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Effect of anisotropic exchange interactions and short-range phenomena on superfluidity
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We develop a simple numerical method that allows us to calculate the BCS superfluid transition temperature Tc

precisely for any interaction potential. We apply it to a polarized, ultracold Fermi gas with long-range, anisotropic,
dipolar interactions and include the effects of anisotropic exchange interactions. We pay particular attention to
the short-range behavior of dipolar gases and reexamine current renormalization methods. In particular, we find
that dimerization of both atoms and molecules significantly hampers the formation of a superfluid. The end result
is that at high density or interaction strengths, we find Tc is orders of magnitude lower than previous calculations.
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I. INTRODUCTION

A great deal of interest in dipolar Fermi gases has
been generated due to their long-range interactions, which
lead to many novel effects such as p-wave superfluidity
[1–4], topological superfluidity in two-dimensional systems
[5,6], anisotropic and many-body effects on the Fermi-liquid
properties [7,8], the tailoring of novel interaction potentials
[9,10], and superfluidity in bilayers [11,12].

This rich selection of interesting phenomena has led to a
large effort from many groups to trap and cool a dipolar gas to
degeneracy. Many highly successful experiments have resulted
from this effort, which have concentrated on both molecular
[13–19] and atomic, highly magnetic dipolar gases [20–27].
These experiments investigated features such as the precise
control of ultracold chemical reactions [14–16], quantum
chaos in dipolar collisions [22,23], anisotropic interaction
effects in the Fermi surface [25], and dipolar collisions [24]. As
yet, however, a dipolar Fermi superfluid has not been observed.

Predictions for the superfluid transition temperature of a
dipolar Fermi gas Tc have been calculated in a number of
works under various conditions [1,4–6,11,12,28–30]. These
works consider a dipolar Fermi gas within an idealized
condensed-matter paradigm, which is usually applicable for
thermodynamically stable systems. However, an ultracold
dilute gas is not stable. We investigate the complications that
this introduces and produce our own predictions for Tc that
differ significantly from these previous works at high densities
or interaction strengths. After deriving our results, we compare
our methodology with previous works in Sec. VI.

This paper will be set out as follows. In Sec. II we review
some important theoretical and experimental background
involving the stability of p-wave gases, particularly the
collapse into p-wave dimers. We will then investigate how
adding long-range interactions affects these p-wave dimers
and produces dipolar-interaction-dominated bound states. In
Sec. III we see that these dipolar bound states can have a
large effect on the stability of the gas and therefore also on
Tc. A key result of this paper is that we will show that in
attempting to renormalize out the short-range behavior of
a dipolar gas, previous works in this area have ended up
calculating a transition to tightly bound molecules, rather than
to a BCS superfluid. We will then suggest a remedy to this
problem.

Section IV describes a simple algorithm that allows
one to easily calculate the BCS transition temperature for
complicated potentials. Furthermore, it allows us to take into
account the effect of an anisotropic Fermi surface (in this case
caused by the anisotropic interaction potential of a polarized
dipolar gas). This is a general algorithm that can be applied to
any system. In Sec. V we apply the numerical method from
Sec. IV to the theoretical method of Sec. III to obtain prediction
for Tc at different experimental parameters. We find that the
region of experimental interest (i.e., high interaction strength
or high densities) is where our results differ from previous
theoretical works in this area, giving us a Tc which is much
lower. In Sec. VI we will then compare our results to this
previous theoretical work in more detail with the aim of
understanding how and why they differ.

II. UNDERSTANDING THE ROLE OF DIPOLAR BOUND
STATES AND THE CENTRIFUGAL BARRIER

Dipolar gas experiments face a number of challenges, which
include dipolar spin-flip collisions in atoms [27], chemical
reactions in dipolar molecules [14–16], and long-lived scatter-
ing chain complexes [31]. Because s-wave interactions are not
allowed between identical fermions, all these effects can be
protected against using the centrifugal barrier in the p-wave
(and higher) scattering channels to prevent two scattering
dipoles from coming into contact. The great effectiveness
of the p-wave barrier in protecting the gas from inelastic
processes has been shown in a series of experiments involving
40K 87Rb molecules at the Joint Institute for Laboratory
Astrophysics (JILA) [14], which are prone to react chemically
(via KRb+KRb → K2 + Rb2), as well as in Dy atoms, which
undergo spin-flip collisions [27].

