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Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid
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Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a
phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid,
quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem
containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus
requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in
a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical
ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system,
enabling a rigorous description of clustering in the language of critical phenomena. As the system energy
increases above a critical value, the system develops global order via the emergence of a macroscopic dipole
structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with
invariance under vortex circulation exchange, and the rotational SO(2) symmetry due to the disk geometry.
The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which
serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the
transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field
theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as
supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations
are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical
theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent
even for a modest system of 100 vortices, accessible in current Bose-Einstein condensate experiments.
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I. INTRODUCTION

In two-dimensional (2D) classical fluids, giant coherent
vortex structures can emerge from microscopic vortex excita-
tions [1–3], as end states of turbulent fluid dynamics involving
an inverse energy cascade [4,5]. The Great Red Spot in
Jupiter’s atmosphere [6–8] is a well-known example. Onsager
explained this spontaneous formation of large-scale vortices
from an equilibrium statistical mechanics point of view by
studying a point-vortex model in a bounded domain [1,9].
The phenomenon stems from the bounded phase space, which
supports negative temperature states that favor the spontaneous
clustering of like-sign vortices. As an equilibrium statistical
mechanics problem, cluster formation in 2D vortex systems
has attracted much attention [5,10–20]. Building on Joyce
and Montgomery’s formulation of vortex statistical mechanics
[10], Smith and O’Neil [17,18] investigated the single-charge
2D plasma using the point-vortex model in a rotating container
and showed that the formation of a nonaxisymmetric cluster
resembles a second-order phase transition. The analogy to
a phase transition is a powerful tool and provides deep
insights into the nature of vortex cluster formation. To the
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best of our knowledge, the nature of the transition to large-
scale clustered states in bounded neutral vortex systems
remains an open problem and fundamental questions remain
unanswered: What is the exact transition temperature, and
the universality class of the transition? What is the precise
mechanism of cluster formation? A rigorous theory capable
of addressing these questions may expand our knowledge of
critical phenomena [21] and pattern formation [22], and lead
to a deeper understanding of collective vortex states in a broad
class of 2D systems [23].

In this work we develop an analytical treatment within
mean-field theory [10,18] of the clustering transition in a neu-
tral point-vortex model confined to a uniform disk geometry.
The theory provides a systematic description of the negative
temperature phenomena in terms of inverse temperature β(ε), a
function of the system energy ε parametrizing microcanonical
states. We analytically find βc < 0 at which a clustering
transition occurs, whereby large-scale aggregation of like-sign
vortices can occur, breaking the underlying symmetries of the
system. Our mean-field analysis gives analytical expressions
for the structure of the clustered phase and critical behavior
of the macroscopic dipole moment that serves as a global
order parameter. In contrast to conventional second-order
phase transitions linked to a local order parameter, the vortex
clustering transition thus develops via the emergence of global
order characterized by a nonzero macroscopic dipole moment.
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At high energy the system enters the supercondensation limit
at βs < βc [4], involving pointlike concentration of vortices
with the same circulation, and divergence of the system
energy. The supercondensation does not break any symmetry
(it occurs within the symmetry broken phase) and is an end
point of a continuous process as energy increases. We test the
microcanonical theory against Monte Carlo (MC) sampling of
the microcanonical ensemble for finite vortex numbers, and
find good agreement even for a modest system containing a
total of N = 100 vortices. To probe the role of finite vortex
number further, we compute the energy dependence of the
macroscopic dipole moment, for a range of N from 50 to
1000. The critical exponent determining the order parameter
scaling emerges clearly even for N = 100 vortices.

II. BACKGROUND

A. Negative temperature vortex states

As a measure of motion, absolute temperature is always
positive. However under certain conditions, negative temper-
ature states can occur for an almost isolated subsystem. The
concept of temperature is applicable to such a subsystem if it is
in a long-lived metastable state. Since the coordinates (x,y) of
a vortex are conjugate variables, the crucial feature of 2D point-
vortex systems in a bounded domain is that the phase space
volume is finite. Let the phase space volume be �(ε) for a given
energy ε; then the thermodynamic entropy is kB ln �(ε), where
kB is the Boltzmann constant. For the extreme situation in
which all the vortex dipoles (vortex-antivortex pairs) collapse,
we then have �(ε = −∞) = 0. The opposite limit occurs
when all the like-sign vortices concentrate into a point, in
which case �(ε = ∞) = 0. It is clear that �(ε) must reach its
maximum at an intermediate energy −∞ < εm < ∞. Then
the inverse temperature

1

T
≡ kB

∂ ln �(ε)

∂ε
(1)

is thus negative for ε > εm. High energy equilibrium vortex
states at negative temperature correspond to large-scale clus-
ters [9]. Negative temperature states can arise in systems with
finite and discrete degrees of freedom, for instance localized
spin systems [24–26]. Recently such negative temperature
states have been realized for motional degrees of freedom
[27], where the finite bandwidth sets an upper bound for the
energy spectrum [28].

