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We consider quantum phases of tightly confined spin-2 bosons in an external field under the presence of
rotationally invariant interactions. Generalizing previous treatments, we show how this system can be mapped
onto a quantum rotor model. Within the rotor framework, low-energy excitations about fragmented states, which
cannot be accessed within standard Bogoliubov theory, can be obtained. In the spatially extended system in the
thermodynamic limit there exists a mean field ground-state degeneracy between a family of nematic states for
appropriate interaction parameters. It has been established that quantum fluctuations lift this degeneracy through
the mechanism of order by disorder and select either a uniaxial or square-biaxial ground state. On the other
hand, in the full quantum treatment of the analogous single-spatial-mode problem with finite-particle number, it
is known that, due to symmetry-restoring fluctuations, there is a unique ground state across the entire nematic
region of the phase diagram. Within the established rotor framework, we investigate the possible quantum phases
under the presence of a quadratic Zeeman field, a problem which has previously received little attention. By
investigating wave-function overlaps, we do not find any signatures of the order-by-disorder phenomenon which
is present in the continuum case. Motivated by this, we consider an alternative external potential which breaks
less symmetry than the quadratic Zeeman field. For this case, we do find the phenomenon of order by disorder in
the fully quantum system. This is established within the rotor framework and with exact diagonalization.
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I. INTRODUCTION

Ultracold spinor atoms provide simple and experimentally
well-controlled many-body systems with internal degrees of
freedom. The simplest case is that of a spin-1 gas. The
atomic spin-1 species 23Na and 87Rb have been the subject
of numerous experiments (see, for example, the reviews
in [1,2] and references therein), prompting detailed theoretical
investigation of the exact spectra for tightly confined spin-1
atoms [3–9] as well as their mean field properties in the thermo-
dynamic limit [10,11]. The higher spin-2 hyperfine multiplet
of 87Rb was found to be stable and amenable to experimental
manipulation [12–15], prompting the development of a number
of spin-2 exact and mean field theoretical results [5,16–19].
In particular, Gross-Pitaevskii mean field theory has been
used to describe spin-2 condensates under linear and quadratic
Zeeman fields [20,21]. Exact quantum results have also been
found for spin-2 systems under tight spatial confinement under
no external fields, which can be simply extended to results with
a linear Zeeman field by a gauge transformation [5,17]. The
case of the quantum states of tightly confined bosons under the
presence of a quadratic Zeeman field, however, has remained
less well understood.

Spinor condensates also provide a convenient platform with
which to study the phenomenon of order by disorder [22–24],
or the selection of a particular mean field ground state from
a set of accidentally degenerate ones due to fluctuations. This
subject has traditionally been of importance in elucidating
the ground-state structure of frustrated magnetic systems
but has also been investigated as a relevant mechanism in
several cold-atom systems [18,19,25–32]. These offer the
possibility of experimentally realizing a phenomenon whose
observation is still contentious in magnetic systems [33,34].
In spin-2 systems, order by disorder has been predicted to
determine the ground state in the absence of a quadratic

Zeeman field for species with scattering lengths within a
certain range, termed the nematic region. Furthermore, the
mechanism has been predicted to introduce a first-order
phase transition between two parts of the nematic region in
which fluctuations select different members of the accidentally
degenerate family [18,19].

One of the goals of this article is to present analytical results
for tightly confined spin-2 atoms in the presence of a quadratic
Zeeman field. The results are obtained by utilizing an exact
mapping of the interacting many-body system Hamiltonian
to a five-dimensional quantum rotor Hamiltonian, i.e., that of
a single particle moving on the 4-sphere. Similar mappings
have previously been employed to study the double-well
problem [35], dipolar condensates [36], and particularly the
analogous tightly bound spin-1 problem [7,8,37,38].

One of the main perceived advantages of the rotor method-
ology is that it allows one to treat excitations about fragmented
states [39,40]. Applying the Penrose-Onsager criterion for
Bose-Einstein condensation, fragmented condensates are de-
fined as those whose reduced single-particle density matrix
has more than one extensive eigenvalue. When there are
exactly two such eigenvalues, one may envision the state as
a condensate of particle pairs. One encounters such a case
in the spin-2 problem in the presence of a large negative
quadratic Zeeman field. Such a state cannot be approximated
by a coherent state, invalidating the use of Bogoliubov theory,
typically the first line of attack in calculating excitation spectra
about nonfragmented condensates. The rotor mapping, on the
other hand, suffers no pathologies in the fragmented case
and provides simple analytical expressions for the excitation
spectra.

Previous results by Koashi and Ueda [5,17] indicate that the
exact quantum results in the absence of a quadratic Zeeman
field do not mirror the continuous accidental degeneracy of the
mean field analysis. Rather, the ground state is nondegenerate
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and the same across the entire nematic region and no traces of
the order-by-disorder induced phase transition are manifest.
One may hope that the signature of the transition could
nevertheless be observed in the magnetic response to the
quadratic Zeeman field, which serves to classically orient the
nematic order parameter. In this article, we find through an
evaluation of the wave-function overlaps obtained through
the rotor mapping, that such a signature is nevertheless not
present.

Motivated by this, we have applied the rotor mapping to
the analysis of an alternative potential that does not fully
break the mean field degeneracy, noting that a large class
of quadratic potentials can be experimentally obtained with
external microwave fields. Using the rotor framework, we
show that including quantum corrections selects a unique
ground state. Furthermore, this selection is explicitly demon-
strated through an exact diagonalization numerical approach
involving a modest number of atoms. Importantly, we find that
the overlap of the obtained ground states with any mean field
state tends to zero with increasing particle number, a stark
departure from the standard mean field states obtained in the
continuum. On the other hand, the ordering is apparent in the
spin-component occupation numbers, which can be readily
experimentally probed.

This article is organized as follows. In Sec. II we first
describe the continuum Hamiltonian for a spin-2 cold Bose
gas. Mean field results and a phase diagram depending on
the Zeeman field and the differences in distinct total-spin
scattering lengths, considered tunable, are presented. From
thereon we focus on the nematic region of the phase diagram.
In Sec. III we next consider the single-mode approximation,
relevant to a tight trap in which spatial degrees of freedom are
taken to be completely frozen out, yielding an effectively zero-
dimensional Hamiltonian. Exact results on this Hamiltonian
in the absence of a quadratic Zeeman field are summarized
in Sec. III B. In the following subsection we briefly outline
the exact-diagonalization method used to obtain numerical
results in this work. In Sec. IV the spin-2 rotor mapping is
introduced. Although having a real spectrum, the Hamiltonian
thus obtained is in general non-Hermitian. The Hermitianizing
transform is generally difficult to find, but feasible in special
cases. Section IV C considers such a case when one of
the Hamiltonian parameters is zero. Section V considers
general parameter configurations in the presence of a large
quadratic Zeeman field. Large positive and negative values are
considered in separate subsections. In both cases, a simple
approximate Hermitianizing transform may be found, leading
to effective harmonic oscillator Hamiltonians. In Sec. V C we
further present analytical expressions for overlaps with the
relevant mean field states for both cases and compare them to
numerics.

Finally, in Sec. VI we discuss the disparity in qualitative
nematic-region behavior arising from the mean field and
full quantum treatments in the presence of a quadratic
Zeeman term. The latter contains no visible traces of order
by disorder that is manifest in the former. Motivated by
this, we introduce an alternative external potential which
does not break the mean field degeneracy. We show that
beyond-mean-field corrections in this system select unique
ground states, and therefore interpret the phenomenon

as order by disorder. We derive analytical expressions
for certain aspects of this state and numerically assess
them.

