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We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultracold atoms in
a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential such
that the interaction strength Uf is much larger than the hopping amplitude Jf . The quench initiates collective
oscillations with frequency |Uf |/2π in the momentum occupation numbers and imprints an oscillating phase with
the same frequency on the BCS order parameter �. The oscillation frequency of � is not reproduced by treating
the time evolution in mean-field theory. In our theory, the momentum noise (i.e., density-density) correlation
functions oscillate at frequency |Uf |/2π as well as at its second harmonic. For a very deep lattice, with zero
tunneling energy, the oscillations of momentum occupation numbers are undamped. Nonzero tunneling after
the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations.
The damping occurs even for a finite-temperature initial BCS state, but not for a noninteracting Fermi gas.
Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS
state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong
anticorrelations near the Dirac point.

DOI: 10.1103/PhysRevA.94.023607

I. INTRODUCTION

Ultracold atoms in optical lattices are a versatile tool to
simulate solid-state phenomena [1]. The tunability of lattice
properties over a wide range of parameters not only allows
experiments to explore regions of the phase diagram not
attainable in solid state systems, but also offers new, highly
controllable methods for initiating dynamics. This has been
extensively used for studying nonequilibrium dynamics in
bosonic systems [2–4]. In particular, quenches of the lattice
depth have been used to study the collapse and revival of a
Bose-Einstein condensate (BEC) [5,6].

At low temperatures fermionic atoms in optical lattices
undergo a phase transition to a BEC of molecules for repulsive
interactions and the paired Bardeen-Cooper-Schriffer (BCS)
state [7–9] for small attractive interactions [10,11]. In the BCS
regime the density and momentum distribution is nearly inde-
pendent of the size of the order parameter (gap). It has therefore
been proposed by Altman et al. to use the density-density
correlation to measure the order parameter in experiment [12].
Greiner et al. have demonstrated that measuring the shot noise
in absorption images makes the density-density correlations
experimentally accessible [13]. This has motivated several
further studies of the density-density correlations [14–16] as
well as proposals to use them in order to distinguish different
phases of ultracold fermions [17–20].

An alternative approach to measuring the correlations in a
fermionic gas is to observe the time evolution after a quench
of either the lattice depth or the interactions between atoms.
In fact, Volkov and Kogan have predicted oscillations of
the order parameter (gap) in the BCS regime over 40 years
ago [21]. Recently, this topic has attracted new attention and
several different quenches of the interaction strength from a
noninteracting state to the BCS regime [22,23], within the BCS

regime [24–28] and between the BCS and the BEC regime
[29–34] have been analyzed. Phase diagrams of the asymptotic
behavior for long times after the quench have been obtained in
[35]. All of these theoretical models for quenches in fermionic
systems have in common that they use mean-field theory for
both the initial state and the time evolution.

The experimental realization of loading ultracold bosons
[36] and fermions [37,38] into topological lattices, here the
honeycomb (graphene) lattice, in particular, has created much
interest in the exotic phase diagrams of these systems [39–42].
Furthermore, it was demonstrated that initiating dynamics in
topological lattices gives direct experimental access to the band
structure [43] as well as topological quantities such as Chern
numbers [44], the Berry curvature [45], and Wilson lines [46].

In this paper we investigate the time evolution of a BCS
state in the honeycomb lattice after a sudden ramp of the lattice
depth. We consider the Fermi-Hubbard model away from half
filling for small attractive interactions. The corresponding
ground state is well described by mean-field BCS theory
[39]. By exploiting the integrability of the BCS model we
compute the full time evolution beyond mean-field theory
for ramps to large final lattice depths, where the dynamics is
determined by the interaction strength Uf between the atoms,
while the hopping strength Jf is negligible. The quench is
considered sudden with respect to many particle physics, but
slow compared to the time scales of interband transitions. This
regime is indeed achievable as we find that transitions between
the lowest two bands are highly suppressed for a ramp of the
lattice depth. Transitions to higher bands are negligible due to
the large energy gap between bands.

We find collective sinusoidal oscillations of the momentum
occupation numbers with the frequency |Uf |/2π for all
momentum modes. We also find that the phase of the
complex-valued order parameter �(t) increases linearly
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in time, while its amplitude is time independent. In a
Fermi-Hubbard model a quench of the lattice depth is formally
equivalent to a quench of the interaction strength. References
[27,32,34] studied such an interaction quench within the
framework of Bogoliubov–de Gennes mean-field theory and
predict that the time evolution of �(t) has large-amplitude
nontrivial oscillations. Such difference in predictions for the
time dependence should be experimentally verifiable.

We extend our analysis to include a small, finite tunneling
energy after the quench. This leads to dephasing between
different momentum modes and a subsequent damping of the
oscillations. For times much smaller than 1/(|Uf |2Jf )1/3 we
find a regime where damping occurs for an interacting initial
state with a finite order parameter �, while a noninteracting
initial state does not damp. This motivates the use of the
damping signal as an experimentally accessible signature of �.
Fully numerical calculations with small systems using exact
diagonalization show, however, that the oscillations may also
damp for an interacting initial state with zero order parameter.
In an experiment it may therefore be challenging to isolate the
damping origin.

As a direct measure of pair correlations we also investigate
the time evolution of the density-density correlations. For
the BCS ground state these correlations are nonzero only for
opposite momenta and can be used to estimate the size of the
order parameter. Mean-field theory enforces that even after the
ramp the correlations are only nonzero for those momenta,
while our exact theory predicts small corrections to these
results. The discrepancy between mean-field theory and the
exact theory becomes particularly strong at the Dirac points of
the honeycomb lattice, where the first and second bands touch
linearly.

The remainder of the article is set up as follows. Section II
describes the Hamiltonian as well as the initial state used for
our calculations. We give the model for the time-evolution
procedure in Sec. III and present the results in Sec. IV. In
particular, Secs. IV A and IV B describe the time evolution of
the momentum modes for zero and finite hopping after the
ramp, respectively, and Sec. IV C describes the time evolution
of the order parameter for both cases. The time evolution of
higher-order correlation functions is analyzed in Sec. IV D.
Finally, we summarize in Sec. V.

II. HAMILTONIAN AND BCS GROUND STATE

For our calculations we use a two-band attractive Fermi-
Hubbard model with equal spin populations on a honeycomb
lattice with on-site interactions and nearest- and next-nearest-
neighbor hopping. Brillouin zones and lattice vectors in
coordinate and reciprocal lattice space are defined in Fig. 1.
The Hamiltonian in momentum space is given by

H (μ,J,J ′,U ) = HJ + HU + Hμ, (1)

with

HJ =
∑

k

[εk(a†
k,Aak,B + b

†
k,Abk,B) + c.c.]