B. Motivation from Bose-Einstein condensates

An interesting scenario for potential realization of Onsager
vortex states may occur in planar Bose-Einstein condensates
(BECs). In atomic BECs the point-vortex model provides an
excellent description of vortex dynamics in a hydrodynamic
regime [29–32]. Furthermore, experimental observations of
small-scale clustering [33,34], and Gross-Pitaevskii simula-
tions demonstrating clustering in forced [35,36] and decaying
[37] homogeneous systems, in harmonic traps [38], and disk
geometries [39] have raised the prospect that large-scale
clustered states may be realized, amid increasing theoretical
[40–49] and experimental [32,50–53] interest.

The scenario of negative temperature vortex states within a
low positive temperature superfluid may appear implausible as
the superfluid in a BEC is compressible and the vortex-sound
coupling must be taken into account. In general, vortex-
sound coupling can play an important role in a compressible
superfluid [23,54,55]; however, there are also regimes where
the acoustic loss rate can be much slower than the dynamical
time scales of vortex evolution. Several theoretical works have
considered the viability of negative temperature vortex states
using the Gross-Pitaevskii equation (GPE) [37,39,40]. They
show that the compressibility of the quantum fluid does not
prevent the clustering of like-sign vortices, and moreover it
can even provide a mechanism to drive clustering, via an
evaporative heating process [39], whereby annihilations of
low-energy vortex-antivortex pairs “heat up” the remaining
vortices and the end state shows a clustered configuration
of like-sign vortices. Experimental observations that like-
sign vortices can aggregate into long-lived multiply charged
structures provides further evidence that such a regime may be
accessible [33,34]. These experiments can be seen as first steps
towards realizing large-scale, negative temperature, clustered
states of quantum vortices.

Several works have considered the possibility of an inverse
energy cascade in two-dimensional BECs, suggesting that
the compressibility of the fluid may be fatal for large-
scale clustering, instead causing transport of energy to small
scales driven by vortex dipole annihilation [56–58]. However,
these works considered specific scenarios that immediately
prohibited clustering, due to either starting from initial
conditions dominated by acoustic energy [56,57], or evolving
the system according to an overdamped equation of motion
[58]. As shown in a systematic study of energy transport
[44], a clear regime exists where energy is transported to
large scales via a vortex clustering process. The regime is
one of weak dissipation, and large vortex number. Recent
analytical calculations further support the possibility that the
sound-vortex interaction is not strong enough to prevent energy
transport to large scales [42], consistent with GPE simulations
[35–39,46].

In summary, although the temperature of the bulk liquid
is always positive, rendering the negative temperature states
ultimately unstable, if the temperature of a BEC is low enough
and the mean distance between vortices is much larger than
the healing length, the clustered phase is expected to be
long-lived. Indeed, GPE simulations indicate that a regime
exists where a separation of time scales allows clustered states
to be long-lived. The cause of this time scale separation appears
to have two sources: (i) the vortex-antivortex recombination
rate is rather slow in 2D (stemming from weak coupling
to the sound field; this weak coupling also holds for single
vortices), (ii) clustering of same-sign vortices suppresses close
approaches of vortices and antivortices. Thus, in a long-time
window, a system of 2D quantum vortices may evolve as an
almost isolated subsystem of a confined BEC at sufficiently
low temperature. Such quasiequilibrium states may also have
connections with nonthermal fixed point behavior [59,60].
While much evidence points to a weak-coupling regime, a
detailed microscopic picture of the mechanism remains an
open problem and such states have yet to be observed in
the laboratory, posing a exciting future challenge for both
theoretical and experimental work.
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C. Point-vortex regime

We consider a total of N quantum vortices in a planar
superfluid, with core size determined by the healing length
ξ . In a BEC at sufficiently low temperature, coupling to the
thermal cloud is negligible, and provided that the average
distance between vortices greatly exceeds the healing length,
vortices are only weakly coupled to phonon modes. The
point-vortex model then applies, and the other degrees of
freedom can be neglected. In this regime the point-vortex
model can also be rigorously obtained from the GPE [29,37]
and the incompressible kinetic energy spectrum of quantum
vortices in the GPE is well approximated by the point-vortex
energy spectrum [35,37].

Let us now consider N = N+ + N− quantum vortices
consisting of N+ vortices and N− = N+ antivortices confined
to a uniform disk with radius R, by a hard-wall boundary.
Hereafter we set R = 1, giving the point-vortex Hamiltonian
[61,62]

H = −
∑
i �=j

κiκj ln |ri − rj | +
∑
i,j

κiκj ln |(ri − r̄j )|rj ||,

(2)

where κi = ±1 is the circulation of a vortex at position ri . The
image terms are given by the second summation in Eq. (2)
and r̄j = rj /|rj |2 is the position of the j th image vortex. The
image terms ensure that the velocity normal to the boundary
vanishes; without losing generality we choose images such that
the stream function is zero on the boundary. The Hamiltonian
(2) hasZ2 symmetry (invariant under κi → −κi) and rotational
SO(2) symmetry due to the disk geometry. In a dilute gas
BEC the Hamiltonian Eq. (2) is measured in the energy unit
E0 = ρmaκ

2/4π , where ρ is the superfluid density, κ = h/ma

is the circulation quantum, and ma is the atomic mass.
Equation (2) describes well-separated (ξ

√
N � 1) quantum

vortices in 2D incompressible superfluids. Note that the second
summation of Eq. (2) depends on the shape of the domain and is
absent for an unbounded domain. The disk geometry is chosen
not only because it can be realized in current BEC experiments
[63–65] but also the simple form of the domain leads to the
possibility of an exact analytical treatment. In general the
point-vortex model also describes vortices in classical inviscid,
incompressible fluids [5,15,16,66] and guiding-center plasma
dynamics [10,12].