II. BACKGROUND

A. Spinor Hamiltonian

We begin by describing the Hamiltonian governing the
underlying physical system, a collection of cold interacting
spin-2 bosons in a scalar trapping potential [41] and a magnetic
field, manifesting itself through a linear and a quadratic
Zeeman term. The full first-quantized Hamiltonian is

Ĥ1st =
N∑
i

Ĥ
(1)
i +

∑
i<j

V̂
(2)
i,j with

Ĥ
(1)
i = 1

2m
p̂2

i + V (r̂ i) + pF̂ z
i + q

(
F̂ z

i

)2
. (1)

Here, N is the total particle number, m the atomic mass, V

the external potential, and p̂i , r̂ i , and F̂ z
i the ith particle’s

momentum, position, and z component of spin operators,
respectively. p and q are the linear and quadratic Zeeman
coefficients, respectively.

As detailed in many standard resources, such as [42], the
interparticle potential V̂

(2)
i,j between the ith and j th particles

is short range and dominated by the s-wave component, i.e.,
it depends predominantly on the distance between the atoms.
It is well approximated by a delta function with a prefactor
proportional to the scattering length. There are three different
scattering lengths aS for the three distinct values of the total
spin of a pair of particles S allowed by interchange symmetry,
that is, 0, 2, and 4. The potential of a pair of particles can thus
be written as [1,2]

V̂
(2)
i,j = 1

2δ(r̂ i − r̂j )
(
c01̂i ⊗ 1̂j + c1 F̂i · F̂j + 5c2P̂

(0)
i,j

)
, (2)

where P̂
(0)
i,j is the projection operator onto the spin-singlet

state of the pair, r̂ i and F̂i are the ith particle’s position
and spin operator, respectively. Employing units with � = 1,
used hereafter, the c constants may be expressed in terms of
scattering lengths as

c0 = 4π

7m
(4a2 + 3a4),

c1 = 4π

7m
(a4 − a2),

c2 = 4π

5m
(a0 − a4) + 8π

7m
(a4 − a2). (3)

Second-quantizing Hamiltonian (1) above yields

Ĥ2nd =
∫

d3r [Ĥ0(r) + Ĥq(r) + ĤI (r)], (4a)

Ĥ0 = ψ̂†
α

[
− 1

2m
∇2 + V (r)

]
ψ̂α, (4b)

Ĥq = pF̂ z + qẐ with

F̂ i = ψ̂†
αF i

αβψ̂β and Ẑ = ψ̂†
α(Fz)2

αβψ̂β, (4c)
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ĤI =:
c0

2
n̂2 + c1

2
F̂2

: + c2

2
Â†Â with

n̂ = ψ̂†
αψ̂α and Â =

2∑
α=−2

(−1)αψ̂αψ̂−α, (4d)

where ψ̂α(r) are the annihilation operators for bosons in
the m = α magnetic sublevel at r . F̂ i(r) stands for the ith
component of the total spin density operator whereas F i is
the ith spin-2 matrix. The positional dependence of creation
and annihilation operators and densities has been suppressed
above for brevity. Except for the definition of Â, repeating
indices imply the Einstein summation convention. The colon
delimiters represent normal ordering. Ĥ0 and Ĥq are the
second-quantized forms of single-particle operators from the
second line of Eq. (1). Ĥ0 originates from the potential and
kinetic terms, and Ĥq from the linear and quadratic Zeeman
terms. ĤI is the second-quantized form of the two-particle
interaction in Eq. (2). It is also worth noting that the operator
Â may be loosely interpreted as an annihilation operator for a
spin-singlet pair of bosons [5,17].

B. Mean field phase diagram at q = 0

In determining ground states in the thermodynamic limit,
we may invoke Gross-Pitaevskii mean field theory which
consists of replacing field operators with their expectation
values ψ̂α(r) → ψα(r) ≡ 〈ψ̂α(r)〉. In the continuum, i.e., zero
external potential, we may Fourier transform the operators
to ψ̂ p,α and for the ground states further consider only the
zero momentum p = 0 components. This reduces classifying
the various phases to describing the five-component order
parameter χα ≡ 〈ψ̂0,α〉/√N where N is the total particle
number, up to rotational and U(1) phase symmetries. These
order parameters are shown in Fig. 1 with respect to c1,2.
Also shown are the Majorana representations of the order
parameters, which show the rotational symmetries of the
states [1,43].

In the nematic region, where g2 < min(0,4g1), there is
an additional continuous accidental degeneracy of states
with rectangular Majorana representations. A general ne-
matic state’s order parameter can be written, up to the

FIG. 1. Mean field phase diagram at q = 0.

aforementioned symmetries, as

χn(η) =
(

sin η√
2

,0,cos η,0,
sin η√

2

)
, (5)

where η parametrizes the degeneracy. The two states shown
in Fig. 1 are representatives of higher symmetry, obtained by
setting η = 0 (η = π/2), which are referred to as uni(bi)axial
states. While all η states are degenerate at the mean field level,
fluctuations lift the degeneracy through the phenomenon of
order by disorder, selecting the uni(bi)axial state for c1 > 0
(c1 < 0) [18,19]. This leads to the dotted phase boundary
in Fig. 1.

Mean field behavior in the thermodynamic limit has also
been extensively investigated at nonzero q in [21] leading to
a number of new phases, where some of the phase boundaries
with respect to c1,2 and q had to be numerically determined.
While the q = 0 ground states were invariant to changes in
c1,2 that remained within the same phase [44], ground states
in some of the new q 	= 0 phases vary continuously with the
parameters. Lastly and perhaps most importantly, the nematic
accidental degeneracy in η is lifted for any q 	= 0.

III. SINGLE-MODE APPROXIMATION AND EXACT
DIAGONALIZATION

A. Single-mode Hamiltonian

In the remainder of the text, we consider a tightly bound
many-body system with a fixed number of particles N . This
implies we can write ψ̂α(r) from Eq. (4) as ψ̂α(r) = φ0(r)âα

where φ0(r) is the unit-normalized lowest spatial mode of
the system and âα is the annihilation operator for a boson
in this lowest spatial mode with magnetic number m = α,
since the tightness of the confining potential energetically
prohibits spatially excited states. This is traditionally called the
single-mode approximation or SMA [3]. For convenience, we
also define the vector of operators â = (â2,â1,â0,â−1,â−2)T .
Substituting the ψ̂α as above and integrating out the spatial
components of the Hamiltonian (4) yields

ĤSMA = g1

2N
F̂

2 + g2

2N
Â†Â + qẐ (6)

plus constants. Here, gi = n0ci where n0 = N
∫

d r |φ(r)|4
and ci are defined in Eq. (3). The uppercase operators are
obtained from their calligraphic density counterparts in Eq. (4)
by letting ψ̂α → âα , e.g., F̂ i = â†

αF i
αβ âβ = â†F i â where F i

still represents the ith spin matrix.
The Hamiltonians (4) and (6) evidently conserve total

particle number N̂ and, as noted above, we consider it
fixed at N . This allows us to drop terms arising from the
spatial integrals of Ĥ0 and : n̂2 : of Eq. (4) and to simplify

the contribution of :F̂2
: = F̂2 − Cn̂ to F̂

2
. Hamiltonian (6)

further commutes with F̂ z and can thus be simultaneously
diagonalized. In the remainder of this text, we consider fixed
F̂ z eigenspaces, most often the null space, allowing us to drop
the linear Zeeman term as in Eq. (6).

B. Known aspects of the quantum phase diagram

At zero quadratic Zeeman field q, the exact spectrum
of the tightly confined system is known [17]. Potentially
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degenerate eigenlevels can be labeled by the set {N0,NS,F,Fz}
where Fz is the eigenvalue of F̂z and F is such that the

eigenvalue of F̂
2

equals F (F + 1). NS can be interpreted
as the number of spin-singlet pairs and N0 ≡ N − 2NS as
the number of bosons not in the singlet state. As mentioned
above, this analogy is only a loose one, as Â and Â†

do not obey bosonic commutation relations. However, the
commutation relations of these and a third operator, which
the authors of [17] denote by Ŝz ≡ 1

4 (2N̂ + 5), can be seen
to be those of the Lie algebra su(1,1), closely related to
that of su(2), the spin algebra. This allows for an elegant
derivation of the joint Â†Â and Ŝz eigenstates in analogy
with the raising and lowering operator approach to the spin
algebra. Technically, NS and N0 are defined such that the eigen-
value of Â†Â equals (N0 + 1

2 )(N0 + 5
2 ) and N0 + 2NS = N .