To help understand the properties of the centrifugal barrier
in the presence of dipolar interactions, we recall the results of
Ref. [32]. In that work, it was shown that the attribute of interest
is the height, Vb, of the barrier with the lowest maximum
strength (which is the l = 1,m = 0 barrier) and how this
compares with the average particle kinetic energy. It was also
shown that the location and height of this barrier vary as the
interactions strength Cdd changes, with Vb decreasing as Cdd

increases, and finally, it was shown that for sufficiently strong
Cdd , Vb is completely determined by Cdd and is independent

2469-9926/2016/94(2)/023603(9) 023603-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.023603


I. CORRO AND A. M. MARTIN PHYSICAL REVIEW A 94, 023603 (2016)

of the short-range specifics of the potential. The result is that
within this regime [32]

rb = α
Cddm

�2
, (1)

where α = 0.6 and m is the mass of the particles. We will
use units such that rb = 1,� = 1,kB = 1, and m = 1, giving
units of energy ED = �

2/mr2
b = �

6/m3C2
ddα

2. In these units,
Cdd = 1/α and Vb = 2/3 are both constants. All our equations
will reduce down to just two dimensionless parameters: the
dimensionless temperature τ = T/E ∝ T/C2

dd , and the di-
mensionless average distance between atoms λ = ρ−1/3/rb ∝
Cdd

−1, where ρ = kF
3/6π2 is the density and kF is the Fermi

surface (which gives λ ≈ 3.9/rbkF ). Reference [32] shows,
as is verified by experiments [14], that as the average particle
kinetic energy approaches Vb, the rate of barrier transmission
nears unity, and quenching rates become unacceptably high.
We note, as a benchmark for this effect, that the Fermi energy
intersects Vb at λ ≈ 3.38.

An important conclusion from Eq. (1) is that in a gas
with polarized dipolar interactions, the centrifugal barrier is
much farther away from r = 0 than a gas with short-range
interactions. Because dipole interactions are strongly attractive
in the l = 1, m = 0 subspace, they can lead to dipolar
bonding between dipoles [33,34]. These dipole-induced, p-
wave dimers will be of the size of the centrifugal barrier
and will therefore be much larger than the p-wave bound
states found in typical gases with short-range interactions.
The formation of p-wave dimers is significant because they
are well known to be unstable from investigations in systems
of identical fermions with short-range interactions near a
p-wave resonance. These systems were first shown to be
experimentally unstable [35–44]; then it was then shown
that the major cause of this instability could be attributed to
the fact that p-wave dimers, which are formed rapidly via
three-body interactions when near the resonance, are unstable
to collisional relaxation and decay much faster than they can
thermalize [41,45–48]. It has been shown that this behavior is a
general property of identical fermions and not of any property
of the particular species being investigated [45].

In Fig. 1, we investigate the behavior of a p-wave dimer of
two particles with strong dipolar interaction. The exact details
of the interaction potential is species dependent; however, for
particles with strong dipolar interactions, which are of interest
to us, the largest bound states are dominated by the bare dipolar
interaction. We have solved the Schrödinger equation using the
finite-element method [49] for a bare dipolar interaction with
a cutoff Rcut and plotted the energy and the rms widths of the
eigenstates. The short-range behavior is unknown, so we have
plotted these eigenstates for a continuously varying value of
Rcut (solid and dashed lines), showing the effect that different
short-range behaviors can have on the bound states of a dipolar
long-range-dominated interaction potential. Figure 1 shows
the typical behavior of the bound states, which are evenly
spaced and increase in size as Rcut increases. Just before the
energy of a bound state crosses zero, the bound state is at
its largest, with a rms extent of 2.1rb. Just after the energy
goes above zero, the bound state disappears, and the next
bound state becomes the largest, which is always sitting at
around 0.15rb. We can therefore conclude that no matter the

FIG. 1. The bound-state energies vs the rms size of the corre-
sponding wave functions for a dipolar potential with a cutoff at Rcut.
The triangles and squares represent bound states at Rcut = 0.01093rb,
just before the largest bound state disappears. As Rcut varies, all
the squares move along the exact same dashed line, and all the
triangles move along the same solid line. The triangle states are
l = 1 and 3 dominated. The square states are l = 5 and 7 dominated.
Interestingly, the bound states are all evenly spaced along each line.
For example, depicted here the seventh triangle, sitting at 2.1rb, is
about to disappear, and the sixth triangle sits at 0.15rb. If we continue
to increase Rcut until the sixth triangle is about to disappear, we find
that the sixth triangle will be at 2.1rb and the fifth triangle at 0.15rb,
almost exactly where the sixth triangle is now. Hence we can infer
that the possible sizes of the largest bound state should sit within the
range 0.15rb to 2.1rb. Inset: the wave function in momentum space of
the eigenstate that is on resonance (filled line), and the next shallowest
bound state (dashed line). Both are the l = 1,m = 0 component. The
solid line is therefore the largest possible dimer (occurring when
the potential is on resonance). The dashed line is the smallest possible
size for the shallowest dimer (occurring when the largest bound state
disappears).

short-range specifics, the rms size of the largest bound state
will be within the range 0.15rb and 2.1rb.