+
∑
k,C

ε′
k(a†

k,Cak,C + b
†
k,Cbk,C), (2)

(2k
1
− k 2)
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FIG. 1. (a) Sketch of the honeycomb lattice with unit vectors
e1 = (a,0)T and e2 and lattice constant a. Solid black lines show
the hexagonal lattice of Wigner-Seitz unit cells. The dashed blue
parallelograms show an equivalent lattice spanned by e1 and e2. Both
lattices contain two sites A and B per unit cell. (b) Reciprocal lattice of
the honeycomb lattice. Solid black hexagons show the first Brillouin
zones at each lattice point and dashed red lines show the lattice
spanned by the two reciprocal lattice vectors k1 and k2. (c) First,
second, and third Brillouin zones of the honeycomb lattice. Their
boundaries are indicated by solid black, dashed red, and dotted blue
lines, respectively. The �, M , and Dirac (K) points are marked by
black dots. (d) Single-particle band structure of the honeycomb lattice
for the first two bands and all quasimomenta inside the unit cell
spanned by the reciprocal lattice vectors k1 and k2 as defined in
(b). The bands touch at the two Dirac points, which feature a linear
dispersion relation.

HU = U
1

M

∑
kpq,C

a
†
k,Cak+p−q,Cb

†
p,Cbq,C, (3)

Hμ = −μ
∑
k,C

(a†
k,Cak,C + b

†
k,Cbk,C), (4)

where HJ denotes the hopping part, HU the interaction part,
and Hμ the chemical potential part of the Hamiltonian. The
operators a

†
kC (b†kC) and akC (bkC) create and annihilate a spin-

down (-up) fermion with quasimomentum k on the sublattice
C = A,B. Here and throughout this paper, quasimomentum
sums run over all M momenta in the first Brillouin zone, M is
the total number of lattice sites, and A and B denote the two
distinct lattice sites per unit cell as defined in Fig. 1(a). The
interaction strength is given by U < 0, while J > 0 and J ′ > 0
denote the hopping strengths between nearest and next-nearest
neighbors, respectively. For a spin-balanced gas the chemical
potential μ of the two species is equal. Finally,

εk(J ) = −J (1 + e−ik·e1 + e−ik·e3 ) ≡ |εk|eiφk , (5)

ε′
k(J ′) = −2J ′[cos(k · e1) + cos(k · e2) + cos(k · e3)], (6)
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where e3 = e1 + e2. All operators obey fermionic anticommu-
tation relations, e.g., {ap,C,a

†
k,D} = δpkδCD . While the Fermi-

Hubbard model is based on the lattice space Hamiltonian,
given in Appendix A, the above momentum space one is
obtained by using the Fourier transforms from Eq. (A4).

The noninteracting Hamiltonian HJ + Hμ is exactly solv-
able by a unitary transformation to the operators a

†
k,1 (a†

k,2)

and b
†
k,1 (b†k,2) creating a fermion in the first (second) band.

Their eigenenergies are spin independent and given by εk,1 =
ε′
k − μ − |εk| and εk,2 = ε′

k − μ + |εk|. The band structure for
these two bands is shown in Fig. 1(d). There has been much
interest in the two Dirac (K) points, marked in Fig. 1(c), where
εk = 0 and the two bands touch. The K points feature a linear
dispersion relation [37,40] and φk , the complex phase of εk ,
jumps by π when going through the Dirac points in an arbitrary
direction. The discontinuity in φk results in a nonzero Berry
curvature or equivalently a nonzero Berry phase for any closed
loop containing one of the Dirac points [47].

The low-energy spectrum of H is to good approximation
given by that of the mean-field Hamiltonian

HMF(J,J ′,U,μ)

= HJ + Hμ +
∑
k,C

(�∗ak,Cb−k,C + �b
†
−k,Ca

†
k,C), (7)

with order parameter or gap �, based on pairing between
fermions of opposite spin and momentum [7–9]. The mean-
field Hamiltonian is diagonalized by a Bogoliubov transfor-
mation with quasiparticle annihilation operators αk,γ and βk,γ ,

HMF(J,J ′,U,μ) =
∑
k,γ

Ek,γ (α†
k,γ αk,γ + β

†
k,γ βk,γ ), (8)

where γ = 1,2 and

Ek,γ =
√

ε2
k,γ + �2. (9)

For small attractive interactions U < 0 the ground-state wave
function of Eq. (7) is the well-known BCS wave function [8]
at zero temperature, while at finite temperature T the ground
state is a density matrix, where the order parameter is given
by the self-consistent gap equation

� = − U

2M

∑
k,γ

�

2Ek,γ

tanh

(
Ek,γ

2kBT

)
, (10)

with Boltzmann constant kB .

III. MODEL FOR TIME EVOLUTION

In this section we present the analytical model used to
evaluate the time-dependent expectation values of observables
after a sudden ramp of the lattice depth. In particular, we are
interested in the momentum occupation numbers of the two
bands γ = 1,2,

Pk,γ (t) = 〈e−itH (Jf ,J ′
f ,Uf ) a

†
k,γ ak,γ eitH (Jf ,J ′

f ,Uf )〉, (11)

and the time-dependent order parameter

�(t) = − U

2M

∑
p,γ

〈e−itH b−k,γ ak,γ eitH 〉. (12)

Here angular brackets denote the expectation value with
respect to the (thermal) BCS state, as obtained by diagonalizing
the initial mean-field Hamiltonian HMF(Ji,J

′
i ,Ui,μi) with

initial values Ji , J ′
i , Ui , and μi . The parameters Jf , J ′

f ,
and Uf denote the corresponding quantities after the ramp.
The chemical potential in the final Hamiltonian does not
contribute to the time evolution. The reduced Planck constant
� is set to 1 throughout. We focus on quenches that increase
the lattice depth. This implies that the atom-atom interaction
remains attractive. Repulsive interactions are experimentally
accessible through magnetic Fano-Feshbach resonances and
the simultaneous quench of the applied magnetic field. Our
derivations are also valid in this regime.

While we use mean-field theory to determine the initial
state we use the full Hamiltonian H (Jf ,J ′

f ,Uf ) for the
time propagation going beyond mean-field theory. Finally, it
suffices to consider the time evolution of spin-down fermions
as the Hamiltonian is symmetric with respect to the exchange
of spin species for equal populations.