D. Scaling and continuous Hamiltonian

The model Eq. (2) exhibits negative temperature states at
high energies. In the standard thermodynamic limit, namely
N → ∞ and V → ∞ with H/N and N/V held fixed, where
V is the area, negative temperature states do not exist. In order
to support negative temperature states, a bounded domain is
necessary. A well-defined thermodynamic limit for the vortex
system in a bounded domain is found by a careful choice of
scaling [1,67,68]. In the clustered phase, the energy H ∼ N2

is due to the sum over all vortex pairs. Hence H/N2 is
finite-valued as N → ∞. Moreover the entropy per vortex is
bounded by the area of the domain. A formulation of the theory
with a well-defined thermodynamic limit that can describe
negative temperature states is thus given by the rescaled

Hamiltonian

H ≡ 4H/N2, (3)

equivalent to introducing the rescaling κi → κi/N± = 2κi/N .
The validity of this rescaling for the bounded vortex system
has been verified rigorously [67,68].

A course-grained formulation of Eq. (3) valid for N 	 1
has been derived [10], and we take the same approach here.
Defining the local density of positive (negative) vortices

n±(r) ≡ 1

N±

∑
i

δ(r − r±
i ), (4)

satisfying the normalization condition
∫

d2r n± = 1, where r±
i

is the position of the vortex i of circulation ±κi , respectively,
then the vorticity field is

σ (r) ≡ n+(r) − n−(r). (5)

At large N±, the continuous coarse-grained Hamiltonian reads

Heff = 1

2

∫
d2r d2r′ σ (r)φ(r,r′)σ (r′), (6)

which gives a well-defined continuum limit of Eq. (2) as
N → ∞ and in the clustered phase Heff ∼ O(1) [1,67,68].
The potential φ(r,r′) is the Green’s function of the Laplace
operator

∇2φ(r,r′) = −4πδ(r − r′), (7)

where φ(r,r′) = φ(r′,r) and φ(r,r′) ∼ −2 ln |r − r′| as
|r − r′| → 0 [69]. The stream function

ψ(r) ≡
∫

d2r′φ(r,r′)σ (r′) (8)

satisfies the Poisson equation

∇2ψ = −4πσ (r), (9)

with the boundary condition ψ(r = 1,θ ) = C. Here θ is the
azimuthal angle and C is a constant chosen to be zero, which
is equivalent to including image terms in Eq. (2). Recall
that the radial velocity vr = r−1∂ψ/∂θ , and this boundary
condition ensures that there is no flow across the boundary of
the container.

In the disk container, the energy

Heff = E = 1

2

∫
d2r σψ = 1

8π

∫
d2r |∇ψ |2 � 0 (10)

and the angular momentum per vortex

L =
∫

d2r r2σ (11)

are conserved quantities.

E. Statistical mechanics

Let us briefly recall the statistical mechanics of the system
developed by Joyce and Montgomery [10], who derived self-
consistent equations for the vorticity field via a maximum
entropy principle.
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The most probable density distribution of vortices is
obtained by maximizing the entropy per vortex

S = −
∫

d2r(n+ ln n+ + n− ln n−), (12)

with N+, N−, E, and L constrained to fixed values in the
microcanonical ensemble. The variational equation

δS − βδE − αδL − μ+δN+/N+ − μ−δN−/N− = 0, (13)

where β, α, and μ± are Lagrange multipliers, gives the
maximum entropy state

n±(r) = exp[∓βψ(r) ∓ αr2 + γ±], (14)

with γ± = −μ± − 1. Here β = β(E) is the dimensionless
inverse temperature describing the vortex subsystem at fixed
energy, α is proportional to the rotation frequency of the
container, and γ± set the normalization. Equation (14) together
with Eq. (9) provides a mean-field description of the distribu-
tion of vortices in a disk [1].

III. CLUSTERED PHASES

In the following we investigate possible stable large-scale
coherent structures described by Eqs. (9), (14). Nontrivial
solutions for the vortex density exist only for β < 0. We
note that some exact solutions of Eqs. (9), (14) in rectangular
domains are known [70–73]; however, we are unaware of any
exact solutions for the disk geometry. Our approach is to extend
the bifurcation theory of Smith and O’Neil [17,18], originally
developed for the single-charge vortex system, to the neutral
vortex system confined to a disk.

A. Constrained variation of the maximum entropy state

Let us start at a solution n± of Eqs. (9), (14) at E and L, and
consider a nearby solution n± + δn± at E + δE and L + δL.
The corresponding changes of the constraints are

0 =
∫

d2r δn±, (15)

δE =
∫

d2r ψδσ + 1

2

∫
d2r δψδσ, (16)

δL =
∫

d2r r2δσ. (17)

The variation of Eq. (9) is

(4π )−1∇2δψ = −[δn+(r) − δn−(r)]

= n(ψδβ + βδψ + r2δα) − n+δγ+ + n−δγ−,

(18)

where n = n+ + n− and δγ±,δβ, and δα can be expressed
as linear functions of δE, δL, and δψ . In contrast to the
single-charge vortex system [17,18], the macroscopic dipole
formation in the neutral vortex system does not require finite
rotation frequency of the container, and energy (equivalently
temperature) is the only control parameter of the transition for
given angular momentum L.