In terms of the above quantum numbers, the energies are given
by

E = g1

2

[
F

N
(F + 1) − 6

]
+ g2

NS

N
(N + N0 + 3). (7)

The easily obtained ground states show interesting parallels
with the mean field phase diagram. In the ferromagnetic region,
the ground state NS is zero and F = 2N is maximized, while
in the tetrahedral region the ground state NS and F are both
zero.

The nematic-region ground state is, however, less easily
reconciled with its mean field counterparts, as the ground state
is nondegenerate and unique across the entire nematic region.
It consists only of singlet pairs and potentially a singlet trio,
maximizing NS and minimizing F .

On the other hand, the case where q 	= 0 is much less
well understood analytically as NS or N0 are no longer
good quantum numbers. We shall focus on this regime in
the following. Analytical results are obtained via the rotor
mapping and contrasted with the numerical results obtained
through exact diagonalization, which we briefly describe next.

C. Exact diagonalization

Due to the effective spatial zero dimensionality of our
tightly bound system, our problem is that of diagonalizing
a five-mode many-body Hamiltonian. Further fixing N and
Fz, the relevant Fock bases may be enumerated by three
independent occupation numbers. The sizes of the bases hence
scale as N3 with particle number N making it quite feasible to
diagonalize Hamiltonian (6), or at least find the ground state
and its energy, at fixed values of g1,2, q, Fz, and N with regular
desktop hardware in time scales on the order of hours for up
to about 300 particles.

Denoting Fock states by

|n2,n1,n0,n−1,n−2〉 ≡
2∏

m=−2

â
† nm
m√
nm!

|0〉, (8)

one way of enumerating the entire Fock basis for fixed N

and Fz is by considering n2,n1 and n−2 as independent
variables and letting n0 = N + Fz − 3n2 − 2n1 + n−2 and
n−1 = 2n2 + n1 − 2n−2 − Fz. The ranges of the independent
n variables are cumbersome to state but can easily be found
programmatically. What remains is expressing the terms of

Hamiltonian (6) with respect to this basis and diagonalizing
the resulting sparse matrices, which can be accomplished with
standard numerical packages.

IV. ROTOR MAPPING

Here, we present the primary calculational tool allowing
the derivation of analytical results of the present text, the
rotor mapping. This has been introduced for spin-1 in [7] and
expanded upon in [8]. The latter reference also includes a brief
discussion of the mapping for spin-2 systems in the absence
of external fields. In this section, we review the key points of
the mapping in general and extend it to include an external
potential for the spin-2 case. In Sec. IV A, we first comment
on the natural basis of the spin-2 representation for use with
the mapping and state the form of the spin matrices in it. In
Sec. IV B, we briefly review the main steps of the mapping
and derive the rotor Hamiltonian for our system. We comment
on its properties in different regions of the parameter space,
particularly Hermiticity. Section IV C outlines the process of
exactly Hermitianizing the Hamiltonian in the special case
when g1 = 0, demonstrating the equivalence of two Hermitian
Hamiltonians, the many-body Hamiltonian (6) and that of a
single particle on the 4-sphere in a specific potential. This
section also introduces some of the methods employed in
later sections to make approximate low-energy Hamiltonians
Hermitian.

A. Cartesian basis

While the canonical spin-2 matrices are complex and
Hermitian, there exists a basis in which they are completely
imaginary and antisymmetric. This allows one to map the
original spin operators onto linear combinations of generalized
angular momentum operators, significantly simplifying the
analysis. The underlying reason for this is that bosonic
representations of the spin group SU(2) can also be thought of
as representations of the real group of rotations SO(3).

There is a simple heuristic method of finding such a
basis, based on transforming from standard complex spherical
harmonics to real ones. We state results in terms of annihilation
operators rather than the underlying single-particle basis.
Using the phase convention Y−m

l (θ,ϕ) = (−1)mYm
l (θ,ϕ)∗ ∝

e−imϕ , one arrives at the Cartesian annihilation operators:

b̂1 = â0,

b̂2 = i√
2

(â1 + â−1), b̂4 = i√
2

(â−2 − â2),

b̂3 = 1√
2

(â−1 − â1), b̂5 = 1√
2

(â2 + â−2). (9)

Gathering these into b̂ = (b̂1, . . . ,b̂5)
T

we may neatly express
parts of Hamiltonian (6) in terms of the b̂ operators. The singlet
operator becomes simply Â = b̂ · b̂. The spin and quadratic

Zeeman operators become F̂ i = b̂
†
Mi b̂ and Ẑ = b̂

†
(Mz)2 b̂,

where the Mi are the pure imaginary antisymmetric spin
matrices expressed in the new single-particle basis.

To state their forms concisely, let us introduce a family of
simple antisymmetric matrices. Let S

(−)
ij be the 5 × 5 matrix

with 1 in the ith row and j th column, −1 in the j th row and ith
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column, and 0 elsewhere. That is, (S(−)
ij )

αβ
= δiαδjβ − δiβδjα .

The Mi are then

Mx = −i
(√

3 S
(−)
12 − S

(−)
25 + S

(−)
34

)
,

My = −i
(√

3 S
(−)
13 + S

(−)
24 + S

(−)
35

)
,

Mz = −i
(
S

(−)
23 + 2 S

(−)
45

)
. (10)

For convenience also denote Q ≡ (Mz)2 = diag (0,1,1,4,4).

B. Rotor Hamiltonian

Next, we construct the overcomplete basis

|�〉 = 1√
N !

(� · b̂†)N |0〉, (11)

where � is a norm-1 five-component real vector, i.e., be-
longing to the 4-sphere S4. It turns out that the elements
of basis (11) are exactly the spatial rotations of nematic
mean field states, characterized by the order parameter in
Eq. (5). More precisely, each distinct mean field state with
an order parameter of the form R(g)χn(η) [where g ∈ SO(3)
ranges over all rotations, R(g) is the matrix corresponding
to g in the five-dimensional representation, and χn(η) are the
five-component order parameters of Eq. (5)] can be expressed
in the form of Eq. (11) with � belonging to exactly one pair
of diametrically opposite points on the 4-sphere.

Due to the overcompleteness of the basis, any state |�〉
can be expressed as |�〉 = ∫

S4 d4
ψ(�)|�〉. For any particle-
conserving Hamiltonian Ĥ it is also possible to find an operator
H, interpreted as a new Hamiltonian acting on ψ(�), such that
Ĥ |�〉 = ∫

S4 d4
 (Hψ)(�)|�〉 is exact. The mapping consists
of letting

b̂
†
i b̂j → (N + 5)
i
j − 
j∇i − δij (12)

as has been derived in [7]. The operator ∇ acts as the gradient
on functions defined on the 4-sphere and yields a vector field,
lying in the tangent space to the sphere at each point. If we
think of a function f on S4 as a restriction of a function
on a broader subset of R5, the action can be expressed as
∇f = ∂f

∂�
− (� · ∂f

∂�
)�.