We first consider a ramp to a sufficiently deep lattice
such that the dynamics after the ramp are determined by the
interaction part of the Hamiltonian. Then the hopping part is
negligible and we can assume Jf = J ′

f = 0. Some algebra,
presented in Appendix A, leads to the following analytic
expression for the time evolution of each momentum mode
in the two bands:

Pk,γ (t) = nk,γ + 2 sin(tUf )Im(Gk,γ D∗)

+ 2[1 − cos(tUf )]Zk,γ , (13)

with all time dependence isolated in the sin and cos, the initial
momentum occupation

nk,γ = 〈a†
k,γ ak,γ 〉 = 1

2

[
1 − εk,γ

Ek,γ

tanh

(
Ek,γ

2kBT

)]
, (14)

the initial momentum-resolved pairing field

Gk,γ = 〈b−k,γ ak,γ 〉 = �

2Ek,γ

tanh

(
Ek,γ

2kBT

)
, (15)

and

Zk,γ = (1 − nk,γ )|D|2 + Wk,γ . (16)

Here D = �/U is the scaled order parameter. The quantity
Wk,γ is time independent and given in Appendix A. Note that
both εk,γ and Ek,γ depend on Ji and J ′

i and � is computed for
the initial hopping and interaction parameters. Finally, Re(z)
and Im(z) are the real and complex parts of z, respectively.

Next we consider a quench to a final lattice depth, where
small hopping parameters Jf ,J ′

f � |Uf | remain, and solve
it perturbatively by using the Suzuki approximation for the
exponential of the final Hamiltonian

eit(HJ +HU ) = eitHJ /2eitHU eitHJ /2 + O(t3), (17)

where of course HJ and HU depend on Jf , J ′
f , and Uf . As

explained in Appendix A 2, we again obtain Eq. (13), but make
the replacements

Gk,γ → Gk,γ (t) = exp(itνk,γ )
�

2Ek,γ

tanh

(
Ek,γ

2kBT

)
(18)
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FIG. 2. Initial momentum distributions (a) nk,2 and (b) nk,1 along
the �-K-M direction in bands 2 and 1, respectively, for filling n =
0.45. The units of k are chosen such that k = 1 at the K point, which
is situated at the edge of the first Brillouin zone, indicated by the
dashed vertical line. Different curves show different values for the
order parameter � and temperature T as indicated in the legend. For
all cases J ′

i = 0.2Ji .

and

D → D(t) = − 1

2M

∑
p,γ

Gp,γ (t), (19)

which are now time-dependent quantities. Here the band
energies νk,γ are εk,γ evaluated at Jf , J ′

f , and μ = 0 rather
than Ji , J ′

i , and μi . Note that the energies Ek,γ are evaluated
at Ji and J ′

i but that Gp,γ and D are replaced in the definitions
for Zk,γ and Wk,γ .

The accuracy of the Suzuki approximation can be estimated
from the strength of terms of cubic order in time. These have
two contributions, one proportional to |Uf |2Jf t3 and the other
to |Uf |J 2

f t3. In our case Jf � |Uf | and we therefore require
t3 � 1/|Uf |2Jf .

In summary, we have derived an expression for the
time evolution of the momentum occupation, which can be
evaluated analytically except for straightforward numerical
summations in Wk,γ . While we focus on the density and pairing
field, this calculation can be extended to the time evolution of
other operators.

IV. OBSERVING COLLECTIVE OSCILLATIONS

A. Time evolution of the momentum modes
for a quench to zero hopping

A sudden ramp of the lattice depth to a deep lattice,
where Jf = J ′

f = 0, induces collective oscillations of the
quasimomentum occupation numbers Pk,γ (t). In order to get
an understanding for these oscillations we first investigate the
initial quasimomentum distribution, which is shown in Fig. 2
for a filling fraction n slightly less than 1/2 and several �

and T . The filling fraction n = (1/2M)
∑

p,γ np,γ is the mean
number of particles per site per spin state.

For noninteracting fermions at half filling n = 1/2 and
T = 0 the lower of the two bands is completely filled. The

upper band is empty. Population is removed around the Dirac
(K) points in the lower band for slightly smaller n. Finite
temperature, on the other hand, transfers population to the
second band, predominantly around the Dirac points. A kink
in the quasimomentum profiles appears at this point, as the
two bands touch linearly. A finite order parameter has similar
effects. In fact, a comparison of the curves in Fig. 2 shows that
distinguishing a paired state with finite order parameter from
a finite temperature state by looking at the initial momentum
distribution only is hard if not impossible.

The time evolution of Pk,γ (t) in Eq. (13) is periodic with
k-independent frequency |Uf |/2π . Moreover, as Gk,γ and
D are real for Jf = J ′

f = 0, the occupation numbers Pk,γ (t)
simplify to nk,γ + 2[1 − cos(tUf )]Zk,γ and oscillate in phase.
Figure 3 shows the momentum distributions at different times t

in the first oscillation cycle 0 < t < 2π/|Uf | for several values
of temperature and order parameter. After half an oscillation
period at t = π/|Uf | we find that momentum modes with
small initial occupation have high occupation and vice versa.
In particular, we observe a significant occupation of the second
band for all momentum modes.

We find numerically that the main contribution to the
amplitude of the momentum oscillations Zk,γ does not depend
on the order parameter �. Out of the terms that do depend
on � the dominant one is the first term in Eq. (16), (1 −
nk,γ )|�|2/U 2. It enhances the population of momentum modes
with small initial occupation nk,γ at t = π/|Uf |. We observe
this when comparing Pk,γ (t = π/|Uf |) (dashed black line) of
a state with a finite order parameter in Figs. 3(c) and 3(f) with
that of a finite temperature state in Figs. 3(b) and 3(e). In fact,
the enhancement occurs for all momentum modes in the upper
band as well as for those close to the Dirac point in the lower
band.

We conclude that the oscillation frequency of the momen-
tum modes after a sudden ramp of the lattice depth to Jf =
J ′

f = 0 is a direct measure for the interaction strength between
atoms. Furthermore, we find small differences in the time
evolution of momentum modes between finite-gap and finite-
temperature states. The kink of the momentum distribution
at the K point of our hexagonal lattice remains observable
after the ramp. Measuring both effects in experiment may,
however, be limited by the current resolution of time-of-flight
images.