We now focus on the nonrotating container, setting α = 0.
Then the homogeneous state n± = n0/2 = 1/π is the solution
of Eqs. (9), (14), at which σ = 0, ψ = 0, E = 0, and L = 0.

Evaluating the variations of the constraints Eqs. (15), (16),
(17) from the homogeneous state to the leading order in δψ

gives

δγ+ + δγ− = 0, (19)

δE = 0, (20)

δγ+ = βn0

2

∫
d2r δψ. (21)

Plugging Eqs. (19)–(21) into Eq. (18), we obtain the zero-mode
(δE = 0) equation[∇2 − 4πβn0(1 − Î)

]
δψ = 0, (22)

where the integral operator is defined as

Îδψ ≡ 1

π

∫
d2r δψ, (23)

and the solutions are required to satisfy the boundary condition
δψ(r = 1,θ ) = 0. The onset of clustering occurs if Eq. (22)
has nonzero solutions for the fluctuation δψ . Note that in
our mean-field approach the value of β is undefined in the
homogeneous phase, and its precise value at the transition
is determined by the specific unstable mode that develops at
E = 0.

B. Vortex clustering transition

We now give a formulation of the clustering transition as a
symmetry-breaking perturbation of the homogeneous neutral
vortex configuration, and investigate the system dependence on
energy near the transition. It is natural to decompose Eq. (22)
into azimuthal Fourier harmonics

ψl(r,θ ) = ψ̂l(r)eilθ (24)

with the integer mode number l. The normalization condition
for ψl is chosen to be

−
∫

d2r ψl∇2ψl = 4π (25)

for convenience. Let us now consider a small variation along
the mode l, δψ = δψl ≡ εψl , where ε is a small amplitude.

In this work we focus on l > 0 modes, which break the
spatial SO(2) symmetry as well as the Z2 symmetry. Breaking
the Z2 symmetry while preserving the SO(2) symmetry
involves the l = 0 mode, and nonzero L. This polar angle
θ independent clustered phase is not pursued further here.
For l > 0, Îδψ = 0, and consequently δγ+ = δγ− = 0 and
δL = 0. Then Eq. (22) is an eigenvalue problem of a Laplacian
operator: [

1

r

d

dr
r

d

dr
− l2

r2

]
ψl = −λψl, (26)

with the Dirichlet boundary condition ψl(r = 1,θ ) = 0. Equa-
tion (26) has nonzero solutions only when λ = j 2

l,m, where
jl,m is the mth positive zero of the Bessel function of the
first kind Jl(r). Due to the dipolar form of the dominant
symmetry-breaking perturbation, the root j1,1  3.832 plays
an important role in what follows. The onset of the θ -dependent
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clustered stable phase occurs when the l = 1 and m = 1 mode
starts to emerge at

βc = −j 2
1,1/4πn0  −1.835, (27)

and the corresponding normalized nonzero solution is

ψ1(r,θ ) = 2
√

2[|J0(j1,1)|j1,1]−1J1(j1,1r) cos(θ ). (28)

Here we choose the positive y axis as the dipole direction
without loss of generality. Higher values of l and m correspond
to additional ordered phases with lower entropy at finite
energy, and hence have less statistical weight. For zero angular
momentum L = 0 and given energy E �= 0, the maximum
entropy state arises from the l = 1 and m = 1 mode. We refer
to this SO(2) symmetry breaking phase as the dipole phase.

Referring back to Eq. (2) we undo the rescaling of Eq. (3),
and identify the temperature unit with the one in a BEC, and
the clustering critical temperature reads

Tc = − 4πn0

(j1,1)2

E0

kB

N±  −0.272
π�

2ρN

makB

. (29)

The clear role of the boundary condition distinguishes the
clustering transition from supercondensation, and uniquely
determines the numerical factor.

As a consistency check, the critical temperature (29) can
also be found by varying the entropy (12) along the mode
l = 1:

δS = S − S0

= −
(

n0β
2
c

∫
d2r ψ2

1

)
δE + o(δE), (30)

where S0 = −2
∫

d2r (n0/2) ln(n0/2) is the entropy of the
uniform phase, and in the last step we used Eq. (A9).