Using the rule in Eq. (12), the norm property � · � = 1
and the intuitive identity � · ∇ = 0, we find that b̂†S(−)

ij b̂ →
�T S

(−)
ij ∇ = −iLij where Lij = −i(
i∇j − 
j∇i) is the five-

dimensional generalization of angular momentum. This in
turn implies b̂†Mi b̂ → �T Mi∇. We also find Â†Â → ∇2 +
(N2 + 3N ). Putting this all together and dropping constant
terms yields

H = g2

2N
∇2 + g1

2N

αMi

αβ∇β 
γ Mi
γ δ∇δ

+ q(N + 5)�T Q� − q �T Q∇. (13)

Recall that Q ≡ (Mz)2. To discuss individual parts of the
Hamiltonian, we will also refer to the operator multiplying
g1

2N
as M2.
When q = 0, the resulting Hamiltonian is Hermitian, with

the ground state uniformly delocalized about the 4-sphere,
which corresponds, loosely speaking, to a condensate of singlet
pairs in accord with previous results [5,17]. It is interesting to

comment on this result in light of the recent publication by Jen
and Yip [45] who pointed out that even though naive averaging
of nematic states over rotations in all of SO(3) produces the
correct ground states for confined antiferromagnetic spin-1
bosons, extending this to spin-2 does not work, as the singlet is
no longer unique in this case. The rotor mapping demonstrates
that the correct state can in fact be obtained by averaging over
the associated 4-sphere.

In the general case, the obtained Hamiltonian is not
Hermitian. When g1 = 0 or when N |q| 
 |g1,2| a similarity
transform may be enacted which renders the transformed
Hamiltonian Hermitian and which depends only on the
position operators 
i . This is the topic of the next sections.
A Hermitianizing similarity transform has also been identified
for the general case, but it is rather different from the one
considered in this article, as it is a complicated function
of the Laplacian operator. It is not at present clear whether
that approach leads to similar calculational simplifications as
obtained in this article and its investigation is deferred to a
future publication.

For completeness, and since we shall not be using the result
further, we derive in the following brief subsection the form
of the Hermitianized Hamiltonian for the special case g1 = 0.

C. Hermitianizing transform at g1 = 0

In this special case, the HamiltonianH of Eq. (13) simplifies
considerably as M2, arguably its most complicated term,
is not present. We assume the correct similarity transform
is of the form eS where S = S(�) is a function of only
the position operators. We seek S such that HH

0 ≡ e−SHeS

is Hermitian. The �T Q� term of H is invariant under
this transformation. The Laplacian transforms as e−S∇2eS =
∇2 + (∇2S) + |∇S|2 + 2(∇S)T ∇ and the final non-Hermitian
term of Eq. (13) picks up a Hermitian −q�T Q(∇S) term.
Gathering the evidently non-Hermitian terms and demanding
that their sum be zero yields the condition

[
g2

N
(∇S)T − q�T Q

]
∇ = 0. (14)

While one could make progress by formally solving a
differential equation for S on the 4-sphere derived from the
above, we avoid the tedious aspects of doing so by positing
that S = �T X� for some matrix X. Inserting the ansatz
into condition (14) and recalling that � · ∇ = 0, we see
that X = qN

2g2
Q indeed satisfies the condition. By defining

ρa ≡
√


2
2 + 
2

3 and ρb ≡
√


2
4 + 
2

5 this may be put into

simple terms as S = qN

2g2
(ρ2

a + 4ρ2
b ). After expanding out S

in the remaining terms added by the transformation, the final
Hamiltonian is found to be

HH
0 = g2

2N
∇2 + q

(
N + 5

2
− qN

2g2

)
ρ2

a

+ 4q

(
N + 5

2
− 2qN

g2

)
ρ2

b + q2N

2g2

(
ρ2

a + 4ρ2
b

)2
.

(15)
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V. LARGE-N|q| LIMITS

A. Large-positive-Nq regime

For large positive Nq the dominant qẐ = qâ†
α(Fz)2

αβ âβ

term in Hamiltonian (6) is minimized for the state
a
†N
0 |0〉 = b

†N
1 |0〉 = 1

2

∫
S4 d4
 (sgn 
1)N

∏5
i=2 δ(
i)|�〉, sug-

gesting [46] that the low-lying exact eigenstates are tightly
localized about the 
1 = ±1 poles. As shown in [8] the wave
function has to have parity (−1)N , so we may restrict our
attention to the region about one of the poles and infer the
wave function’s behavior about the other by symmetry. We
choose to expand about the 
1 = +1 pole, motivating the
reparametrization

� = (
√

1 − x2,x)T . (16)

We take the indices of x to run from 2 to 5 to avoid excessive
arithmetic in subscripts. Next, assume that low-lying states are
of the form

ψn(x) = hn(x)e− N
2 xT �x, (17)

where n is a generic (multi)index label, � = diag(γ2, . . . ,γ5)
is some diagonal matrix, and hn are some residual functions
of subexponential growth such as Hermite polynomials. The
overall factor of N was extracted for later convenience. The
diagonal elements of N� can be interpreted as inverse squared
oscillator lengths ξi0 for the ith direction, i.e., Nγi = ξ−2

i0 .
Our assumption of tight localization amounts to the condition
ξi0 � 1, which has to be checked for consistency at the end of
the calculation. Since 〈xn

i ∂m
j 〉 � ξn

i0/ξ
m
j0 [47], this allows us to

simplify the Hamiltonian (13) by keeping only the lowest ξi0

terms multiplied by each of g1,2

N
, q, and Nq.

The goal now is to express Hamiltonian (13) in terms
of xi and ∂i ≡ ∂

∂xi
. The former follows from the coordinate

definitions in Eq. (16) while the latter follows from computing
∇α = x̂α · ∇ where x̂α is a unit vector and ∇ is the gradient
operator expressed in terms of the new coordinate system. This
leads to

∇1 = −
√

1 − x2 x · ∂,

∇i = ∂i − xi x · ∂ for i > 1. (18)

Carrying out the necessary index algebra and truncating at the
lowest order ξi0 terms yields the simple expressions

∇2 � ∂ · ∂, �T Q� � xT Q′x,

M2 � −3
(
∂2

2 + ∂2
3

)
, �T Q∇ � xT Q′∂, (19)

where Q′ ≡ diag (1,1,4,4) is Q with the first row and column
omitted. Putting this all together and letting pi = −i ∂i , we
obtain an approximate Hamiltonian H+ = ∑5

i=2 Hi where

Hi = Ai

2N
p2

i + NBi

2
x2

i − iCixipi, (20)

where we do not sum over any repeated indices. The various
constants in this Hamiltonian are as follows:

A2,3 = 3g1 + |g2|, A4,5 = |g2|,
C2,3 = q, C4,5 = 4q,

Bi = tNCi, νi ≡ Ci/Ai,

tN ≡ 2 + 5/N, (21)

where tN and νi are introduced for the purpose of later
notation. This allows us to treat each direction individually.
Following reasoning analogous to that of Sec. IV C and
applying the similarity transform HH

+ = e−SH+eS with S =
−N

∑
i νix

2
i /2 we obtain a Hermitian sum of four independent

harmonic oscillator Hamiltonians, i.e., a Hamiltonian of the
same form as Eq. (20) but with new constants A′

i = Ai ,
B ′

i = Bi + C2
i /Ai , and C ′

i = 0.
This allows us to simply read off mode energies and

oscillator lengths. They are

�Ei = Ci

√
1 + tN/νi,

ξ−2
i = Nνi

√
1 + tN/νi,

Nγi = ξ−2
i0 = Nνi(1 +

√
1 + tN/νi), (22)

where ξi are the oscillator lengths of the Hermitianized Hamil-
tonian whereas ξi0 are those of the original non-Hermitian
Hamiltonian. The solutions are indeed of the form assumed in
Eq. (17). Referring to Eq. (21) allows us to verify that ξi0 � 1
and the consistency of our approach when Nq 
 |g1,2|.

The obtained mode energies agree very well with the
numerically obtained spectrum. As an illustration, the largest
relative discrepancy among the 100 lowest analytically and
numerically obtained energies at N = 100, g1 = |g2|, q =
100|g2| is 1.1%. The accuracy of the oscillator lengths, or
rather the wave functions in general, is discussed in Sec. V C.