B. Time evolution of the momentum modes
for a quench to small finite hopping

Even for ramps to deep lattices, hopping between lattice
sites will not be completely negligible. We take this into
account perturbatively in Eq. (13) with the definitions from
Eqs. (18) and (19). Most notably we find dephasing of the
momentum occupation numbers for an initial state with finite
order parameter. The pairing fields Gp,γ (t) then evolve with
a different frequency for each momentum and band index.
This causes the summands in D(t) to dephase and eventu-
ally leads to damping of the oscillations of the occupation
numbers.

The damping is illustrated in Fig. 4, where we show the
total population of the second band P2(t) = 2n − P1(t) =
(1/M)

∑
k Pk,2(t). We observe that P2(t) is close to a
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FIG. 3. Momentum distribution Pk,γ (t) after a sudden ramp to a lattice with zero tunneling and filling fraction n = 0.45. We show the
momentum distribution along the �-K-M direction at several snapshots in time x = t |Uf |/2π as indicated in the legend above the figure. The
units of k are chosen as in Fig. 2. The top and bottom rows show populations in the upper and lower bands, respectively. The time point t = 0
(solid red line) corresponds to the initial momentum distribution before the ramp, which is again obtained at t = 2π/|Uf | due to the periodicity
of the time evolution. (a) and (d) Distributions at zero temperature and gap. (b) and (e) Zero gap and finite temperature kBT = 0.3Ji . (c) and
(f) Finite gap � = 0.5Ji and zero temperature, which correspond to Ui = −2.68Ji . Finally, in all cases J ′

i = 0.2Ji , μ = 0, Jf = J ′
f = 0, and

the results are valid for any sufficiently large Uf .

minimum, whenever t is a multiple of 2π/|Uf |. In fact, at
these time points the quantities sin(tUf ) and 1 − cos(tUf )
in Eq. (13) are zero and the occupation numbers Pk,γ (t)
are equal to their initial values nk,γ . The most pronounced
dephasing effects can be observed, when P2(t) is close to
a maximum, halfway between two such revivals at t = tj =
(j − 1/2)2π/|Uf |, with positive integer j . In Fig. 4 we see that
the dephasing of momentum modes causes P2(tj ) to decrease
over several time-evolution cycles. Comparing Figs. 4(a)
and 4(b), it is furthermore evident that P2(tj ) decreases more
rapidly for larger values of �.

This motivates a closer investigation of P2(t). For this
purpose it is useful to define the envelope of the occupation
numbers

P2(t) =
∑

k

[nk,2 + 4Zk,2(t)], (20)

which is obtained by evaluating the periodic quantities
sin(tjUf ) = 0 and 1 − cos(tjUf ) = 2 at t = tj in Eq. (13),
but keeping the time dependence of Gk,γ (t), D(t), and Zk,γ (t).
Figure 4 shows that P2(t) closely follows the maxima of
P2(t). It has a quadratic time dependence for small tJf

FIG. 4. Total occupation of the second band P2(t) = (1/M)
∑

q Pq,2(t) (solid red line) as a function of time with a residual finite hopping
after the ramp and filling fraction n = 0.45. The dotted green line shows the envelope of the oscillations P2(t) as defined in Eq. (20). For small
times it is well approximated by a quadratic time dependence (dashed black line). For all panels the final hopping strength Jf = 0.02Uf , the
ratios J ′

f /Jf = J ′
i /Ji = 0.2, and the results are valid for any sufficiently large Uf . Shown are the zero-temperature data with (a) � = 0.5Ji

(corresponding to Ui = −2.68Ji) and (b) � = 1Ji (Ui = −3.45Ji). (c) Data for � = 1.0Ji and kBT = 0.3Ji , implying Ui = −3.53Ji .
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FIG. 5. Quadratic coefficient c, quantifying the damping of the
oscillations of the second-band occupation P2(t), as a function of
order parameter � for constant filling fraction n = 0.45 and J ′

f =
0.2Jf . Different curves show c at different temperatures as indicated
in the legend. A larger coefficient c indicates a faster damping.

and tJ ′
f ,

P2(t) = P2(0)
[
1 − c(�)J 2

f t2 + O([Jf t]3)
]
, (21)

where c is a function of the order parameter �, the filling
fraction n, and the relative hopping strength J ′

f /Jf . Nev-
ertheless, we only make the � dependence explicit as we
expect the other two quantities to be approximately constant
in experiments. This dependence is analytically confirmed by
evaluating Pk,γ (t) using the Lie first-order approximation for
the Hamiltonian

exp[itH (Jf ,Uf )] = exp(itHJ ) exp(itHU ) + O(t2), (22)

instead of the Suzuki second-order approximation from
Eq. (17). We obtain the same time evolution as for Jf = J ′

f =
0, because the hopping part of the Hamiltonian HJ commutes
with the observable a

†
k,γ ak,γ . Therefore, Pk,γ (t) and P2(t) are

independent of Jf and J ′
f and hence P2(t) does not have a

contribution linear in time.
The quadratic approximation for P2(t) agrees well with

the exact P2(t) for the first few oscillations. Afterward, terms
of cubic and higher order in time are important. We, however,
do not expect the Suzuki approximation in Eq. (17) to be
valid in that regime. An estimate for its validity is given by
the condition t |Uf |/2π � (|Uf |/Jf )1/3, where the right-hand
side equals 3.7 for Jf = 0.02|Uf |, as used throughout this
paper.

In Fig. 5 we plot the quadratic coefficient c(�) obtained
from the analytic expansion of P2(t) as a function of � for
several temperatures. It vanishes for a zero order parameter,
since Eqs. (18) and (19) vanish [Gk,γ (t) = D(t) = 0] and
the envelope P2(t) is independent of time. In other words,
the oscillations do not damp when the initial state is a
noninteracting Fermi gas. The coefficient c(�) increases
quadratically for � � Ji and reaches a maximum for larger
values of the order parameter. Finally, the damping coefficient
decreases for increasing temperature. This motivates the use
of c(�) to detect the order parameter experimentally.

In summary, we see that the BCS-type correlations lead
to an increased dephasing of the different momentum modes,
which leads to additional damping of the oscillations. Isolating
this effect from other damping origins may, however, be
challenging in experiment.

C. Time evolution of the order parameter

The time evolution of the pairing order parameter �(t) after
a quench has been simulated extensively [21–32,34,35]. Here
we present our results for �(t) and compare with Ref. [34],
which we found to be most closely related to our calculations.
We evaluate �(t) using the formalism introduced in Sec. III
and find, for a sudden ramp to a lattice with Jf = J ′

f = 0,

�(t) = � exp(itUf ), (23)

independent of temperature. Hence, its amplitude is constant
while its phase oscillates with the same frequency |Uf |/2π

as the momentum modes. (In fact, we can show that for any
state only the phase of the pairing order parameter oscillates
in time.)