The energy change along the mode l = 1 is

δE = 1

2

∫
d2r δσδψ

 − 1

2
ε2n0βc

∫
d2r ψ2

1 = 1

2
ε2, (31)

where the normalization condition Eq. (25) is used.
We then immediately have

∂S

∂E

∣∣∣∣
E=0

= −n0β
2
c

∫
d2r ψ2

1 = βc, (32)

consistent with the foregoing analysis.
In the dipole phase, the macroscopic dipole moment

D ≡ |D| ≡
∣∣∣∑ κiri

∣∣∣ =
∣∣∣∣
∫

d2r rσ

∣∣∣∣ (33)

serves as the order parameter, which becomes nonzero sponta-
neously as the system crosses the transition point. Importantly
here D does not refer to local order or off-diagonal long-range
order but rather describes the global coherent structure of the
clustered phase. Near the transition, 2δE = ε2, and hence

D = D0(E − Ec)ν + O(δE) = D̃0|β − βc|ν + O(δβ) (34)

with the critical exponent

ν = 1/2, (35)

and Ec = 0. The critical exponent ν takes the same value as the
critical exponent for the condensation field in the mean-field
XY model. The coefficients are D0 = √−J2(j1,1)/J0(j1,1) = 1
and D̃0 = Cc/β

2
c , where

Cc ≡ −β2
c

∂E

∂β

∣∣∣∣
β=βc

 8.91 (36)

is the microcanonical specific heat at the vortex clustering
transition point (see the Appendix). The positiveness of
the microcanonical specific heat in the neutral dipole phase
suggests that ensemble equivalence may hold for the confined
neutral vortex system. This behavior is in stark contrast
with the single-charge dipole phase where the microcanonical
specific heat is negative [18]. Note that D0 and Cc do not
depend on the chosen normalization of ψ1.

Clear evidence of the emergence of global order in the
vortex clustering transition can be seen in real space. In the
dipole phase, |σ | is symmetric under x → −x, and ψ(0,y) =
0. Dividing the disk into two regions A± = {x ≷ 0}, we define
the average position of net vortices in region A± as

r± ≡
∫
A±

d2r r|σ |∫
A±

d2r |σ | . (37)

The separation between vorticity centers can be measured
by

d = |d| ≡ |r+ − r−|. (38)

Evaluating Eq. (37) close to the clustering transition gives

d = dc + O(δE) (39)

with

dc = H−1
1 (j1,1)  0.92, (40)

and H1(x) is the first-order Struve function [74].

C. Supercondensation

Far above the vortex clustering transition each cluster
shrinks into a rather small region centered at r± = |r±| ≡ |r ∓
d/2|. In the supercondensation regime the angular variation of
the vortex distributions in the neighborhood of r± = 0 may
be safely neglected, giving the asymptotically exact vortex
density distributions [18],

n± = 4A′

(2 − πβA′r2±)2
, (41)

with the smoothness condition n′
±(r± = 0) = 0, where A′ is

fixed by the normalization condition. For high energy, A′ →
A(β) with

A(β) ≡ 1

π (1 − β/βs)
, (42)

and β → βs = −2. The inverse temperature βs defines the
universal supercondensation point, at which vortices concen-
trate spatially into pointlike clusters, irrespective of either the
boundary condition or the net vortex charge [18]. In BEC
units, supercondensation occurs at Ts = −π�

2ρN/4makB ,
consistent with an estimate based upon the free energy
argument [5] and with canonical MC sampling [39]. Viewing
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the clusters as points, the equilibrium condition for the two
point vortices with opposite circulation yields d → ds , where

ds = 2(
√

5 − 2)1/2  0.972 (43)

is independent of the cluster charges. This equilibrium
configuration balances the force of interaction between the
two clusters with the force arising from interaction with the
container; the latter is generated by the images in Eq. (2).
The limiting forms Eq. (40) and Eq. (43) give the cluster
separation for energies near and well above the transition,
and clearly the location of the clusters is only rather weakly
dependent on system energy.

The main contribution to the energy comes from vortices
with the same circulation, hence

E  −4β−2[ln(1 − β/βs) − β/2]. (44)

As β → βs , |〈D〉 − 〈D〉max| ∼ β − βs with 〈D〉max = ds , and
the microcanonical specific heat has asymptotic form

Cs = −β2(∂E/∂β) ∝ (β − βs)
−1 > 0. (45)

The power law divergence of the microcanonical specific
heat is determined by the asymptotically exact vortex density
distribution Eq. (41). In any physical realization of the point-
vortex model short-range repulsion becomes important in the
supercondensation limit. Hence, instead of collapsing to a
point associated with infinite energy, a tight crystal lattice
structure would occur [39].

IV. MONTE CARLO SIMULATIONS

Starting from the uniform phase at minimum energy E = 0,
we perform Monte Carlo simulations for a range of increasing
energies, at fixed angular momentum L = 0.

A. Microcanonical Monte Carlo

Our microcanonical Monte Carlo simulations follow the
general scheme of Refs. [17,18], based on the demon algorithm
of Creutz [75], modified to efficiently sample the phase space
of the neutral point-vortex system. Specifically, we couple the
system of point vortices to a demon with energy and angular
momentum degrees of freedom ED and LD, and write the total
energy and angular momentum as

ETotal = E + ED, (46)

LTotal = L + LD, (47)

where E and L are the point-vortex energy and angular
momentum. To sample the microcanonical ensemble for
desired energy and angular momentum E′ and L′, we fix
ETotal = E′ and LTotal = L′ and perform a random walk subject
to the constraints |ED| < Emax and |LD| < Lmax. Typical
constraints on the demon used here are Emax = 2.5 × 10−2

and Lmax = 1 × 10−2.
Our random walk consists of two alternating types of Monte

Carlo step. The first Monte Carlo step is composed of N

pairwise random moves of two randomly chosen vortices, such
that ri → ri + δri , where i = 1,2 indexes the vortices, and
the random moves δri are chosen uniformly randomly from
a square of side length � centered on the origin. We update

� to maintain an efficient success rate for the random walk
(typically such that 50% of pairwise moves succeed). This
Monte Carlo step is very similar to that used in Ref. [18] for
single-circulation point-vortex systems.