It is interesting to note that the four modes agree exactly
with the continuum Bogoliubov mode energies at zero mo-
mentum, minus the density mode [1]. We believe this to be
a nontrivial result as the number of particles N does not
necessarily have to be large. Nevertheless, the limiting state
about which we are expanding is of the mean field form.

The rotor framework is also capable of describing excita-
tions about fragmented states. This will be demonstrated in the
following subsection. As stated previously, such excitations are
outside the reach of conventional Bogoliubov analysis.

B. Large-negative-Nq regime

For large negative values of Nq, i.e., when −Nq 
 |g1,2|,
the dominant qẐ term in Hamiltonian (6) is minimized for the
state

(a†
2a

†
−2)N/2|0〉 ∝

∫
dϕ (eiϕa

†
2 + e−iϕa

†
−2)N |0〉

∝
∫

dϕ (cos ϕ b
†
4 + sin ϕ b

†
5)N |0〉

∝
∫

d4
δ(
1)δ(
2)δ(
3)|�〉. (23)

Note that line one of the above equation clearly demonstrates
that we are working with a fragmented state, with two
macroscopically occupied single-particle states for large N .
As mentioned before, the rotor mapping is of particular utility
here.

An appropriate reparametrization in this case is


i = xi for i = 1,2,3,

(
4,
5) =
√

1 − x2(cos ϕ, sin ϕ), (24)
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where we have reused the label x from the Nq 
 |g1,2| case for
three of the coordinates and introduced the angular variable
ϕ as the fourth. Further reusing notation from the previous
subsection, we assume low-energy states can be written as

ψn(x,ϕ) = hn(x,ϕ)e− N
2 xT �x (25)

in analogy with Eq. (17) for large positive Nq. Here, hn

is of subexponential growth in |x| and periodic in ϕ and
� = diag (γ1,γ2,γ3). We again assume the ξi0 ≡ (Nγi)−1/2 are
small, allowing us to keep only the lowest ξi0 terms multiplied
by each of g1,2

N
, q, and Nq. Additionally, we assume that

the wave function is not localized in the ϕ direction, so that
∂ϕ ≡ ∂

∂ϕ
is of order 1, in the sense that its matrix elements with

low-lying states are at most of order 1.
Again, let ∂i ≡ ∂

∂xi
and define ∂ ≡ (∂1,∂2,∂3), where we

note that ∂ does not contain ∂ϕ . The gradient components are
found to be

∇i = ∂i − xi x · ∂ for i = 1,2,3,

∇4 = −
√

1 − x2 cos ϕ x · ∂ − sin ϕ√
1 − x2

∂ϕ,

∇5 = −
√

1 − x2 sin ϕ x · ∂ + cos ϕ√
1 − x2

∂ϕ. (26)

Expressing components of Hamiltonian (13) in terms of x,ϕ

and their partial derivatives and truncating higher-order ξi0

terms yields

∇2 � ∂ · ∂, �T Q� � −xT Q′′x,

M2 � −∂2
2 − ∂2

3 , �T Q∇ � −xT Q′′∂, (27)

where Q′′ = diag (4,3,3) is (4 1 − Q) with the last two
columns and rows omitted. This leads to H− = ∑3

i=1 Hi with
Hi of the same form as in Eq. (20) and the relevant constants
defined as

A1 = |g2|, A2,3 = (g1 + |g2|),
C1 = 4|q|, C2,3 = 3|q|,
Bi = tNCi νi ≡ Ci/Ai (28)

with tN as in Eq. (21). The rest of the calculation proceeds as in
the previous section, again leading to Eq. (22) for i = 1,2,3,
evaluated with the above constants, and a validation of our
assumptions of localized states.

Again, the mode energies are in excellent agreement with
the numerics, with the largest relative discrepancy among
the first 100 lowest energies at N = 100, g1 = |g2|, q =
−100|g2| equal to 0.16%.

C. Wave-function overlaps

Aside from facilitating the analytical derivation of ex-
citation energies, the rotor mapping also yields insightful
information on the wave functions themselves. The associated
4-sphere often provides a more intuitive picture of the wave
function than the original second-quantized operator picture.

In this section, we investigate the overlap of the ground-state
wave functions at arbitrary values of q with wave functions in
the limit of large N |q|. The ground-state wave functions will
be computed in two ways. In the first approach, we use the

rotor mapping while with the second approach we use exact
diagonalization for modest numbers of total particles. We
label the limiting large-N |q| ground-state wave functions as∣∣ψ∞

+
〉 = 1√

N !
(â†

0)N |0〉,
∣∣ψ∞

−
〉 = 1

(N/2)!
(â†

2â
†
−2)N/2|0〉,

which are appropriate for large positive and large negative
Nq, respectively. The first state has a clear correspondence
to the mean field uniaxial nematic state oriented along the z

axis (cf. Fig. 1). The second fragmented state can be viewed
as an equal-weight superposition of all square biaxial nematic
states lying in the xy plane, as is evident from Eq. (23). One
may also view |ψ∞

− 〉 as the Fz = 0 component of any of these
mean field ground states. For large positive or negative Nq,
one expects a large overlap of the ground state with |ψ∞

+ 〉 or
|ψ∞

− 〉, respectively. On the other hand, for moderate Nq, one
may ask if any relic of the order-by-disorder phenomenon
present in the continuum case, as shown in Fig. 1, remains.

The simplest expressions for the overlaps may be obtained
in the regime where N 
 1 and |q| is not much smaller than
either |g1| or |g2|. We restrict our attention to this case in the
following. This is slightly more restrictive than the condition
of the previous section, namely, Nq 
 |g1,2|. For the case
when Nq 
 |g1,2|, but N is not large compared to unity, the
analysis is complicated by the interplay between asymptotic
series convergence and the applicability of extending Gaussian
integration limits to infinity.

We define the overlap of two possibly unnormalized states
|a〉 and |b〉 as (a|b) ≡ |〈a|b〉|/√〈a|a〉〈b|b〉. States are com-
pletely determined by their wave function in the overcomplete
basis and we follow the convention of labeling states of the
original Hamiltonian by the same label as their rotor wave
functions. That is,

|ψ〉 ≡
∫
S4

d� ψ(�)|�〉. (29)

We label the ground states as obtained through the rotor
mapping by |ψR

±〉. The sign in the subscript indicates whether
we expanded Hamiltonian (13) about the large-positive- or
large-negative-Nq limiting state. We label the numerically
obtained ground states by |ψN〉.

While the overcompleteness of the basis did not manifest
itself significantly in calculating the spectrum, it does affect
calculations involving the eigenfunctions. As is simple to
verify from the definition of |�〉 states, 〈�1|�2〉 = (�1 · �2)N .
In the thermodynamic limit, one can express this inner product
in terms of delta functions on the 4-sphere. However, for finite
N , overlaps must be computed by means of double integrals
over the 4-sphere:

〈ψa|ψb〉 =
∫
S4

d�1

∫
S4

d�2 ψ∗
a (�1)ψb(�2)(�1 · �2)N .

(30)

1. Case of positive q

Here, we reuse the x coordinates of Sec. V A as defined in
Eq. (16). We integrate over only half of the 4-sphere, as this
is less cluttered by trivial (anti)symmetrizations. The relevant
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wave functions in the rotor picture (29) are ψ∞
+ (x) = δ(4)(x)

and ψR
+(x). The latter is of the form of Eq. (17) with hn equal to

1, i.e., ψR
+(x) = exp (−N

2 xT �x), with � = diag (γ2,γ3,γ4,γ5)
and γi as expressed in Eq. (22), evaluated with the values given
by Eq. (21).

In the new coordinates we have d� = dx/
√

1 − x2 and
the dot product between vectors on the 4-sphere is expressed

as �1 · �2 =
√

(1 − x2
1)(1 − x2

2) + x1 · x2. Assuming tight
localization about x = 0, the main contribution to the integral
will come from that region and we may extend the boundary of
integration from |x| = 1 to |x| → ∞. The denominator of the
new integration measure varies relatively slowly, so we may
set it to its value at x = 0.