Three-body dimerization rates for identical dipolar
fermions have been explicitly calculated in [33] but not
relaxation rates. In the s-wave case, the increasing size of
a dimer leads to stability against inelastic relaxation collisions
as the distance between the shallowest dimer and the deeply
bound states increases [45,50–54]. In the dipolar case, the sizes
of the deeply bound states increase along with the size of the
shallowest dimer, negating that protection. Figure 1 shows that
once a weakly bound dimer of two dipoles is formed, there is
cascade of nearby tighter bound states that the dimer can easily
decay into. These dimers can then be expected to be unstable
just as for the short-range case.

III. THE EFFECT OF DIPOLAR BONDING ON Tc

Here we will show that the formation of these p-wave
dimers is also extremely important for the renormalization of
the BCS equations. The BCS equations find the minimum of
the free energy. It is well known from the BCS-BEC crossover
problem [55] that if the full potential is considered, the BCS
equations will simply converge to the tightest bound state and
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form tightly bound bosons. Ultracold gases are metastable,
and we are not interested in the absolute ground state. For
this reason, the BCS equations are usually renormalized using
the method of Randeria et al. [56,57], the purpose being to
remove the short-range behavior but capture accurately the
long-range scattering properties of the atoms involved. A
similar method must be implemented for the case we are
interested in: a metastable gas of dipoles that sit outside each
other’s centrifugal barriers and interact only via the universal,
long-range dipolar interaction.

Predictions for Tc of a dipolar Fermi gas under various
conditions have been calculated in a number of works [1,4–
6,11,12,28–30]. The most common method used is to introduce
the renormalized equations of Randeria et al., except instead of
replacing the T matrix with its long-range behavior via a first-
order expansion in k (i.e., 4π�

2a/m), the Born approximation
is used to replace the T matrix by the bare potential. However,
it is not clear that the short-range behavior is removed with
this technique. Indeed, the bare dipolar potential contains all
powers of k, meaning short-range behavior is merely modified,
not removed. In fact, if we examine Fig. 2 in Ref. [1] or
Fig. 3(b) in Ref. [30], we can see that, for sufficiently large
kF , the gap plotted in those works is the same size and shape
as the two-body bound state plotted in the inset in Fig. 1 in
this work. For kF ≈ 0.5/rb (λ = 7.8) the gap in those works
is the same size and shape as the largest possible size for the
shallowest dimer (solid line in inset in Fig. 1). For kF ≈ 2.5/rb

(λ = 1.56) the gap in those works is the same size and shape as
the smallest possible size for the shallowest dimer (dashed line
in inset in Fig. 1). A true BCS pairing wave function should
be many times the size of the interparticle spacing, not the
size of a bound state. This suggests that the BCS equations,
renormalized in this way, have simply picked up the tightly
bound p-wave dimers that we expect to be unstable. In other
words, at high densities or interaction strengths, these papers
are calculating the transition to a tightly bound Bose-Einstein
condensate (BEC) state rather than the desired BCS state.

In this paper we produce our own predictions for a three-
dimensional, polarized, dipolar Fermi gas in a way that deals
with these issues. We first consider just the case of the KRb
experiment at JILA, the solution of which will turn out to
be relevant to all systems discussed above. We require a
methodology which can describe a situation where the gas is
in quasistable equilibrium with molecules sitting outside each
other’s centrifugal barriers and, as soon as the particles tunnel,
they are almost guaranteed to be lost from the trap. We know
that the solutions should be independent of the short-range
details of the molecules and should depend only on the r−3

dipolar interaction. However, if we were to simply use the bare
dipolar interaction, the BCS equations would only pick up the
tightly bound states that sit well within the centrifugal barrier
and do not represent the metastable equilibrium that is desired.

The problem is that the dipolar interaction becomes
very strong inside the centrifugal barrier, but in the KRb
experiments at JILA, the molecules in quasistable equilibrium
never “feel” that part of the potential, and any particles that
do venture within each other’s centrifugal barrier undergo
inelastic collisions with close to unit probability [14,32] and,
consequently, cannot contribute to the superfluid. We therefore
use the following effective potential, which represents the

anisotropic interaction between metastable dipoles that are
polarized in the ẑ direction:

V
(eff)

dd (r) =
{
Cdd

1
r3 [1 − 3 cos2(θr )] r > rb,

0 r < rb,
(2)

where Cdd is the interaction coupling constant and θr is the
angle between r and the ẑ axis. Equation (2) is just the usual
dipolar potential [58], except cutoff at r = rb. By using Eq. (2),
we can minimize the free energy without picking up the
undesired bound states, and the dipoles will feel the full dipolar
potential outside the centrifugal barrier but not inside, exactly
as the molecules in the JILA experiments do. Furthermore,
Eq. (2) reproduces the desired universal, dipolar-scattering
amplitudes [58,59], which means that provided the short-range
contribution to the potential does not put the system on
resonance, Eq. (2) contains the key properties desired from a
more conventional renormalization method (see the discussion
in Sec. V).