Reference [34] solves the mean-field Bogoliubov-de
Gennes (BdG) equations for a homogeneous system at zero
temperature for either slow or fast changes of the interaction
strength. Unlike our simulations, they assume that the system
remains in a BCS state for all times. For both fast and slow
ramps, they find damped oscillations of the amplitude of the
order parameter around an average value �∞, with a frequency
of 2|�∞|/2π . Only for ramps slow compared to their Fermi
energy the average value �∞ equals the order parameter of
the BCS ground state of the final Hamiltonian. In other words,
our and the BdG models make different predictions for the
oscillation frequency as well as the average value.

We note that Eq. (23) is valid for an infinitely fast ramp
of the lattice depth and found to be true for one-dimensional,
square, and honeycomb lattices. In contrast, we expect that the
BdG simulations of Ref. [34] are only valid for slow quenches
to interaction strengths that are not too large and do not lead to
high-energy excitations. For fast quenches, on the other hand,
we trust our calculations. In summary, even though the two
simulations are similar in spirit, they are complementing each
other by exploring different quench regimes.

D. Time evolution of the density-density correlation function

The density-density correlations of the BCS ground state

Ckγ,pσ = 〈a†
k,γ ak,γ b†p,σ bp,σ 〉 − 〈a†

k,γ ak,γ 〉〈b†p,σ bp,σ 〉 (24)

have been of much interest as they can be measured in experi-
ment and are, within mean-field theory, directly proportional to
the gap Ckγ,pσ = δk,−pδγ,σ |�|2/4E2

k,γ [12–18]. We compute
the time-evolved density-density correlations Ckγ,pσ (t) by
inserting the exponentials eitH (Jf ,J ′

f ,Uf ) inside all expectation
values in Eq. (24). Here, only the case of a deep lattice, such
that Jf = J ′

f = 0, is considered. In principle, we could use
the formalism introduced in Sec. III to compute Ckγ,pσ (t).
We would, however, have to evaluate an expectation value of
12 operators. This corresponds to 6! = 720 different terms
and is therefore tedious to compute by hand. We therefore
use a different approach, which, while giving less insight, is
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FIG. 6. Density-density correlations in momentum space Ckγ,pσ (t) in the first band (γ = σ = 1) after a sudden ramp of the lattice depth in
a periodic honeycomb lattice with 12 × 12 unit cells at kBT = 0.3Ji , � = 1Ji (Ui = −3.53Ji), and filling fraction n = 0.45. All panels show
several snapshots in dimensionless time x = t |Uf |/2π , where the coloring scheme determines the time point as indicated in the legend. We
use (a) k = (0,0)T and (b) the Dirac point [k = 1/3(k1 + k2)] and show the correlations as a function of p for p = (p,p)T . The insets show a
zoom-in of the full figure with the y axis scaled by a factor of 1000. (c) Correlations within the first band for p = −k and p = (p,p)T . The
dotted red line shows |Ip(t)|2 computed for 102 × 102 lattice sites for comparison. In all panels the units of p are chosen such that p = −1,1
at the K points, which are indicated by dashed vertical lines.

much easier to automate for higher-order correlation functions.
First, we separate the time dependence from the expectation
values by using an identity similar to Eq. (A5). Then we
evaluate the time-independent expectation values of operators
in lattice space instead of momentum space. This has the
advantage that the expectation values of L operators factor
into a product of two-operator expectation values and we do
not get multidimensional sums as in Eq. (A9). In fact, the
Wicks theorem can be applied [48] and we find

〈c†1c†2 · · · c†LcL′ · · · c2′c1′ 〉 =
∑

s∈S(L)

⎛
⎝sgn(s)

L∏
j=1

〈c†j cs(j )′ 〉
⎞
⎠,

(25)

where each of the number indices i denotes a multi-index
with unit-cell index ni , sublattice site Ci , and spin σi . Primed
indices denote a set of different independent multi-indices.

Furthermore the operators ci = ani ,Ci
for σi = ↓ and ci =

b
†
ni ,Ci

for σi = ↑. Finally, S(L) is the set of all permutations
of the numbers 1,2, . . . ,L and sgn(s) denotes the sign of the
permutation s. Note that it is important that the left-hand side
of Eq. (25) is normally ordered in the sense that all c†i operators
are left of the cj operators.

The density-density correlations are periodic with the same
frequency |Uf |/2π as the momentum occupation numbers.
In fact, Ckγ,pσ (t) = C1 + C2 cos(tUf ) + C3 cos2(tUf ) with
time-independent, but momentum- and band-dependent, real
coefficients Ci , i = 1,2,3. Furthermore, Figs. 6(a) and 6(b)
show that throughout the whole time evolution the correlations
are dominated by momenta p = −k. A finite background
remains with values about a factor of 100 smaller. While we
show results for kBT = 0.3Ji , we note that the results for
different temperatures and in particular zero temperature are
qualitatively the same.

FIG. 7. Density-density correlations in momentum space Cpγ,−pσ (t) after a sudden ramp of the lattice depth in a periodic honeycomb lattice
with 12 × 12 unit cells at kBT = 0.3Ji , � = 1Ji (Ui = −3.53Ji), and filling fraction n = 0.45. We show the correlations as a function of time
for several momentum values p, where the coloring scheme determines the momentum as indicated in the legend: (a) correlations within the
first band, (b) correlations between the first and the second band, and (c) Cp1,−p1(t) − |Ip1(t)|2 within the first band. The latter expression is
zero when calculated within mean-field theory. Finally, we note that the solid red and dotted blue lines overlap in (a).
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A closer investigation of the p = −k correlations in
Fig. 6(c) reveals that the amplitude of the oscillations at the
Dirac point is smaller than at any other momentum point. The
same holds for the correlations within the second band, as we
see in Fig. 7(a). In contrast, Fig. 7(b) shows that the opposite is
true for the correlations between the first and the second band.
In fact, these two bands develop significant anticorrelations,
i.e., negative values of the correlation function, throughout the
time evolution.