To more efficiently explore the possible values of the
dipole moment in the microcanonical ensemble of neutral
point-vortex systems, we follow each Monte Carlo step of
the pairwise type described above with a single Monte Carlo
step of a second type. This second Monte Carlo step consists
of a similar pairwise move, but in this case applied to a
pair consisting of (a) the center of circulation of all positive
vortices, and (b) the center of circulation of all negative
vortices. Such a move is achieved by moving all the positive
(negative) vortices by a vector δr+ (δr−), such that

1

N+

∑
κi>0

ri → 1

N+

∑
κi>0

ri + δr+, (48)

1

N−

∑
κi<0

ri → 1

N−

∑
κi<0

ri + δr−. (49)

The random moves δr± are chosen from the same distribution
as the pairwise moves above, using the same value of �. The
addition of this second type of step leads to greater ergodicity
in the values of dipole moment obtained during the random
walk.

B. Vortex clustering transition for N = 100

A comparison between the analytical predictions of mean-
field theory and the microcanonical MC sampling for N = 100
point vortices is shown in Fig. 1. The numerical results for the
values of ν and D0 are in good agreement with the mean-field
predictions. Before the transition 〈D〉 has a small value which
is almost independent of energy, due to the finite value of N .
Here the brackets refer to the ensemble average. The variance
of the order parameter (�D)2 ≡ 〈D2〉 − 〈D〉2 is evaluated
numerically and it shows a peak around the transition point,
where the dipole structure becomes unstable [see Fig. 1(a),
inset]. Moreover, N (�D)2 grows with increasing N near
the transition point while it has almost no N dependence
elsewhere. These non-Gaussian fluctuations of the dipole
moment indicate nontrivial correlations between vortices
due to criticality. As a check of our MC sampling, we
independently verified the results in Fig. 1(a) by sampling
using the Wang-Landau algorithm [76].

The values of dc and ds are also confirmed by MC
simulations as shown in Fig. 1(b). Note that d �= 0 before
the transition in our MC simulations, again due to the finite
value of N . In crossing the transition r± jumps from zero
to a nearly energy-independent constant. Positive (negative)
vortices accumulate at the point r± gradually as energy
increases, which yields continuous growth of the dipole
moment 〈D〉.

In Figs. 1(c) and 1(d) we compare MC sampling and
mean-field theory for the density difference σ at different
energies. For E − Ec = 0.02,0.1, the mean-field result for σ

is evaluated perturbatively via Eq. (14) by plugging in the zero
mode Eq. (28). Agreement between the spatial distributions
is very good near the clustering transition where a single
unstable mode is dominant. At the high energy E = 2.02, we
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FIG. 1. A comparison between microcanonical theory and MC
sampling for N = 100 point vortices on the clustering transition. (a)
shows the dipole moment D (solid red) for increasing energy E; also
shown is the mean-field prediction D = (E − Ec)1/2 (dotted black).
Ec  −5 × 10−2—here representing the critical energy for N =
100—is estimated by fitting to the numerical data [see Sec. IV C].
The inset in (a) shows the variance of dipole moment for N = 50
(dash-dotted green), N = 100 (solid red), and N = 200 (dashed
blue). (b) shows the separation between vorticity centers d(E),
Eq. (38); the numerical data (solid line) is shown alongside asymptotic
mean-field predictions for high energies ds [double-dashed line;
Eq. (43)] and energies close to the transition dc [dot-dashed line;
Eq. (40)]. (c) and (d) show, respectively, results from MC sampling
and mean-field theory for the scaled vortex density σ̃ (see text). To
present the large energy range on one color map, we define σ̃ ≡ σ

for E − Ec = 0.02,0.1 and σ̃ ≡ σ/10 for E − Ec = 2.02.

compare MC sampling with the supercondensation asymptotic
form [Eq. (41)] that ignores the interaction between clusters.
The MC sampling reveals additional elliptical distortion of
each cluster.

C. Order parameter dependence on E for increasing N

We also extract the average dipole moment D as a function
of energy for a range of N . We first estimate the critical energy
Ec for each N using a simple fitting procedure in the region
close to the transition. Given discrete samples of the dipole
moment Di = D(Ei), and its variance, obtained from MC

TABLE I. Estimated values of Ec(N ) and its uncertainty �Ec(N )
obtained by our numerical fitting procedure (see Sec. IV C).

N Ec (10−2) �Ec (10−2)

50 −9 3
100 −5 1
200 −2 1
500 −1.0 0.7
1000 0 0.2

simulations conducted at energies Ei , we minimize

χ2 =
∑
i∈R

(Di − √
Ei − Ec)2

(�Di)2
, (50)

where R is the set of i such that 0 < Ei − Ec < 0.1. This
choice of energy range leads to at least 7 points in the set R
for every value of N . This procedure yields the values of Ec

reported in Table I. We can see that Ec(N ) → 0, the mean-field
prediction, as N increases. We calculate an estimate of the
uncertainty in Ec(N ) from the χ2 + 1 contour, �Ec(N ). The
error in Ec decreases with increasing N , corresponding to
increasing goodness of fit [77].