IV. NUMERICAL METHOD

We use the following method to find Tc, which is generally
applicable to any potential and can easily include the effects of
the anisotropic exchange interactions. First, recall the standard
result that the BCS equations are equivalent to minimizing
the BCS free energy F [60]. This free energy can be written
in terms of the gap �(k), the potential in momentum space
V (k), and the nonsuperfluid part of the quasiparticle energy,
κ(k) = �

2k2/2m − μ + 
(k), where 
 is the self-energy and
includes the Hartree and Fock energies:

F = E0 + EB − T S, (3a)

E0 = V
∫

d3k
(2π )3

κ(k)Gk, (3b)

EB = V

2

∫
d3k

(2π )3

∫
d3k′

(2π )3
J ∗

k V (k,k′)Jk′ , (3c)

S = −V
∫

d3k
(2π )3

fk ln(fk) + (1−fk) ln(1−fk). (3d)

Jk = −�(k)

2E(k)
tanh

(
E(k)

2T

)
, (3e)

Gk = κ(k)

2E(k)
tanh

(
E(k)

2T

)
+ 1

2
, (3f)


(k) =
∫

d3q
(2π )3

{V̄dd (0)G(q) − V (k − q)G(q)}. (3g)

E(k) =
√

κ(k)2 + �(k)2 is the full quasiparticle energy,
fk = (1 + eE(k)/T )−1, V is the volume, V (k) =∫

eik·rV (eff)
dd (r)d3r, V (k,k′) = V (k − k′),κ(k) = ξ (k) +


(k), ξ (k) = ε0(k) − μ,ε0(k) = �
2k2/2m, Gk = 〈â+

k âk〉,
Jk = 〈â−kâk〉, and fk = 〈γ̂ +

k γ̂k〉, where â+
k and âk are the

creation and annihilation operators of a particle in momentum
eigenstate k and γ̂ is the quasiparticle operator satisfying
〈γ̂ +

k γ̂k〉 = δk,k, 〈γ̂kγ̂k〉 = 0, and γ̂k = ukâ
+
k + vkâk for c

numbers uk and vk.
Note that the BCS transition is a second-order phase

transition with order parameter �; therefore, it occurs at the
point where � = 0 goes from being a minimum of the free
energy with respect to � to a maximum or saddle point. Hence,
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only the Hessian of F with respect to � needs to be calculated.
The transition temperature is then simply the point where a
negative eigenvalue occurs.

We will also need V (k) in spherical components:

V (k,k′) =
∑
ll′m

Ym
l (k̂)V m

ll′ (k,k′)Y ∗m
l′ (k̂′), (4)

V m
ll′ (k,k′) = − (4π )2

α

√
16π

5
il

′−l(−1)mIm
ll′Jll′ (k,k′), (5)

Jll′ (k,k′) =
∫ ∞

1

dr

r
jl(kr)jl′(k

′r), (6)

Im
ll′ =

√
(2l + 1)5(2l′ + 1)

4π

(
l 2 l′
0 0 0

)(
m 0 −m

l 2 l′

)
.

(7)

Because we are dealing with identical p-wave fermions,
we need only consider odd angular momenta l. Also, V m

ll′
is nonzero only when l′ = l or l′ = l ± 2 [59]. Notice that
the dipolar interactions conserve the angular momentum
projection m. We will also need the self-energy, which in a
polarized dipolar gas is anisotropic and, because the Hartree
term is zero, comes from only the exchange interactions, i.e.,
−(2π )−3

∫
d3qV (k − q)G(q). We take G ≈ G0 = θ (kF − k),

where θ is the Heaviside theta function, which gives


(k) = −1

2π
[1 − 3 cos2(θk)]σ (k), (8)

σ (k) =
∫ ∞

1

1

r4
[sin(kF r) − kF r cos(kF r)]j2(kr)dr. (9)

Notice that 
 also conserves the angular momentum pro-
jection. In order to solve the problem numerically, we must
discretize the radial k direction and choose a maximum angular
momentum lmax. We define a set of n + 1 vertices xi , with
i ∈ [0,n],x0 = 0, and xi > xi−1; then we consider only the
set of �(k) functions that are constant when k lies between
vertices. We also discretize V (k) on this grid. That is, we let

�(k) →
lmax∑

l=odd

l∑
m=0

n∑
i=1

�̃m
l (i)Uxi

xi−1
(k)Ym

l (k̂), (10a)

V̄ m
ll′ (i,j ) ≡ V m

ll′

(xi−1 + xi

2
,
xj−1 + xj

2

)
, (10b)

V m
ll′ (k,k′) →

n∑
i,j=1

Uxi

xi−1
(k)V̄ m

ll′ (i,j )Uxj

xj−1 (k′), (10c)

Uxi

xi−1
(k) ≡

{
1 k ∈ [xi−1,xi],
0 otherwise. (10d)

We now use these discrete forms and Eq. (9) to calculate the
free energy F . Then, we take the double derivative of F with
respect to �̃. Much cancellation occurs, giving the following
surprisingly simple result for the discretized Hessian matrix
H of F with respect to the spherical components of the gap:

