives the conjugate
variable relations

δL

δθ̇ (x)
= 2n0 sin2 βχ (x),

δL

δχ̇ (x)
= 0. (33)

The first of these relations reflects the dynamic coupling
between fluctuations of the direction of the order parameter and
fluctuations of the conserved field Fz. This relation also reflects
that conservation of Fz magnetization is connected with
rotational symmetry about the Fz axis. Evaluating Lagrange’s
equations (33), which decouple by taking a second time
derivative, gives

θ̈ = q0 cos(2β)
�

2

2M
∇2θ − �

4

4M2
∇4θ, (34)

χ̈ = q0 cos(2β)
�

2

2M
∇2χ − �

4

4M2
∇4χ. (35)

The spin-wave fluctuations (θ ) and Fz fluctuations (χ ) can be
expanded in Fourier modes, giving a spectrum

Ek =
√

�2k2

2M

(
q0 cos(2β) + �2k2

2M

)
. (36)

For the long-wavelength excitations (k2 �
2Mq0 cos(2β)/�

2), Eq. (34) gives the equation of motion for
spin waves

θ̈ = q0 cos(2β)�2

2M
∇2θ. (37)

Scaling lengths by L and times by T in Eq. (37), and setting
T ∝ t , gives scaling L ∼ t1/z, with z = 1.

We could alternatively approach the coarsening from the
perspective of polar-core spin vortices, Eq. (16). These are
not accounted for in the Lagrangian (32), which considers
quadratic fluctuations only. A simple model for the dynamics
of polar-core spin vortices was given in Ref. [56],

mr̈ i =
∑

j

�
2n0 sin2 β

M

κiκj

|r i − rj |2 (r i − rj ), (38)

where r i denotes the position of spin vortex i with charge κi ,
m is the so-called mass of a spin vortex and sin β is defined
in Eq. (30). This model arises by noting that a spin vortex is

composed of two scalar vortices in the m = ±1 levels. Scalar
vortices in the m = 1 level interact according to the usual
scalar vortex dynamics [57–59], and similarly for vortices
in the m = −1 level. However, there is also an attractive
interaction between the m = ±1 vortices within a single spin
vortex, which arises from the spin-spin interaction in (1). This
contributes a crucial core energy that leads to the second-order
equation of motion, Eq. (38). This differs from the first-order
equation of motion that arises in scalar vortex dynamics [58],
which would give rise to a dynamic critical exponent of z = 2.
For more details on the dynamics of polar-core spin vortices,
see Ref. [56].

If we assume that Eq. (38) is invariant under a rescaling
of lengths by L and times by T ∝ t , we again obtain the
exponent z = 1. However, the interaction between spin waves
and polar-core spin vortices will likely change both the spin
wave dynamics (37) and the vortex dynamics (38). In the
XY model, it is necessary to couple the vortices to damping
degrees of freedom to justify the logarithmic correction to
scaling [31]. It may be possible to extend Eq. (38) to allow
coupling to spin waves [60], which may reveal a logarithmic
correction to scaling.

E. Thermalization of excitations in the easy-axis phase

As the domains coarsen, energy is liberated into excitations
on top of the ordered phase. Over time we expect that these
excitations will thermalize. The long wavelength coarsening
of the order parameter should be slow compared to other
thermalization processes. Therefore by the time the order
parameter domains are large, other modes in the system
will have thermalized. We can test this thermalization by
examining the population of Bogoliubov modes on top of
the ground state. The Bogoliubov modes may depend on the
orientation of the ground-state order parameter and so may
change across the system due to the presence of domains.
Also when the Bogoliubov modes and the condensate occupy
the same m sublevels it is difficult to distinguish between
them. Fortunately for the easy-axis case the condensate only
occupies the m = ±1 sublevels, while there is a spin-wave
branch that occupies the m = 0 sublevel and is insensitive to
the orientation of the order parameter, i.e., not affected by
the presence of domains [61]. We can therefore determine the
population distribution in the m = 0 mode and compare this
to the value expected in equilibrium.