Having estimated Ec independently for each N , in Fig. 2
we plot dipole moment D against E − Ec on a log scale. The
scaling in the transition region becomes very close to |E −
Ec|1/2 as N increases, with good agreement for the scaling
already evident for N = 100. Note that the finite values of D

observed below the transition energy systematically decrease
in amplitude with increasing N [Fig. 2 (inset)]. Also note that
the lowest accessible energy of the finite-size system increases
with N ; in the thermodynamic limit there are no states with
E < 0.

FIG. 2. Logarithmic plot of average dipole moment D against the
energy above the critical energy, E − Ec. Solid line shows the pre-
dicted mean-field scaling |E − Ec|1/2. Inset shows a nonlogarithmic
plot of D against E.
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V. DISCUSSION AND CONCLUSIONS

A. Phases of the (extended) point-vortex model

In Fig. 3 we summarize the equilibrium phases of the
system of point vortices confined to a disk. As an end point
of a continuous process as energy increases, the system
enters the supercondensation regime at βs = −2 [4], involving
pointlike concentration of vortices with the same circulation,
and divergence of the system energy. At βc, with βs < βc < 0,
a clustering transition occurs, whereby large-scale aggregation
of like-sign vortices can occur, breaking the underlying
symmetries of the homogeneous phase. Our microcanonical
ensemble approach demonstrates that the clustering transition
is strongly dependent on the geometry of the system, while
supercondensation is universal. Note that in the canonical en-
semble where states are parametrized by inverse temperature,
the clustering transition and supercondensation are difficult
to distinguish [39]. The microcanonical approach reveals that
the apparent coincidence of the transitions is due to numerical
proximity of βs and βc. In the microcanonical ensemble, states
are parametrized by energy, giving a clear distinction between
the vortex clustering transition and supercondensation.

Our mean-field analysis gives analytical expressions for
the structure of the clustered phase and critical behavior of
the dipole moment near β  βc. For βc < β < 0, Eqs. (9),
(14) only have the trivial solution, namely n±(r) = n0 and
ψ = 0, which gives the limitation of our current mean-field
approach: the states at βc < β < 0 are not distinguishable. In
addition, our mean-field approach is not suitable to investigate
the β > 0 phases; instead the proper continuous effective field
formulation of the point-vortex model is the sine-Gordon field
theory. At βpc > 0 the model is known to exhibit a collapse
of oppositely charged pairs [78–80]. Going beyond the pure
point-vortex model, introducing a short-range repulsion be-
tween vortices associated with a finite vortex core scale softens
the pair-collapse into a Berezinsky-Kosterlitz-Thouless (BKT)
transition at βBKT [81–83].

FIG. 3. Schematic of phases of a neutral system of point vortices
confined to the disk geometry. Energy per vortex decreases from left
to right. In dimensionless units the supercondensation temperature
occurs at the universal point βs = −2. The vortex clustering transition
occurs at βc  −1.835 [Eq. (27)]. In the positive temperature regime,
the pair-collapse limit is reached at βpc. The addition of short-range
repulsion between vortices allows the point-vortex model to extend
farther into the positive temperature regime to encompass the BKT
transition at βBKT > βc (see text).

B. Symmetries and order parameter

One should distinguish the vortex clustering transition dis-
cussed in this paper from the BEC transition. The fundamental
degrees of freedom in our system are the vortices but not the
bosonic atoms of the host fluid. The clustering transition is
not described by a local order parameter. The macroscopic
dipole moment instead describes the global spatial structure of
the system. The clustered phase breaks the underlying SO(2)
symmetry as well as the Z2 symmetry, and we emphasize
that the SO(2) symmetry breaking occurs at zero angular
momentum. There are also clustered phases which break the
Z2 symmetry while preserving the SO(2) symmetry, carrying
finite angular momentum. The macroscopic dipole moment
〈D〉 = 〈|∑i κiri |〉 functions as a global order parameter as
〈D〉 provides a good description of the transition from the
uniform phase 〈D〉 = 0 to the clustered dipole phase 〈D〉 �= 0.
The critical exponent for the order parameter, Eq. (35), has the
same value as the mean-field XY model. However an anoma-
lous scaling correction might be present due to a remnant
of some screening effects close to the transition, which is
beyond the scope of the mean-field theory approach taken here.
Near the transition we expect that N (�D)2 ∼ (E − Ec)−γ as
N → ∞. While our current level of MC sampling is sufficient
to determine the scaling of 〈D〉, identifying γ would require
significant further investigation.

The clustering transition is not described by a local
order parameter and hence one cannot apply the standard
scenario of phase transitions straightforwardly. However, the
clustering transition does have features of a second-order
phase transition: (1) it spontaneously breaks the underlying
symmetries; (2) there is an order parameter associated with
the broken symmetry that grows continuously as a function of
the tuning parameter crossing the transition; (3) the fluctuation
of the order parameter has a peak near the transition and the
peak grows as the number of vortices N increases.