H̄l′m′j
lmi = ∂2F

∂�̃m∗
l (i)∂�̃m′

l′ (j )

∣∣∣∣
�=0

= Vδmm′

2(2π )3

×
{
Km

ll′ (i)δij + 1

(2π )3

∑
l̄ ¯̄l

Km
ll̄

(i)V m

l̄ ¯̄l
(i,j )Km

¯̄ll′
(j )

}
,

(11)

where the K matrix is given by

Km
l,l′(i) ≡

∫
dk̂K(i,k̂)Ym∗

l (k̂)Ym
l′ (k̂), (12)

K(i,k̂) =
∫ xi

xi−1

dk
k2 tanh

(
κ(k)
2T

)
2κ(k)

. (13)

Calculating whether the gas will be superfluid at a certain
temperature and density requires only the calculation of the K

and V matrices and then finding the lowest eigenvalue of the
term inside the brackets in Eq. (11).

This method is applicable to any Hamiltonian for a
homogeneous gas. The only difficult numerics arise from
calculating the K matrix and a

∫ ∞
1

dr
r
jl(kr)jl′(k′r) integral that

appears in V m
l l′ . The integral (with perhaps a different power

of r) is common to any potential, as is the whole K matrix,
and it turns out that analytic solutions exist for both these
functions that are valid for most points on the grid. This means
the Hessian can be calculated easily and efficiently. Details are
given in the Appendix.

V. NUMERICAL RESULTS

Results using this methodology for Tc, including the effect
of anisotropic exchange interactions, are shown in Fig. 2. We
use l = 1 and l = 3 contributions; l = 5 makes almost no
difference to Tc. Also shown is the previous calculation from
Ref. [1]. Our inclusion of l = 3 states as well as exchange
interactions gives us a slightly higher Tc at low densities. At
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FIG. 2. Predictions for Tc in a dipolar Fermi gas. λ is
the dimensionless average distance between dipoles given by
(6π 2)1/3/(kF αCddm�

−2). The straight line at the top is the position
of the Fermi energy, T = TF . The solid blue line is our full numeric
calculation. The dashed red line is the theoretical prediction given
in Ref. [1]. The markers are the locations of current experiments:
40K 87Rb [14] at the theoretical maximum polarization (open tri-
angle), 40K 87Rb [14] at current experimental polarizations (open
circle), 23Na 40K [19] at the theoretical maximum polarization (solid
triangle), 161Dy [20] (open diamond), and 167Er [21] (solid diamond);
53Cr [26] is not plotted as it sits too far off to the right. Inset: Tc vs λ

zoomed in at the peak in Tc. The bottom two red lines are with just
l = 1. The top two blue lines are with l = 1,3. The dashed lines are
the results with exchange interactions switched off. The solid blue
line in the inset corresponds to the solid blue line in the main plot.
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higher densities, the drop in Tc reflects the fact that Ref. [1]
is picking up contributions from p-wave dimers as discussed
above. The inset shows the effect of just considering l = 1
and the effect of turning off exchange interactions, which
demonstrates that exchange interactions can either increase
or decrease Tc depending on the circumstances.

But what about the case of dipolar molecules that are
chemically stable against two-body collision [61], such as
23Na 40K [17,19], or dipolar atoms? In a typical gas with
short-range interactions, three-body losses are proportional
to the probability that two particles will approach within a
distance equal to the size of their bound state and that a third
particle will venture within interaction range to take away
excess kinetic energy. For dipoles, we can see that for inelastic
scattering to occur, two dipoles must approach within each
other’s centrifugal barrier, but due to long-range interactions,
the third can absorb excess energy from a distance. Worse still,
because the gas interaction energy is not extensive, the whole
gas can effectively absorb excess energy from a collision pair
simultaneously.

Referring back to Fig. 2 and comparing the solid and
dashed lines, we see that the cutoff starts to affect Tc only
around λ � 5. At these densities, the average distance between
dipoles is only 2 to 30 times larger than the size of the
shallowest dimers (see the discussion in Fig. 1). This is
much smaller than is normal for typical dilute gases with
short-range interactions. Given that, once the molecules have
tunneled, they can dimerize by expelling energy to multiple
external dipoles at once and given their proximity to these other
dipoles, it is not unreasonable to expect dimerization to occur
at very high probability inside the centrifugal barrier (this also
agrees with exact numerical calculations that give a three-body
recombination rate of dipolar fermions proportional to C8

dd

[33]). If we combine this with the possibility of long-lived
scattering chain complexes [31] and of inelastic spin-flip
interactions in atoms [20], then to us it seems reasonable that
our effective potential should be valid also for chemically
stable molecules and dipolar atoms as well (for dipolar
atoms, the bound states in Fig. 1 just represent the shallowest
rovibrational states of a molecule).