Due to the simplicity of ψ∞
+ , a straightforward calculation

gives

〈ψ∞
+ |ψ∞

+ 〉 = 1, (31)

〈ψ∞
+ |ψR

+〉 =
∫
R4

dx (1 − x2)
N
2 e− N

2 xT �x

�
∫
R4

dx e− N
2 xT (�+1)x

=
5∏

i=2

√
2π

N (γi + 1)
. (32)

On the third line, we approximated 1 − x2 � e−x2
, permissible

on account of tight localization.
Evaluation of 〈ψR

+|ψR
+〉 involves the approximation

(valid due to the localized wave functions) 
1 · 
2 =√
(1 − x2

1)(1 − x2
2) + x1 · x2 � 1 − x2

1
2 − x2

2
2 + x1 · x2 =

1 − 1
2 (x1 − x2)2 = 1 − y2

2 � e− y2
2 where we introduced

new integration variables y1,2 ≡ (x1 ± x2)/
√

2. With these
variables and the above approximation, the integrand
becomes exp {−N

2 [ yT
1 � y1 + yT

2 (� + 21) y2]}, leading to

〈ψR
+|ψR

+〉 = ∏5
i=2

2π
N

[γi(γi + 2)]−1/2.

Combining the results of the previous paragraph and
Eq. (32), we find that the total overlap (ψ∞

+ |ψR
+) can be

expressed as a product of contributions from individual xi

directions and that the ith direction contributes a factor of
[ γi (γi+2)

(γi+1)2 ]
1/4

. This prompts us to define

u2
i ≡ (γi + 1)2

γi(γi + 2)
= 1

2

[
1 + νi + 1√

νi(νi + 2)

]
, (33)

where the rightmost expression was derived by expanding γi

in terms of νi as in Eq. (22) and letting tN ≡ 2 + 5/N � 2.
The νi are defined in Eq. (21) and are summarized here for
convenience:

νa ≡ ν2,3 = q

3g1 + |g2| , νb ≡ ν4,5 = 4q

|g2| . (34)

Since each direction contributes a factor of u
−1/2
i , the total

overlap is

(ψ∞
+ |ψR

+) = u−1
a u−1

b . (35)

The overlap (ψ∞
+ |ψR

+) is plotted in the main panel of
Fig. 2 for N = 200 particles and g1 = |g2|. For com-
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FIG. 2. (a) Overlaps of finite-q ground states with the large-|q|
limiting states ψ∞

± , at g1 = |g2|, with respect to q/|g2|. The solid blue
and dashed red lines show numerically obtained overlaps (ψ∞

± |ψN)
with the uniaxial and biaxial limiting states, respectively. The
dashed-dotted yellow and dotted purple lines show the corresponding
analytical estimates (ψ∞

± |ψR
±). For large |q|/|g2| both tend to one

or zero. Inset (b) demonstrates that |q|�±, where �± is defined
under Eq. (35), tends to zero with increasing |q|, implying that
our analytical and numerical expressions agree to at least first order
in asymptotic expansion. The solid blue (dashed red) line refers to
positive-q uniaxial-overlap (negative-q biaxial-overlap) quantities.

parison, we have used exact diagonalization to determine
the wave function |ψN 〉 and the overlaps (ψ∞

± |ψN ) for
the same parameter ranges. As is expected, both the an-
alytically and numerically obtained relevant overlaps ap-
proach unity for large |q|. To show that the two agree
in more than just this obvious large-q limit, we con-
sider their asymptotic expansions. Let f± = (ψ∞

± |ψR
± ) = 1 +∑∞

n=1 anq
−n and g± = (ψ∞

± |ψN ) = 1 + ∑∞
n=1 bnq

−n. De-
fine �± ≡ |f± − g±| = | ∑∞

n=1 (an − bn)q−n|. In the inset of
Fig. 2 we show that q�+ tends to zero with increasing
q, implying that our analytical expressions agree with the
numerics to at least the first order in the asymptotic expansion.

2. Case of negative q

For this section, we reuse the x and ϕ coordinates of
Sec. V B defined in Eq. (24). The limiting large-negative-q
rotor wave function is ψ∞

− (x,ϕ) = δ(3)(x). The finite-q ground
state as obtained in Sec. V B is ψR

−(x,ϕ) = exp (−N
2 xT �x),

with the matrix � = diag (γ1,γ2,γ3) as defined underneath
Eq. (25) and the γ variables as defined in Eq. (22), evaluated
at values from Eq. (28).

In the new coordinates, one has d� = dϕ dx/
√

1 − x2 �
dϕ dx, with the last approximation being permissible on
account of localization, as in the positive-q case. As before,
we may extend the x integration boundaries to infinity. The
range of integration in ϕ is from 0 to 2π . The dot product
between vectors on the 4-sphere is �1 · �2 = cos(ϕ1−ϕ2)√

(1 − x2
1)(1 − x2

2) + x1 · x2. Since the considered wave
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functions do not depend on the ϕ coordinate, we may simplify
integration over ϕ1,2 by a change of variables. Defining ϕ ≡
ϕ1 − ϕ2 and, say, ϕ′

2 ≡ ϕ2 allows us to immediately perform
the now trivial ϕ′

2 integral to obtain

〈ψa|ψb〉 = 2π

∫ 2π

0
dϕ

∫∫
R3

dx1 dx2 ψ∗
a (x1)ψb(x2)

× [
cos ϕ

√(
1 − x2

1

)(
1 − x2

2

) + x1 · x2
]N

, (36)

where ψa,b are any wave functions that do not depend on
the ϕ variable, such as ψ∞

− or ψR
−. Using this expression and

approximations analogous to those of Eq. (32) the simpler
integrals are found to be

〈ψ∞
− |ψ∞

− 〉 = 2π

∫ 2π

0
dϕ cosN ϕ ≡ N−, (37)

〈ψ∞
− |ψR

−〉 � N−
∫
R4

dx e− N
2 xT (�+1)x

= N−
3∏

i=1

√
2π

N (γi + 1)
. (38)

To calculate 〈ψR
−|ψR

−〉, consider again the factor f ≡[
cos ϕ

√(
1 − x2

1

)(
1 − x2

2

) + x1 · x2
]
N of Eq. (36). Due to the

large exponent N , the significant contributions to the integral
will come from regions of maximum | cos ϕ|, that is, for ϕ ∼ 0
or π . In both regions, we may expand cos ϕ to quadratic
order and extend integration boundaries to infinity, yielding
a Gaussian integral in δϕ ≡ ϕ − ϕ0 where ϕ0 = 0 or π . Also
expanding the square roots and keeping lowest-order terms in
x1,2 and ϕ yields

f � exp

[
−N

2

(
δϕ2 + 2 y2

r +
2∑

i=1

yT
i � yT

i

)]
, (39)

where y1,2 ≡ (x1 ± x2)/
√

2 as in the positive-q case. The
label r equals 1 for the ϕ0 = π region and 2 for the ϕ0 = 0
region. The integrals over y1,2 are equal in both cases, and
twice the δϕ integral is in fact approximately equal to N− of
Eq. (38), as can be verified by applying the same approximate
treatment of integration over ϕ to 〈ψ∞

− |ψ∞
− 〉. This leads to

〈ψR
−|ψR

−〉 = N−
∏3

i=1
2π
N

[γi(γi + 2)]−1/2.
Combining the above results and expressing everything in

terms of ui , defined in Eq. (33) and evaluated at

νc ≡ ν1 = 4

∣∣∣∣ q

g2

∣∣∣∣, νd ≡ ν2,3 = 3|q|
g1 + |g2| , (40)

summarized after Eq. (28), ultimately yields

(ψ∞
− |ψR

−) = u
− 1

2
c u−1

d . (41)

The main panel of Fig. 2 again demonstrates that both
numerical and analytical overlaps tend to 1 with increasing
|q| while the inset shows that the convergence agrees to at
least the first order in the asymptotic expansion.