Since we perform classical field simulations of the quench,
we expect to see excitations on top of the ground state
populated according to the equipartition theorem when the
system is in equilibrium. As will be shown below, we find
that the temperature of the m = 0 modes is large compared
to their energy, so that the modes are highly occupied and
equipartition is valid. For the spin-1 system there are three
Bogoliubov branches on top of the ground state [54,61]. If
energy is distributed among all the modes of these branches
according to equipartition, we would obtain a total energy
of 3N2kBT , where N2 is the total number of grid points
(i.e., spatial modes) in the numerical simulation, T is the
temperature of the modes and kB is Boltzmann’s constant.
Equating this to the total energy liberated from the quench
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FIG. 10. (a) Inverse population of the m = 0 level across momen-
tum modes for quenches to four different easy-axis q values at time
t = 3770ts . Dots are numerical data for a single simulation, averaged
over azimuthal angle. Lines are best fits of the form 1/nk = a + bk2,
where a and b are fitting parameters. (b) Enlarged small k behavior of
(a) (note change of vertical axis). The data agree well with Eq. (41),
which predicts that the vertical axis intercept should be −q/q0.
(c) Temperature of the m = 0 excitations vs q. Circles are fits from
panel (a); the solid line is the the theoretical prediction assuming
equipartition, Eq. (39).

[Eq. (10)], we obtain the temperature

kBT = 1

3
n0

(
L

N

)2(q0

4
− q

)
, (39)

The m = 0 Bogoliubov modes (spin waves) have energy
[61]

Ek = εk − q, (40)

with εk ≡ �
2k2/2M . According to the equipartition theorem,

we expect the population of an m = 0 mode with energy Ek

to be

nk = kBT

Ek

. (41)

Following Eqs. (40) and (41) we fit late time numerical data
for 1/nk to the functional form a + bk2, with a and b as fitting
parameters. From a and b we can extract the temperature kBT

and the fitted energy gap Egap. Figure 10(a) shows 1/nk data for
quenches to q = −0.3q0, q = −0.6q0, q = −0.9q0 and q =
−1.2q0. The a + bk2 fits the data well, showing that energy
in the m = 0 level is equipartitioned among the momentum
modes. The small k behavior is shown in Fig. 10(b) and agrees
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FIG. 11. (a) Inverse population of the m = 0 level across mo-
mentum modes at different times following the quench. Dots are
numerical data for a single simulation, averaged over azimuthal
angle. Lines are best fits of the form 1/nk = a + bk2 with a and
b as fitting parameters. The linear nature of the data shows that
energy is equipartioned among the (gapped) free particle modes.
The slope decreases with time, reflecting an increase in temperature
of the m = 0 excitations. For times t � 80ts (not shown) energy
deviates from being equipartioned, coinciding with times where
〈|Fz|2〉 < 〈|F⊥|2〉. Data are for q = −0.3q0. (b) Circles show growth
of the temperature of the m = 0 excitations, extracted from the fit
to the numerical data in panel (a). Dashed line shows temperature
computed from (39). (b) Circles show the energy gap in the spectrum
extracted from the fit to the numerical data in panel (a) versus time.
At late times the gap approaches the value −q, marked by the dashed
line, in agreement with Eq. (40).

well with the predicted energy gap of −q [from Eq. (40)]. The
extracted temperatures are shown in Fig. 10(c), along with the
prediction (39). The agreement between the fitted temperature
and predicted temperature is good.

We also determine the rate that energy flows to the m = 0
Bogoliubov modes by examining how the mode populations
change with time; see Fig. 11(a). The extracted temperature
and energy gap are shown in Figs. 11(b) and 11(c) respectively.
Even for quite early times, t ≈ 80ts , energy is equipartitioned
among the momentum modes. The temperature, however, does
not equilibriate until a time t ∼ 500ts . The flow of energy to
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are calculated as described in Fig. 2.

the m = 0 level is therefore slower than equilibriation among
the m = 0 momentum modes. For times t � 80ts (not shown)
energy deviates from being equipartitioned, coinciding with
times where 〈|Fz|2〉 < 〈|F⊥|2〉; see Fig. 2(a).