VI. DISCUSSION

A. Comparison with other work

It is worthwhile to now compare our results to those
of Ref. [1] to understand where and how they differ. In
Ref. [1], the same calculation was performed, except using the
renormalization method from Refs. [56,57]. That is, instead of
finding nonzero solutions to the gap equation,

�(k) = −
∫

d3q
(2π )3

V (k,q)
�(q)

2E(q)
tanh

(E(q)

2T

)
, (14)

one solves the renormalized gap equation,

�(k) =
∫

d3q
(2π )3

T (k,q)

{
1

2ε0(k)
− tanh

(
E(q)
2T

)
2E(q)

}
�(q),

(15)

which is the same equation but in terms of the scattering T

matrix T , rather than the potential V . In order to solve this

equation the authors first make the approximation T = V (the
Born approximation) and then to first order (small k) remove
the 1

2ε0(k) term. They are therefore solving almost the same
equations as we do, but with a V that is not cut off at rb.
However, they use the approximation that � is concentrated
around the Fermi surface, therefore making the region around
kF ∼ r−1

b irrelevant for small densities or small interaction
strengths (i.e., large λ). It is therefore not surprising that in
Fig. 2 both solutions agree closely at large values of λ.

As λ → 1, however, the cutoff becomes very relevant, and
the two solutions diverge. Although we have justified our
methodology in detail here, one might be tempted to argue
that the method presented in Ref. [1] has a physical basis in
the fact that it does not depend on any cutoff, whereas our
solutions are highly dependent on the choice of rb for high
densities. Below we elucidate how the renormalization method
presented in Ref. [1] does implicitly introduce a short-range
cutoff.

Such an assertion is based on the idea that the term in
brackets in Eq. (15) approaches zero for large k, which makes
the details of T irrelevant at large k and therefore “renormal-
izes” out the short-range behavior the gas. However, for the
case of a dipolar potential considered here, things are more
complicated. First, notice that due to its r−3 behavior, a bare
dipolar potential does not form a well-defined Hamiltonian.
That is, if we use a cutoff, as that cutoff approaches zero,
the number of negative energy eigenstates approaches infinity,
and the energy of the deepest eigenstates approaches negative
infinity. The T matrix for a bare dipolar interaction is therefore
also not defined without also choosing a cutoff.

For identical fermions, however, this difficulty is somewhat
allayed by the presence of the centrifugal barrier. Because
identical fermions with low scattering energy cannot approach
closely, T , for long wavelengths, is mostly independent of the
cutoff. This is referred to as quasiuniversal dipolar scattering
[59]. Also, we can easily calculate this universal small k

behavior of T by noting that, because of this insensitivity,
we can put the cutoff anywhere within the centrifugal barrier
and still get the same answer (provided the cutoff does not put
the system on resonance). If we choose the cutoff to be at rb and
choose V to be zero everywhere within that cutoff, it is easy
to see that V is small everywhere, and we can therefore use
the Born approximation T ≈ V . This is exactly what is done
in Ref. [1]. It is important to realize that in choosing the Born
approximation in this way, a cutoff is implicitly chosen. For
example, as we move farther inside the centrifugal barrier of a
dipolar potential, the strength of the potential is much stronger,
and because of this, to correctly describe T in this case, one
would have to use the second-order Born approximation. Such
a choice for T would be equivalent to using a different implicit
value for the cutoff.

For large values of λ our solutions are insensitive to the
choice of rb just as the solutions of Ref. [1] are insensitive to
the approximation used to calculate T . As λ gets smaller, both
our results and those of Ref. [1] become highly dependent on
this choice.

At this point we should note that, although the method
used in Ref. [1] is equivalent to choosing a cutoff, it is not
equivalent to making the potential zero inside this cutoff. More
specifically, they are effectively choosing an effective potential

023603-5



I. CORRO AND A. M. MARTIN PHYSICAL REVIEW A 94, 023603 (2016)

V ′ such that the T matrix generated by V ′ is equal to the bare
dipolar potential. This V ′ agrees with our V

(eff)
dd , Eq. (2), outside

rb but not inside. There is no reason a priori why either choice
for the effective potential would be more correct. In this work
we have argued that it is unreasonable to expect the region
inside the centrifugal barrier to contribute to the superfluid,
and the optimal choice is zero.

B. The kF ∼ 1/rb regime

In order for a superfluid to appear, the thermalization rate
into bound Cooper pairs must be faster than the rate of
quenching into tightly bound pairs and trap loss. Although
most of this work is dedicated to dealing with the effect
of this quenching, we have not explicitly calculated any
transition rates. Rather, we have noted that, within certain
temperature-density regimes, a transition to a BCS state cannot
occur faster than the quenching rate because the BCS state
itself is the unstable tightly bound pairs. We have therefore
calculated a temperature upper bound for which a BCS is
possible provided thermalization could occur fast enough.