VI. ORDER BY DISORDER

One of the outcomes of the previous section is the absence
of the order-by-disorder phenomenon which is present for the
continuum case [18,19]. We note that while the analytical
expressions for the overlaps (ψ∞

± |ψR
± ) are valid only for

|q| larger than either |g1| or |g2|, the numerically computed
overlaps (ψ∞

± |ψN ) for modest particle number are valid for all
q. For the case of g1 > 0, one might expect a tendency towards
the uniaxial nematic state for small q, but this is not exhibited
in Fig. 2. Instead, for small q, symmetry-restoring fluctuations
drive the system towards the singlet state which is the true
ground state for q = 0 and finite particle number. Varying
g1/|g2| only affects how quickly the ground state approaches
the respective limiting states. This effect is completely smooth
in the whole nematic region: the smaller g1/|g2| is, the faster
the ground states approach the limiting mean field states with
increasing |q|/|g2|, without any qualitative change in behavior
at g1 = 0.

The lack of the order-by-disorder selection at the quantum
single-mode level can be accounted for by the fact that
the quadratic Zeeman potential breaks too much symmetry.
Motivated by this, we consider an alternative external potential.
Specifically, we consider a potential that replaces

qẐ → λ(â†
1â1 + â

†
−1â−1) (42)

in Hamiltonian (6). Such a potential could be realized with
microwave fields. We note that within mean field theory, all
nematic states of the form (5) are degenerate under this external
potential. Considering the rotor mapping rule in Eq. (12) one
can see this propagates through the mapping by changing the
last line of Hamiltonian (13) to

Hλ = λ
[
(N + 5)

(

2

2 + 
2
3

) − 
2∇2 − 
3∇3
]
. (43)

In the following, we will perform an analysis of this model
utilizing the rotor mapping of the previous sections. In the
Appendix, an analysis of the analogous continuum problem is
discussed.

A. Rotor treatment

The results of this section are similar to the large-N |q|
limit in that, for sufficiently large λ and depending on the
sign of g1, the rotor wave function is localized either about
the 
1 poles or around the 4-5 equator of the 4-sphere.
However, the localization width scales differently with N than
in the quadratic Zeeman case, leading to important qualitative
differences. Localization at the pole (equator) also occurs at
negative (positive) g1, which is in fact the opposite of the effect
in the continuum in the absence of an external potential.

For the calculations of this section we introduce a third,
more general coordinate system:

� =

⎛
⎜⎜⎜⎜⎜⎝

cos η
√

1 − x2

x1 cos ϕ − x2 sin ϕ

x1 sin ϕ + x2 cos ϕ

sin η cos 2ϕ
√

1 − x2

sin η sin 2ϕ
√

1 − x2

⎞
⎟⎟⎟⎟⎟⎠. (44)
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This can be put into a more compact form by using
rotation matrices. In particular, let Rαβ(ϕ) be the matrix
which rotates in the αβ plane by angle ϕ. Then,
the current coordinate system can be written as � =
R23(ϕ)R45(2ϕ)R14(η)(

√
1 − x2,x1,x2,0,0)

T
. Note that

R23(ϕ)R45(2ϕ) = exp(−iϕMz). Recalling that each point of
the 4-sphere is associated with a spatial rotation of a mean
field nematic state, the η coordinate is seen to correspond
exactly to the η parametrizing the accidentally degenerate
family of nematic states in Eq. (5), while ϕ and x determine
their spatial orientations.

As usual, we consider the F̂z null space, meaning that our
wave functions will be independent of ϕ. By further observing
factors of N in Hamiltonian (13) expanded in coordinates (44)
we can infer that low-lying wave functions are again localized
on the scale of order N−1/2 in the x variables. Assuming that η

is localized about some η0 and denoting δη ≡ η − η0, we may
also infer that low-lying states are localized in δη on a scale of
order N−1/4, subject to some consistency criteria. This allows
us to separate the Hamiltonian into two parts, Ĥ0 of order 1
and Ĥη of orders between N−1/4 to N−3/4, and we discard
terms of higher order in 1/N . For compact notation introduce
matrices A(η) ≡ (1 + 2g1/|g2|)1 + B(η) with B(η) =
g1

|g2|diag(cos 2η + √
3 sin 2η, cos 2η − √

3 sin 2η). Denote

∂i ≡ ∂
∂xi

and ∂η ≡ ∂
∂η

= ∂
∂δη

. Let Lx ≡ −i(x1∂2 − x2∂1) and

T1 ≡ x1∂1 + x2
2∂2

1 − (1 ↔ 2). Then, we may write

Ĥ0 = −|g2|
2N

Aij (η0)∂i∂j + λN x2 − λx · ∂,

Ĥη = −|g2|
2N

{
∂2
η + [cot η − B ′

ij (η0)xi∂j ]∂η

+ δηB ′
ij (η0)∂i∂j + 1

2
δη2B ′′

ij (η0)∂i∂j

− csc2 η

4
L2

x

}
+ g1

2N

√
3 csc η T1. (45)

The last line is of a non-negligible order only when the distance
between η0 and 0 or π is of the order of N−1/4 or less.

Noting that Ĥ0 does not depend on δη, we may tackle
the above with degenerate perturbation theory. First, we note
that Ĥ0 may be brought to Hermitian form by applying the
similarity transformation e−SĤ0e

S where

S = − Nλ

2|g2| xT A(η0)−1x. (46)

The transformed Hamiltonian has the ground-state energy

E0(η0) = λ

[
1 + 1

2
Tr

√
1 + 2|g2|

λ
A(η0)

]
(47)

and ground-state eigenfunction

ψ0(x) = (2π )−
1
2 det

1
4 C(η0) exp

[
− Nλ

2|g2| xT C(η0)x
]
, (48)

where C(η0) ≡ A(η0)−1
√
1 + 2|g2|

λ
A(η0). We can then project

e−SĤηe
S into this low-energy subspace to obtain an effective

Hamiltonian as

Ĥeff
η =

∫
dx ψ∗

0 (x)e−SĤηe
Sψ0(x).

Now, observe the following expectation value:

Mij 〈∂i∂j 〉 = −NTr

{
M

[
1 + 2|g2|

λ
A(η0)

]− 1
2

}
, (49)

where M is an arbitrary matrix. Observe that this case covers
the coefficients of both the linear and quadratic δη terms in Ĥη

[Eq. (45)] by choosing M to be −|g2|
2N

B ′(η0) and −|g2|
2N

B ′′(η0),
respectively. At this point, note that should the expectation
value of the linear δη term be of its natural order, order 1,
completing the square in δη would yield another term of order
1, invalidating its placement into Ĥη which is supposed to be of
higher order in 1/N . Note also that the coefficient of the linear
δη term is exactly the derivative of the zeroth-order energy
E0(η0) from Eq. (47) with respect to η0. The above problem
is avoided if we expand about a local extremum of E0(η0),
eliminating the linear term. For Ĥeff

η to be bounded from below,
the extremum must be a minimum. Note that we do not get
any apparent order inconsistencies if we expand about an η0

a distance of order N−1/4 away from the local minimum, but
the analysis is vastly simplified when the linear term is exactly
zero, particularly for the last line of Eq. (45) when close to
η0 = 0, so we focus on expansions about zeroth-order energy
minima from now on.