Figure 7(c) compares results obtained within mean-field
theory with our exact results. In fact, when using the mean-field
Hamiltonian for the time evolution the initial state remains
a BCS-type state and for all times and 〈a†

k,γ ak,γ b
†
p,σ bp,σ 〉 =

〈a†
k,γ ak,γ 〉〈b†p,σ bp,σ 〉 + 〈a†

k,γ b
†
p,σ 〉〈bp,σ ak,γ 〉. Hence, this im-

plies that the difference

Ck1,p1(t) − δk,−p|Ik1(t)|2 (26)

is strictly zero, where Ik,1(t) = 〈e−itH (Jf ,J ′
f ,Uf )b−k,1ak,1

eitH (Jf ,J ′
f ,Uf )〉. In other words, a mean-field theory predicts

a zero background in the insets of Figs. 6(a) and 6(b),
where we find small nonzero values from the exact Jf = 0
simulations. Furthermore, Fig. 7(c) shows the expression in
Eq. (26), at p = −k, evaluated within our exact theory. We
see that the correlations at p = −k have small deviations from
the mean-field theory for all momenta, but are particularly
pronounced at the Dirac point.

V. CONCLUSION AND OUTLOOK

We have analyzed the exact time evolution of a BCS state
after a sudden quench of the lattice depth. For zero tunneling
after the quench we find undamped collective oscillations of
the momentum occupation numbers with frequency |Uf |/2π .
The observation of these oscillations is experimentally accessi-
ble through time-of-flight measurements. Small finite hopping
after the quench leads to dephasing of different momentum
modes and a corresponding damping of the oscillations. On
short time scales we observe that at any fixed temperature the
damping is stronger for larger order parameter �. In particular,
our perturbative calculations find no damping at all if the initial
state is a noninteracting Fermi gas. Measuring the quadratic
damping coefficient may therefore be used to estimate the size
of the order parameter.

We note, however, that the measurement of the dephasing
time will be challenging and always only be an indirect proof
of a finite-order parameter for the fermions. For example, addi-
tional numerical calculations for small lattice sizes, presented
in Appendix B, show that an improved description of the initial
thermal-equilibrium state leads to additional damping. A direct
comparison of the analytical and the small-size numerical
model has to be taken with care due to the significant difference
in lattice size and topology. Still, it may be challenging to
experimentally distinguish different damping mechanisms.

Finally, experimental limitations might make it hard to
extract the dephasing time. In order to mitigate the effect
of additional dephasing mechanisms the contribution of the
BCS-type correlations to the damping of the oscillations can
be increased by using larger hopping after the quench, as can be
seen from Eq. (21). Although our perturbative results are not

valid in that regime, we expect that the qualitative behavior
remains the same. In experiments additional dephasing can
occur due to density inhomogeneities in the initial state. We
expect this to lead to small corrections as mass transport is
absent when J = 0 and very small for small nonzero J . Based
on findings with similar quench experiments with ultracold
bosonic atoms [49–51] it will be more important to include the
effect of weak confining potentials after the quench. A spatially
varying on-site energy leads to additional dephasing. The
experiments with bosons have shown that confinement effects
can to a large extent be mitigated, for example, by using shal-
low traps or box potentials [52,53]. Similar observations may
be expected for fermions, which makes the investigation of
confinement effects an interesting direction for future research.

For the time evolution of the order parameter we find
oscillations of the phase with frequency |Uf |/2π . This differs
from previous results [21–32,34] obtained from treating both
the initial state and the time evolution within the mean-field
approximation. Our results are valid for ramps fast compared
to the time scale of interactions, while we expect mean-field
theory to be valid in the opposite limit. Also we note that
Ref. [34], which we found to be most closely related to our
work, considers a continuous system, while ours is a discrete
lattice. Although it is not clear how to take the continuum
limit, the fact that we observe qualitatively similar time
evolutions for different discrete lattice topologies suggests
that the comparison to a continuous system is valid. Still, the
two approaches complement each other by exploring different
quench regimes.

The lowest two bands of the honeycomb lattice touch
linearly at the Dirac point. This gives rise to a kink in the
momentum distribution, which remains visible throughout
the time evolution. We further observe that the density-
density correlations, which perform periodic oscillations with
the same frequency |Uf |/2π as the momentum occupation
numbers, show pronounced differences in the amplitude of the
oscillations at the Dirac point as compared to other momenta.
Within both the first and second bands the oscillation amplitude
is significantly smaller at the Dirac point. The opposite is
true for the correlations between the first and the second
band. While initially uncorrelated, the system develops strong
anticorrelations between those two bands at the Dirac point.
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APPENDIX A: DETAILED CALCULATION FOR THE
TIME-EVOLUTION PROCEDURE

Here we present details for the calculation of the time-
evolution expression in Eq. (13). The calculation is most
elegant when evaluating parts of the expression in momentum
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space and others in lattice space. Therefore, it will be
convenient to write the Hamiltonian of Eqs. (1)–(4) in lattice
space

HJ = −J
∑

〈nC,mD〉n

(a†
m,Dan,C + b

†
m,Dbn,C)

− J ′ ∑
〈nC,mC〉nn

(a†
m,Can,C + b

†
m,Cbn,C), (A1)

HU = U
∑
n,C

a
†
n,Can,Cb

†
n,Cbn,C, (A2)

Hμ = −μ
∑
n,C

(a†
n,Can,C + b

†
nCbn,C), (A3)

where 〈nC,mD〉n denotes sums over nearest neighbors, while
〈nC,mD〉nn denotes sums over next-nearest neighbors. The
operators a

†
nC (b†nC) and anC (bnC) create and annihilate a spin-

down (-up) fermion in the unit cell n with sublattice site C =
A,B and are related to the momentum space operators through
the site-specific Fourier transformations

ak,C = 1√
M

∑
n

e−ik·nan,C, (A4)

where n is the vector pointing to the origin of the nth unit cell.
Equivalent Fourier transforms are defined for the b operators.