The growth of temperature in Fig. 11(c) matches the growth
of Fz magnetization in the system; see Fig. 12. The time scale
of growth also matches the time scale of decay of transverse
magnetization. We can determine this time scale by fitting the
growth to the functional form ∝ (1 − e−t/τ ). This empirical
fit gives a growth rate of τ ≈ 150ts . We note that the density
interaction gnn

2 will likely drive the thermalization of the
m = 0 momentum modes, whereas the changes in spin density
are driven by the smaller spin interaction.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have examined the quench dynamics of a
quasi-two-dimensional ferromagnetic spin-1 condensate. We
have found that for quenches to q < 0 (into the easy-axis
ferromagnetic phase), order grows with a dynamic critical
exponent of z = 3/2 (also see [7,62,63]). For quenches to q

in the range 0 < q < q0 (into the easy-plane ferromagnetic
phase) we find that order grows with a dynamic critical
exponent of z = 1. With our numerical results we have verified
that the late time coarsening dynamics is scale invariant by
demonstrating correlation function collapse when scaling by
L(t). For the easy-plane quench we demonstrate the important

role of polar-core vortices by showing that the number of
vortices scales as L(t)−2 during the coarsening dynamics. Thus
we can interpret easy-plane coarsening as occurring via the
mutual annihilation of vortex-antivortex pairs.

To provide insight into the origin of the growth of order
we have discussed simple analytic models that capture the
essential dynamics of the coarsening, and correctly predict the
dynamic critical exponents. For the easy-plane phase we can
develop such a model based either on the spin waves or the
vortex dynamics, although are unable to analytically obtain
the log corrections to the growth law, which remains an area
for future investigation.

The structure of the ordered domains was studied by
quantifying the Porod tails in the order parameter structure
factor and by a direct spatial analysis using the box-counting
algorithm. Both approaches show that the easy-axis domain
walls are regular with a dimension of Db = 1, whereas the
easy-plane domain walls are fractal with a dimension of
Db ≈ 1.5. Possible physical implications of this fractal struc-
ture includes diffusion limited aggregation [64] or Schramm
(stochastic)–Loewner evolution and the associated conformal
invariance [65]. We also note recent work considering the
domain size distribution and domain wall percolation in binary
condensates [66,67], which would be an interesting direction
to pursue for the spinor system.

We have also considered how the energy liberated from the
quench rethermalizes in the system. Deeper quenches liberate
more energy and the system exhibits larger fluctuations. In
order to quantify the thermalization in the easy-axis quench
we demonstrate an analysis technique that allows us to measure
the temperature and distribution of spin waves. Using this we
show that local equilibrium is established in the spin waves
on moderate time scales but continues to evolve as the order
parameter domains anneal.

Finally we discuss the requirements that must be met
to observe coarsening in experiments. First, the the size of
the condensate must be much larger than the spin healing
length ξs . With the development of flat optical traps (see
Refs. [20,21]) this condition is easily met. Furthermore, these
flat traps minimize inhomogeneous effects present in harmonic
trapping potentials and appear ideally suited to studies of
phase transition dynamics. The second requirement is that
the system has a sufficiently long lifetime that the coarsening
dynamics can be monitored over time scales much longer than
the spin time ts . In 87Rb this time is typically ts ∼ 100 ms and
experiments have been able to study coarsening dynamics for
times up to 4 s [14]. Our results here would suggest that time
scales up to an order of magnitude longer would be necessary
to observe universal coarsening behavior.
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[28] M. Uhlmann, R. Schützhold, and U. R. Fischer, Phys. Rev. Lett.

99, 120407 (2007).
[29] B. Damski and W. H. Zurek, Phys. Rev. Lett. 99, 130402 (2007).
[30] H. Furukawa, Phys. Rev. A 31, 1103 (1985).
[31] B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Phys. Rev.

E 47, 1525 (1993).

[32] A. J. Bray and A. D. Rutenberg, Phys. Rev. E 49, R27 (1994).
[33] A. D. Rutenberg and A. J. Bray, Phys. Rev. E 51, 5499 (1995).
[34] J.-R. Lee, S. J. Lee, and B. Kim, Phys. Rev. E 52, 1550 (1995).
[35] F. Rojas and A. D. Rutenberg, Phys. Rev. E 60, 212 (1999).
[36] A. J. Bray, A. J. Briant, and D. K. Jervis, Phys. Rev. Lett. 84,

1503 (2000).
[37] L. Berthier, P. C. Holdsworth, and M. Sellitto, J. Phys. A 34,

1805 (2001).
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