The important role of symmetry in this system warrants
some discussion of the role of the SO(2) symmetry of the
trap. We note that a very high degree of cylindrical trap
symmetry was essential for preserving sufficient angular
momentum to achieve rotating Bose-Einstein condensation
[84]. Furthermore, recent advances in digital-micromirror
device technology [65] could allow the construction of highly
circular traps. Another promising avenue may be offered
by using specific Gauss-Laguerre modes to induce radial
confinement [85], as laser fields can be efficiently shaped into
specific modes that are SO(2) symmetric.

C. Conclusions

We study clustering phenomena in the neutral point-vortex
model confined to a disk, in the microcanonical ensemble.
Utilizing concepts from the standard theory of phase transi-
tions, we give a clear picture of the clustering transition of
quantum vortices, including the transition temperature, the
power law scaling of the order parameter near the transition,
and the distinction between clustering and supercondensation.
The clustering transition breaks the underlying Z2 and SO(2)
symmetries, exhibiting features of a mean-field XY -type
second-order phase transition. The mean-field theory is found
to agree well with microcanonical Monte Carlo simulations,
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consistent with the dominance of long-range interactions
in the clustered regime. By uncovering the nature of the
clustering transition in a bounded domain, our theory gives a
treatment of the transition relevant for experimental realization
in Bose-Einstein condensates, and suggests future directions
for testing ensemble equivalence in systems with long-range
interactions. Our approach could be extended to arbitrary con-
fining geometries, and provides a starting point for studying
vortex clustering phenomena in quantum fluid systems that are
strongly forced and damped [86,87].
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APPENDIX: SPECIFIC HEAT NEAR THE TRANSITION

In order to investigate the microcanonical specific heat at
the transition point, we need to study higher-order perturbation
theory in ε. Similar analyses for single charge vortices can be
found in Ref. [18]. In the following we always use the fact that
at the transition point σ = 0 and the rotationless condition
α = δα = 0.

Let us first consider higher-order corrections of δψ for l =
1, δψ  εψ1 + ψ

(2)
1 + ψ

(3)
1 , where ψ (i) (i = 2,3) is of order

O(εi). To the O(ε2),

∇2δψ = −4π [δn+(r) − δn−(r)]

= 4π [n0(ψδβ + βδψ + r2δα) − n+δγ+ + n−δγ−]

(A1)

becomes

L0ψ
(2)
1 = 4π (−n+δγ+ + n−δγ−), (A2)

where L0 ≡ ∇2 − 4πn0β. Multiplying ψ1(r,θ ) =
ψ̂1(r) cos(θ ) to Eq. (A2) and integrating over space,
the right-hand side of the equation is trivially zero and
the left-hand side of the equation is also zero because∫

d2rL0ψ
(2)ψ1 = ∫

d2r ψ (2)L0ψ1 = 0. We introduce the
function η which satisfies(

1

r

d

dr
r

d

dr
− 4πn0βc

)
η = 2πn0 (A3)

with boundary conditions η(r = 1) = 0 and η′(r = 0)
= 0. The solution of Eq. (A3) reads η(r) =
[2βcJ0(j1,1)]−1J0(j1,1r) − 1/2βc. Then ψ

(2)
1 can be expressed

as

ψ
(2)
1 = η(−δγ+ + δγ−). (A4)

Conservation of the number of vortices leads to
∫

d2r (δn+ − δn−) = 0, (A5)
∫

d2r (δn+ + δn−) = 0. (A6)

At O(ε2), the constraint Eq. (A5) becomes∫
d2r ∇2δψ =

∫
d2r ∇2ψ

(2)
1 = 0, (A7)

and then we have ∫ 2π

0
dθ

∂ψ
(2)
1

∂r

∣∣∣∣
r=1

= 0, (A8)

which is satisfied automatically. Then Eq. (A6) takes the
following form:∫

d2r
(

n+δγ+ + n−δγ− + 1

2
n0β

2ε2ψ2
1

)
= 0. (A9)

At O(ε2), the constraint 0 = δM = −π−1
∫

d2r ψ (2) requires
that δγ− = δγ+, and therefore ψ

(2)
1 = 0.

In order to obtain the β-E relation, we need to expand
Eq. (A1) to O(ε3):

L0ψ
(3)
1 = 2πn0εψ1

[
2δβ + βcδγ+ + βcδγ− + ε2

3 β3
c ψ

2
1

]
.

(A10)

Multiplying ψ1(r,θ ) to Eq. (A10) and integrating over
space, the left-hand side of the equation is zero because∫

d2rL0ψ
(3)ψ1 = ∫

d2r ψ (3)L0ψ1 = 0. Hence we have

ε

∫
d2r ψ2

1 [2δβ + βc(δγ+ + δγ−)] + ε3

3
β3

c

∫
d2r ψ4

1 = 0.

(A11)

Combining Eq. (A9) and Eq. (A11), we obtain δβ = C̃δE,
where

C̃ = β3
c

[
n0

2

(∫
d2r ψ2

1

)2

− 1

3

∫
d2r ψ4

1

](∫
d2r ψ2

1

)−1

 − 0.378. (A12)

Hence we arrive at Eq. (36).
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