The kF ∼ 1/rb region is of interest because it is the
quantum degenerate regime where the kinetic energy and
dipolar energy are of comparable order. The results here show
that a homogeneous dipolar gas should be unstable in this
regime, and hence Tc goes to zero in Fig. 2. However, a
number of experimental methods exist which could be used to
artificially stabilize the gas. In particular, the method presented
in Refs. [9,10] or the bilayer trap discussed in Ref. [12] could
both be used to overcome the problems discussed here.

C. Resonant scattering

All of the results discussed here assume that the dipolar
potential is off resonance. In the case of resonant scattering,
experiments have already shown that the transition temperature
can be made as high as 0.2TF . This is much higher than the
results given here for BCS superfluidity due to the long-range
part of the potential. It is clear then that for the case of resonant
scattering, any contribution from the long-range part will be
overwhelmed by the resonant scattering, and the system should
behave like a system of short-range, p-wave-interacting atoms.
As discussed in Sec. II, these systems have already been shown
to be unstable, and there is no reason to believe a dipolar
gas would be any different given the insignificance of the
long-range contribution in the resonant regime.

D. Conclusion

The first purpose of this work was to show that previous
work on dipolar Fermi gases has calculated a transition to a
tightly bound BEC pair and not a BCS superfluid. We pointed
out the inherit instability of these pairs and investigated the
effect this phenomenon has on the transition temperature. The
second purpose of this work was to present a general numerical
method for calculating Tc for systems where the particles have
complicated self-energy configurations. It is particularly well
suited to the dipolar gas problem because of the anisotropy of
the Fermi surface, and it is also applicable more generally to
systems with complicated self-energies.

APPENDIX A: ANALYTIC AND NUMERICAL
TECHNIQUES

1. The K -matrix integral

The K matrix [Eqs. (12) and (13)] typically has a few
hundred elements corresponding to each different basis point.
For each basis point, the integral in Eqs. (12) and (13) must be
performed. Furthermore, every time � or τ is changed, every
basis point must be recalculated. For the case of an isotropic
V (k), the integral is not overly difficult because the angular
part disappears. For the anisotropic case, however, each grid
point requires that a three-dimensional integral be performed
(although in the case of dipoles, cylindrical symmetry removes
one of the angular dimensions, leaving a two-dimensional
integral). Also, the fact the potential is anisotropic means that
the cross terms of different l and l′ become nonzero, leading
to still more bases to calculate. All this is compounded by the
fact that the integrand is very tightly peaked near the Fermi
surface, especially at low temperatures. For these reasons, the
integral is too challenging to be done by brute-force numerical
methods. Fortunately, analytic solutions exist for the radial part
of the integral, which is the most time-consuming because it
contains the peak at the Fermi surface.

To calculate K(i,k̂) ≡ ∫ xi

xi−1
dk

k2 tanh ( κ(k)
2T

)
2κ(k) , we can expand


(k̂,k) in a power series to order k2. This gives κ = α(k̂)k2 +
β(k̂)k + ω(k̂). We then get the following asymptotic formula
for the indefinite integral:∫

dk
k2

2(αk2 + βk + ω)
tanh

(
αk2 + βk + ω

2T

)
∼

√
2T

4α3/2
A − β

4α2
B + β2

16α5/2
√

2T
C, (A1)

where

A = tanh

(
ν2 − ν2

F

4T

)
1√
T

{
ν + νF

2
ln

(
νF − ν

νF + ν

)
− iπ

νF

4

}
+ θ

(
ν2 − ν2

F

) νF√
T

{
−2 + γ + ln

∣∣∣∣4ν2
F

πT

∣∣∣∣
+ (πT )2

12ν4
F

+ 7(πT )4

96ν8
F

+ O

(
T 6

ν12
F

)}
, (A2)

B = tanh

(
ν2 − ν2

F

4T

){
ln

(
ν2 − ν2

F

4T

)
− i

π

2

}
+ θ

(
ν2 − ν2

F

)
2
{
γ − ln

∣∣∣π
4

∣∣∣}, (A3)

C = tanh

(
ν2 − ν2

F

4T

)√
T

{
2

νF

ln

(
νF − ν

νF + ν

)
− i

π

νF

}
+ θ

(
ν2 − ν2

F

)4
√

T

νF

{
γ − ln

∣∣∣∣ πT

4ν2
F

∣∣∣∣
− (πT )2

4ν4
F

− 49(πT )4

96ν8
F

− O

(
T 6

ν12
F

)}
, (A4)

and we use the definitions ν = √
2αk + β√

2α
, η = β2

4α
− ω,

and νF = ±√
2η. This formula is an asymptotic solution for

the indefinite integral in the limit |κ(k)| → ∞. It is valid as
long as κ is either strictly increasing or strictly decreasing
in the integration region. It converges very quickly, and for
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|κ(k)/2T | � 12 it is exact to ten decimal places. The correct
solution for νF depends on κ and α. If κ is strictly increasing
and α > 0 or if κ is strictly decreasing and α < 0, then one
must take the positive solution; otherwise, one needs the
negative solution. If one requires more accuracy, the expansion
must be carried out beyond O(T 6/ν12

F ). If an end point of one
of the grid points lies too close to the Fermi surface, then either
the grid point can be moved, or the radial integral can be done
numerically for only that particular point.