For large enough λ, these occur only at η0 = 0 and π/2.
In both of these cases, A(η0) is proportional to 1, so both
ψ0(x) and e±Sψ0(x) are isotropic in x1,x2. As is easy to
verify, this makes the expectation values of the last line of
Eq. (45) zero, eliminating those terms from Ĥeff

η . Additionally,
B ′(η0) ∝ diag (1,−1) which, combined with isotropy in x,
leads to B ′

ij (η0)〈xi∂j 〉 = 0 as well. Finally, noting B(0, π
2 ) =

± g1

|g2|1 and B ′′(η0) = −4B(η0) and evaluating the coefficient
of the quadratic δη term via Eq. (49), we obtain

Ĥeff
η = −|g2|

2N

(
∂2
η + cot η ∂η

)
∓ 4g1{1 + 2[|g2| + (2 ± 1)g1]/λ}− 1

2 δη2, (50)

where the upper sign corresponds to the expansion about
η0 = 0 and the lower sign about η0 = π/2. This immediately
implies the ground state is localized about the pole, η0 = 0,
for negative g1, and the 4-5 equator, η0 = π/2, for positive
g1. In the latter case, we may discard the cot η ∂η term to
obtain a one-dimensional harmonic oscillator Hamiltonian.
Letting dπ

2
≡ 1 + 2

λ
(|g2| + g1), we may write the effective

mode energy and oscillator length as �Eπ
2

= 2
√

2|g2|g1

N
d

−1/4
π
2

and ξ π
2

= ( |g2|
8Ng1

)
1/4

d
1/8
π
2

. In the former case, when g1 < 0, we

may approximate cot η � η−1, yielding a two-dimensional
isotropic harmonic oscillator Hamiltonian with the angular
momentum term absent. This may be solved by reintro-
ducing the angular momentum term and then restricting to
isotropic, zero-angular-momentum states. Denoting d0 ≡ 1 +
2
λ

(|g2| + 3g1), the effective spectrum equals En
0 = (2n + 1)

�E0 where n = 0,1,2, . . . and �E0 = 2
√

2|g2|g1

N
d

−1/4
0 , and
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the oscillator length, or scale of localization in η, equals

ξ0 = ( |g2|
8Ng1

)
1/4

d
1/8
0 .

In both cases, states are seen to be localized in the η

direction on the scale of ξλ ∼ N−1/4. It may be verified by
integration over the 4-sphere, akin to the treatment in Sec. V C,
that this causes the overlaps with any mean field state, i.e., a
state of the form of Eq. (11), to tend to zero with increasing N .
While computationally accessible particle numbers are hardly
in the large-N regime, the numerical results in Fig. 3 support
our analytical conclusions or, for the larger data sets, indicate
the correct trend with respect to N . Also shown in Fig. 3 are
numerical results for the occupation numbers 〈â†

nân〉 which
verify the analytical results of this section.

FIG. 3. (a) Absolute value of overlaps between the limiting states
|ψ∞

± 〉 and numerically computed ground states with respect to particle
number N at λ = 10|g2|. The solid and dashed lines show the bigger
overlaps, with the biaxial state for g1 > 0 and uniaxial for g1 < 0,
and correspond to the linear scale on the left y axis. The markers
show the smaller overlaps and correspond to the logarithmic scale on
the right y axis. We see that all mean-field overlaps decrease with
particle number, in agreement with our analytical findings. (b) The
numerically computed expectation value of the fraction of particles
in the F̂z = 0 single-particle state with respect to particle number
N at λ = 10|g2|. For compactness, the quantity actually plotted is
| 〈n̂0〉

N
− ( 〈n̂0〉

N
)∞| where n̂m = â†

mâm, 〈. . . 〉 denotes the ground-state
expectation value, and (. . . )∞ denotes taking the limit of N → ∞.
( 〈n̂0〉

N
)∞ is predicted analytically and equals 0 for positive g1 and 1 for

negative g1 (see main text). Note that 〈n̂0〉 = N − 〈n̂2 + n̂−2〉 to a very
good approximation, with 〈n̂1 + n̂−1〉 already being negligible for
the values of N shown. The differences decrease with N , indicating
a good agreement with analytical computations. These qualitative
features are visible in (c) and (d) showing relative occupations of
individual single-particle magnetic sublevels, labeled by m, at N =
200 for both signs of g1. Results shown in (c) and (d) are obtained
through exact diagonalization.

VII. CONCLUSION

In this work, we have developed and employed the spin-2
rotor mapping formalism to obtain a number of results that
have so far proven analytically inaccessible by other means.
We have obtained an exact Hermitian Hamiltonian for the
special case of g1 = 0, g2 < 0 in the presence of an arbitrary
quadratic Zeeman field, and an approximate Hamiltonian in
the N |q| 
 |g1,2| regime for the entire nematic region. Its
spectrum and localization width, the latter in the related
N 
 1 regime, were evaluated analytically and found to be
in good agreement with numerical results. Notably, for large
negative q the ground state tends to a fragmented condensate,
the excitations about which cannot be analyzed by means of
conventional Bogoliubov theory, but do lend themselves to an
analysis within the rotor framework.

Additionally, one finds that no traces remain of the order-
by-disorder mechanism, predicted to occur in the related con-
tinuum problem. The emergent first-order phase transition at
g1 = 0 also seems to be gone and the behavior is smooth across
the entire nematic region. Motivated by this, we considered an
alternative potential which leaves the mean field degeneracy
intact, and again applied the rotor methodology. The ground-
state overlaps with all mean field states are predicted to
approach zero with increasing particle number, indicating we
are dealing with a highly non-mean-field state. Its individual
magnetic sublevel occupation values are, however, consistent
with continuum order-by-disorder results.

The present analysis demonstrates that the rotor mapping
may be fruitfully applied to a number of different potentials
for the tightly confined spin-2 problem. Additionally, simple
analytical expressions may be obtained in the relevant limits.
This makes it a suitable candidate for application to further
specialized problems within the context of tightly confined
spin-2 condensates. An interesting avenue for further theoret-
ical investigation of the mapping is also the aforementioned
Hermitianizing transform that may be applied in more general
setups. Preliminary analysis suggests that it is indeed applica-
ble to an arbitrary Hermitian bilinear term in the many-body
Hamiltonian of Eq. (6).
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APPENDIX: COLLECTIVE MODES OF CONTINUUM
HAMILTONIAN UNDER EXTERNAL FIELD

In this appendix, we give the collective modes of the
continuum Hamiltonian described in Sec. II under the external
potential given in Eq. (42). Obtaining the modes involves a
straightforward but lengthy Bogoliubov analysis. Assuming
we are in the nematic region of the phase diagram, we in-
sert ψ̂(r) = [sin(η)/

√
2,0, cos(η),0, sin(η)/

√
2]T

√
ρ̄ + φ̂(r),

where ρ̄ is the constant mean field density, into the continuum
Hamiltonian (with chemical potential) and expand to quadratic
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order in φ̂(r). After diagonalizing the resulting Hamiltonian,
one finds the mode energies of the usual form

Ek,n = √
ξk,n(ξk,n + 2γn), (A1)

where the particular parameters for the five modes are

ξk,1 = ξk,2 = ξk,3 = εk, (A2)

ξk,4 = ξk,5 = εk + λ (A3)

and
γ1 = −c2ρ̄, (A4)

γ2 = (c0 + c2)ρ̄, (A5)

γ3 = [4 sin2(η)c1 − c2]ρ̄, (A6)

γ4 = [4 sin2(η + 2π/3)c1 − c2]ρ̄, (A7)

γ5 = [4 sin2(η − 2π/3)c1 − c2]ρ̄. (A8)

Here, εk = k2

2m
is the free-particle dispersion. We next turn to an

analysis of the zero-point energy due to these modes, namely,
�E = 1

2

∑
k,n(Ek,n − Ek,n|η=0) where Ek,n|η=0 is subtracted

to regularize the summation. It is found that, for sufficiently
large λ > 0, the biaxial nematic state is selected when g1 > 0
while the uniaxial nematic state is selected when g1 < 0. This
is consistent with the rotor treatment in the main text.
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