1. Zero hopping

It is instructive to begin with the calculation of Eq. (11)
for the Jf = J ′

f = 0 case. The simple form of HU in lattice

space is exploited by expanding a
†
k,γ ak,γ in terms of the

operators a
†
n,Cam,D , with C,D = A,B. The time-evolution

operator exp(itHU ) is readily applied to each of the terms
in the expansion separately

e−itHU a
†
n,Cam,DeitHU = a

†
n,Cam,D{[1 + b

†
n,Cbn,C(e−itU − 1)]

× [1 + b
†
m,Dbm,D(eitU − 1)]}. (A5)

By inserting this into Eq. (11) and transforming all operators
back into momentum space, we obtain a sum of expectation
values, where each term has at most six creation or annihilation
operators. The expectation values are evaluated by using the
Bogoliubov transformation to a noninteracting Hamiltonian
[see Eq. (8)] and noting that the Wicks theorem is applicable
to the Bogoliubov operators [48]. For example,

〈a†
k,Aak,A〉 = 1

2 (nk,α + nk,β), (A6)

〈b−k,Aak,A〉 = 1
2 (Gk,α + Gk,β). (A7)

The result is Eq. (13) with the definitions

Wk,γ = nk,γ (n2 − n) + (1 − 2n)Re(Gk,γ D∗)

+ n2 − Q(k) − R(k) − (−1)γ S(k) − (−1)γ T (k)
(A8)

and

Q(k) = 1

M2

∑
pq

nk+q−p,+np,+nq,+, (A9)

R(k) = 1

M2

∑
pq

np+q−k,+Re(G∗
p,+Gq,+), (A10)

S(k) = 1

M2

∑
pq

cos(φk − φk+q−p − φp + φq)

× nk+q−p,−np,−nq,−, (A11)

T (k) = 1

M2

∑
pq

cos(φk − φp − φq + φp+q−k)

× np+q−k,−Re(G∗
p,−Gq,−). (A12)

It is furthermore convenient to define np,± = 1
2 (np,2 ± np,1),

Gp,± = 1
2 (Gp,2 ± Gp,1), and the spin-independent filling frac-

tion

n = 1

2M

∑
p,γ

〈a†
p,γ ap,γ 〉 = 1

2M

∑
p,γ

np,γ , (A13)

which is the average number of atoms per site per spin.
The remaining summations in Eqs. (A9)–(A13) are evaluated
numerically for equal numbers of sites M1 and M2 along the
e1 and e2 directions. In fact, we choose M1 = M2 = 102 in
Figs. 2 and 3 and M1 = M2 = 48 in Figs. 4 and 5. In both
cases we have checked that including more lattice sites does
not change the results of the calculation.

2. Small but finite hopping

We now consider the time-evolution expression in Eq. (11)
within the Suzuki approximation [see Eq. (17)]. As HJ

commutes with a
†
k,γ ak,γ the time-evolution expression im-

mediately simplifies to

Pk,γ (t) = 〈e−itHJ /2e−itHU a
†
k,γ ak,γ eitHU eitHJ /2〉. (A14)

Next we insert the identity 1 = eitHJ /2e−itHJ /2 in between all
creation and annihilation operators of Eq. (A14) and compute

e−itHJ /2ak,γ eitHJ /2 = eitνk,γ /2ak,γ , (A15)

where νk,γ is the same as εk,γ , but now evaluated at Jf and
J ′

f . From Eq. (A15) we see that the hopping part of the
Hamiltonian simply multiplies each of the operators with a
phase. By evaluating the expectation values in Eq. (A14) in
the same way as in Appendix A 1 we obtain Eq. (13) with the
definitions from Eqs. (18) and (19).

APPENDIX B: TIME EVOLUTION OF SMALL SYSTEMS
USING EXACT DIAGONALIZATION

1. Methods

We extend our study to initial states with a zero order
parameter when simultaneously the interaction strength is
nonzero. These equilibrium states of the Fermi-Hubbard
Hamiltonian occur for initial temperatures higher than the
critical temperature of the BCS phase transition. Calculating
the subsequent time evolution falls outside the applicability of
our analytical model. We have therefore performed numerical
calculations for small systems with six lattice sites and either
two or three spin-up and spin-down fermions. We use a range
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of temperatures 0 < kBT < 10Ji and tight-binding parameters
from Fig. 4.

These numerical calculations are based on exact diag-
onalization of the lattice-space Hamiltonian, introduced in
Appendix A. In the following we briefly describe the pro-
cedure. First, we determine the matrix form of the initial
Hamiltonian Hi = H (Ji,J

′
i ,Ui) in a complete set of Fock

basis functions with fixed and equal numbers of spin-up
and spin-down fermions. Next we numerically diagonalize
Hi , obtaining eigenvalues E(i) and eigenfunctions |ψ (i)〉.
Expectation values of an observable O with respect to initial
states in thermal equilibrium at temperature T are given by

〈O〉 = 1

Z

∑
l

exp
(−E

(i)
l

/
(kBT )

)〈
ψ

(i)
l

∣∣O∣∣ψ (i)
l

〉
, (B1)

where

Z =
∑

l

exp
(−E

(i)
l

/
kBT

)

and l is an index running over all eigenstates. The eigenvalues
and the eigenfunctions of the final Hamiltonian are computed
in a similar fashion. The time evolution of the initial states
can then be expressed in terms of the overlap with the final
eigenstates.

2. Numerical results

We compute the time evolution of the momentum occupa-
tion numbers Pk(t). All momentum modes perform collective
oscillations with frequency |Uf |/2π . The oscillations are
undamped for Jf = 0 and we obtain a finite amount of
damping that is quadratic to lowest order in time for nonzero
Jf . Hence, these results are in good agreement with our
analytical calculation and motivate a comparison of the
damping strength between the two approaches.

In analogy to P2(t) from Eq. (20), we define Pk=0(t) as
the envelope of Pk=0(t). We obtain Pk=0(t) from a quadratic
fit to Pk=0(t) at the three time points t |Uf |/2π = 0,1,2. To a
good approximation these points correspond to the maxima of
Pk=0(t). As there is no contribution linear in time,

Pk=0(t) = Pk=0(0)
[
1 − c1D J 2

f t2
]
. (B2)

The quadratic coefficient c1D is the analog to the coefficient
c(�) in Eq. (21) and quantifies the damping of Pk=0(t).
We show c1D as a function of temperature for several initial

FIG. 8. Quadratic coefficient c1D, quantifying the damping of the
oscillations of the momentum occupation Pk=0(t), as a function of
temperature for Uf = −5Ji , Jf = 0.02|Uf |, and a filling fraction of
1/3. Different curves show c1D for different values of Ui as indicated
in the legend above the figure. We use exact diagonalization with six
lattice sites for the calculation and obtain the coefficient c1D from
a parabolic fit to Pk=0(t) at t |Uf |/2π = 0,1,2. The inset shows the
real-space pair correlation �eff = −(Ui/M

2)
∑

nm〈a†
namb†

nbm〉 for the
same set of parameters. The pair correlation is an estimate for
the mean-field order parameter �.

interaction strengths in Fig. 8. Many aspects of this figure are
in good agreement with the analytical calculations presented
in Sec. IV B. In particular, we see that for any fixed Ui the
damping is reduced for higher temperatures. Furthermore, the
damping strength is independent of Ui when the temperature
kBT is much larger than Ui . For low temperatures, when the
order parameter becomes substantial, there is a significant
increase in c1D. Finally, c1D is larger for larger Ui , hence larger
order parameter, for sufficiently high temperatures. The most
surprising difference from our analytical calculation is that we
observe a finite amount of damping even for a noninteracting
Fermi gas. We believe that this damping occurs because we
use a small system size and the canonical ensemble, where
even a noninteracting Fermi gas is correlated.