This formula can be derived by changing the integra-
tion variable to κ and using integration by parts to get a
sech2 in the integral instead of tanh. Because sech2 decays
exponentially quickly, we can change the integration limits
from [κ(xi),κ(xi+1)] to [−∞,∞] and perform the remaining
integral using standard integrals.

With this analytic solution for the radial part of the integral,
the angular part can be done numerically in a short amount of
time.

2. The J = ∫ ∞
1

dr
r jl (kr) jl ′ (k′r) integral

Expanding V (k) into its radial components leaves one with
an integral of the form of J in Eq. (6). Depending on the form
of the potential, there may be a different power of r in the
integral. This integral needs to be calculated once for each
element in the V matrix. V contains a number of elements
on the order of the number of bases squared. In our case, to
calculate the V matrix, the J integral had to be calculated over
40 000 times. For this reason, the integral must be calculated
very quickly as well as accurately. The following method is
sufficient for this task.

For k ≈ k′, the integral must be performed as follows. First,
note that the Bessel functions converge slowly as r → ∞ and
are oscillatory. This makes straight numerical integration very
difficult. However, we should recall the asymptotic properties
of the Bessel functions

jl(kr) → j∞
l (kr) as r → ∞, (A5)

where

j∞
l (kr) = 1

kr
cos

[
kr − (l + 1)

π

2

]
. (A6)

If we define

J∞
l,l′ (k,q) ≡

∫ ∞

1

1

r
j∞
l (kr)j∞

l′ (qr)dr, (A7)

J̃l,l′ (k,q) ≡
∫ ∞

1

1

r
[jl(kr)jl′(qr) − j∞

l (kr)j∞
l′ (qr)]dr, (A8)

then the integrand in J̃ has the oscillatory asymptotic part
removed, making numerical integration much easier, and
J∞

l,l′ (k,q) can be calculated analytically using standard tech-
niques. The full integral is then

Jl,l′ (k,q) = J̃l,l′ (k,q) + J∞
l,l′ (k,q). (A9)

The above technique only removes the oscillatory part
of j to first order. When we have k � q or q � k, the
integrand becomes extremely oscillatory even with the j∞
terms removed. The numerical integration becomes so time-
consuming that calculating the integral even once is difficult,
let alone thousands of times. Fortunately, we can expand
Jl,l′ (k,q) in a power series expansion that is valid for k � q

or q � k. Here we will assume k � q.
Let ρ

(n)
l (kr) be the nth − order series expansion of jl(kr)

about k = 0. Then define the indefinite integral

J (n)
l,l′ (k,q; r) ≡

∫
1

r
ρ

(n)
l (kr)jl′(qr)dr. (A10)

J (n)
l,l′ (k,q; r) is a divergent expansion of the function∫
1
r
jl(kr)jl′(qr)dr . For small r the two functions agree,

but no matter how many terms in the expansion of ρ
(n)
l (kr)

one uses, the function J (n)
l,l′ (k,q; r) will always diverge for

large r , and therefore one has to be careful about attempting
erroneous actions such as Jl,l′ (k,q) = J (n)

l,l′ (k,q; ∞)

− J (n)
l,l′ (k,q; 0).

However, note the following. The integrand 1
r
jl(kr)jl′(qr)

converges to zero as r increases. This means that the ap-
proximate integrand 1

r
ρ

(n)
l (kr)jl′(qr) also converges to zero

before it blows up at larger values of r . Let r (n)
max be the value

of r at which 1
r
ρ

(n)
l (kr)jl′(qr) is closest to zero and still a

good approximation for 1
r
jl(kr)jl′(qr). If 1

r
jl(krmax)jl′(qrmax)

is sufficiently small, then

Jl,l′ (k,q) ≈
∫ rmax

1

1

r
jl(kr)jl′(qr)dr

≈ J (n)
l,l′ (k,q; rmax) − J (n)

l,l′ (k,q; 0)

≈ −J (n)
l,l′ (k,q; 0). (A11)

Now it turns out that the smaller k is, the faster the
integrand converges, and the fewer terms (smaller n) one
needs to consider in ρ

(n)
l (kr). So it in fact turns out

that −J (n)
l,l′ (k,q; 0) is the series expansion of Jl,l′ (k,q)

around small k. We can likewise do the same for
small q.

Finally, it is important to note that Jl,l′ (k,q) is not analytic
at k = q. This means that the small k and small q expansions
can only work up to a point. Once we are in the k ≈ q regime,
we must resort to the first method described above.
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