In summary, our small numerical calculations show, in
agreement with our analytical calculations, that the quadratic
coefficient c1D approximately follows the value of the order
parameter.
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[10] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht,
Crossover from BCS to Bose Superconductivity: Transition
Temperature and Time-Dependent Ginzburg-Landau Theory,
Phys. Rev. Lett. 71, 3202 (1993).

[11] W. Ketterle and M. W. Zwierlein, in Ultracold Fermi Gases,
Proceedings of the International School of Physics “Enrico
Fermi,” Course CLXIV, Varenna, 2006, edited by M. Ingus-
cio, W. Ketterle, and C. Salomon (IOS, Amsterdam, 2007),
pp. 95–287.

[12] E. Altman, E. Demler, and M. D. Lukin, Probing many-body
states of ultracold atoms via noise correlations, Phys. Rev. A 70,
013603 (2004).

[13] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Probing
Pair-Correlated Fermionic Atoms Through Correlations in Atom
Shot Noise, Phys. Rev. Lett. 94, 110401 (2005).

[14] A. Lamacraft, Particle correlations in a Fermi superfluid,
Phys. Rev. A 73, 011602 (2006).

[15] W. Belzig, C. Schroll, and C. Bruder, Density correlations in
ultracold atomic Fermi gases, Phys. Rev. A 75, 063611 (2007).

[16] S. Kudla, D. M. Gautreau, and D. E. Sheehy, Pairing correlations
in a trapped one-dimensional Fermi gas, Phys. Rev. A 91,
043612 (2015).

[17] I. Carusotto and Y. Castin, Coherence and correlation properties
of a one-dimensional attractive Fermi gas, Opt. Commun. 243,
81 (2004).

[18] T. Paananen, T. K. Koponen, P. Torma, and J.-P. Martikainen,
Noise correlations of the ultracold Fermi gas in an optical lattice,
Phys. Rev. A 77, 053602 (2008).

[19] L. Mathey, E. Altman, and A. Vishwanath, Noise Correlations
in One-Dimensional Systems of Ultracold Fermions, Phys. Rev.
Lett. 100, 240401 (2008).

[20] L. Mathey, A. Vishwanath, and E. Altman, Noise correlations in
low-dimensional systems of ultracold atoms, Phys. Rev. A 79,
013609 (2009).

[21] A. Volkov and S. Kogan, Collisionless relaxation of the energy
gap in superconductors, J. Exp. Theor. Phys. 38, 1018 (1974).

[22] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Collective Rabi
Oscillations and Solitons in a Time-Dependent BCS Pairing
Problem, Phys. Rev. Lett. 93, 160401 (2004).

[23] A. Tomadin, M. Polini, M. P. Tosi, and R. Fazio, Nonequilibrium
pairing instability in ultracold Fermi gases with population
imbalance, Phys. Rev. A 77, 033605 (2008).

[24] G. L. Warner and A. J. Leggett, Quench dynamics of a superfluid
Fermi gas, Phys. Rev. B 71, 134514 (2005).

[25] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Nonequilibrium Cooper pairing in the nonadiabatic
regime, Phys. Rev. B 72, 220503 (2005).

[26] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Solution for the dynamics of the BCS and central spin
problems, J. Phys. A: Math. Gen. 38, 7831 (2005).

[27] R. A. Barankov and L. S. Levitov, Synchronization in the BCS
Pairing Dynamics as a Critical Phenomenon, Phys. Rev. Lett.
96, 230403 (2006).

[28] M. Dzero, E. A. Yuzbashyan, B. L. Altshuler, and P. Coleman,
Spectroscopic Signatures of Nonequilibrium Pairing in Atomic
Fermi Gases, Phys. Rev. Lett. 99, 160402 (2007).

[29] A. V. Andreev, V. Gurarie, and L. Radzihovsky, Nonequilibrium
Dynamics and Thermodynamics of a Degenerate Fermi Gas
Across a Feshbach Resonance, Phys. Rev. Lett. 93, 130402
(2004).

[30] M. H. Szymanska, B. D. Simons, and K. Burnett, Dynamics of
the BCS-BEC Crossover in a Degenerate Fermi Gas, Phys. Rev.
Lett. 94, 170402 (2005).

[31] E. A. Yuzbashyan and M. Dzero, Dynamical Vanishing of the
Order Parameter in a Fermionic Condensate, Phys. Rev. Lett.
96, 230404 (2006).

[32] E. A. Yuzbashyan, O. Tsyplyatyev, and B. L. Altshuler,
Relaxation and Persistent Oscillations of the Order Parame-
ter in Fermionic Condensates, Phys. Rev. Lett. 96, 097005
(2006).

[33] A. Bulgac and S. Yoon, Large Amplitude Dynamics of the
Pairing Correlations in a Unitary Fermi Gas, Phys. Rev. Lett.
102, 085302 (2009).

[34] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Rapid
ramps across the BEC-BCS crossover: A route to measuring the
superfluid gap, Phys. Rev. A 86, 053604 (2012).

[35] E. A. Yuzbashyan, M. Dzero, V. Gurarie, and M. S. Foster,
Quantum quench phase diagrams of an s-wave BCS-BEC
condensate, Phys. Rev. A 91, 033628 (2015).

[36] P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G.
Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K.
Sengstock, Multi-component quantum gases in spin-dependent
hexagonal lattices, Nat. Phys. 7, 434 (2011).

[37] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Creating, moving and merging Dirac points with a Fermi gas
in a tunable honeycomb lattice, Nature (London) 483, 302
(2012).

[38] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U.
Bissbort, and T. Esslinger, Artificial Graphene with Tunable
Interactions, Phys. Rev. Lett. 111, 185307 (2013).

[39] E. Zhao and A. Paramekanti, BCS-BEC Crossover on the Two-
Dimensional Honeycomb Lattice, Phys. Rev. Lett. 97, 230404
(2006).

[40] K. L. Lee, K. Bouadim, G. G. Batrouni, F. Hebert, R. T. Scalettar,
C. Miniatura, and B. Gremaud, Attractive Hubbard model on a
honeycomb lattice: Quantum Monte Carlo study, Phys. Rev. B
80, 245118 (2009).
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