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Inversion of strong-field photoelectron spectra for molecular orbital imaging
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Imaging structures at the molecular level is a developing interdisciplinary research field that spans the
boundaries of physics and chemistry. High-spatial-resolution images of molecules can be obtained with photons or
ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques
based on the coherent extreme UV radiation emitted by a molecular gas exposed to an intense ultrashort infrared
laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy-resolved
photoelectron spectra using a simplified analytical model.
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I. INTRODUCTION

Assessing geometric and electronic structures of molecules
via different scattering techniques using x rays, ultrafast
electrons, and high harmonic generations (HHG) is a hot topic
of current research in molecular physics since they provide
a gateway to imaging of chemical reactions in real time
[1–3]. Conventional scattering techniques based on photons
and electrons are able to achieve the spatial resolutions needed
for imaging static molecular geometry but they lack resolution
in time to give a dynamic picture. Techniques based on
strong-field ionization and ultrafast lasers are promising, as
they can be used to provide both subangstrom spatial and sub-
femtosecond temporal resolutions [4,5] for dynamic imaging
purposes. It is one of these techniques associated with strong-
field ionization of molecules that is of interest in the present
paper. For a thorough account of the latest trends in ultrafast
molecular imaging methods, we refer the reader to Ref. [6].

The currently accepted vision of strong-field ionization is
the celebrated three-step model [7,8]. When an atom or a
molecule is excited with an intense infrared (IR) laser pulse, a
quasistatic potential barrier is formed in the combined potential
curve of the system and the field through which a bound
electron can tunnel out [9]. It creates a laser-driven electron
wave packet in the ionization continuum, which is driven back
and forth to the parent core by the applied field. On its return to
this ionic core, the electron wave packet is scattered, resulting
either in elastic scattering or in inelastic collision processes
such as high harmonic generation and nonsequential double
ionization [10–12].

Compared to the relatively inefficient inelastic processes,
elastic scattering of the ionized wave packet is the predominant
outcome of recollision. It is known as laser-induced electron
diffraction (LIED). Following the first theoretical discussions
in 1996 [10], experimental realization of LIED in simple
molecular systems was first reported in 2008 [13]. Since then,
LIED has been considered a tool to study strong-field dynamics
of isolated molecules.

It is well known from optical physics that a diffraction
pattern can be seen as the image of an object in the reciprocal
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space, from which light, or an incident matter wave, has
been scattered. By designing an inverse algorithm, one can
reconstruct the image of that object in real space. LIED
can be seen in the same perspective [10,13], but unlike
traditional scattering processes, in LIED the scattering beam
of electrons is extracted from the molecular system itself,
acting as its own electron gun. After ionization and after an
eventual recollision event, the outgoing electron wave carries
information about the scattering centers. The photoelectron
spectrum can thus be considered an image of the system in the
reciprocal space. Given the similarity of LIED to traditional
diffraction techniques, it seems potentially possible to get
information about the molecule from its LIED photoelectron
spectra.

It was demonstrated both theoretically and experimentally
that LIED can be used for extracting structural information
about the equilibrium geometry of molecules with great ac-
curacy [14–16]. These recent experiments have motivated the
development of LIED-based techniques for imaging molecular
dynamics. In particular, experimental developments reported
in Ref. [14] demonstrate the simultaneous measurement of
both C-H and C-C bond lengths of aligned C2H2 using LIED
spectra obtained with mid-IR laser fields. That the LIED
spectral data can be inverted to retrieve precise information
on the molecular geometry is not surprising, although it
undoubtedly represents a huge advance in molecular physics,
given that this measure can, in principle, be made on a
very short time scale, allowing molecular geometry changes
during a reactive collision, for example, to be followed in a
time-resolved manner.

Recently, one of the key research topics in strong-field
physics appeared to be the exploitation of the recollision
process not only to retrieve structural or geometrical images
but also to infer information on the electronic charge distribu-
tion of a molecule and even details of its field-free quantum
eigenstates. These pieces of information are of great interest,
especially for the understanding and the imaging of reaction
dynamics, where changes in the electronic charge distribution
play a major role. Achieving the required spatial and temporal
resolution could provide a tool for probing the transition
states of a chemical reaction, for example, by observing
time-resolved deformation of the orbitals as transition states
are crossed. Such a tool would also be of tremendous value to
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image the rapid dynamics which takes place close to conical
intersections [17,18].

Currently, HHG is the only strong-field process that has
been explored as a tool for imaging molecular orbitals (MOs)
using tomographic techniques [19], as originally demonstrated
in Ref. [20]. This HHG-based orbital imaging approach
involves a rather elaborated inversion procedure, requiring
the HHG spectra to be recorded at various laser-molecule
alignment angles, and their treatment, i.e., the inversion
procedure per se, rests on a number of assumptions that are
still a matter of debate.

In this paper, we propose an alternative route that can
be used to extract both structural and orbital information on
a molecule directly from its LIED spectra. Previously, we
demonstrated how LIED signals, for a symmetric molecule
such as CO2, reflect the conservation of the nodal structure,
i.e., the symmetry character, of the initial MO from which the
ionized electron has been extracted. Here, we show that more
detailed information on this initial orbital can be retrieved
from this signal, culminating with an explicit, complete MO
reconstruction procedure.

The outline of the paper is as follows. In Sec. II we
briefly recall the single-active-electron (SAE) model of the
CO2 molecule as defined in the previous work and used in
the present study, together with the numerical procedure for
electron wave-packet calculations within this model. Then,
in Sec. III, through results of numerical simulations, we
illustrate the specific features of the photoelectron LIED
spectrum associated with a molecular orbital compared to
that of a typical atomic orbital. In Sec. IV, we derive an
analytical expression of the LIED photoelectron momentum
distribution, starting from formally exact integral expressions
of the time-evolution operator describing the SAE dynamics.
The final analytical model makes use of the strong-field
approximation (SFA) and the inversion procedure used for the
MO reconstruction assumes a simple LCAO expression as a
guess for the initial MO. Finally in Sec.V, we demonstrate this
procedure in the case of the highest-occupied molecular orbital
(HOMO) of the carbon dioxide molecule. We present some
examples of reconstruction and we specify the accuracy and
limits of our approach. The last section gives some concluding
remarks and perspectives for future work. Atomic units are
used throughout the paper unless stated otherwise.

II. THEORETICAL MODEL

To demonstrate how MOs can be imaged using LIED, we
consider the specific case of the symmetric, linear, carbon
dioxide molecule, CO2, one of the most studied system in
strong-field physics [21–25]. It is sufficiently complex to
represent an interesting test case and it is relatively simple
for calculations. It enables one to demonstrate the key features
of electron dynamics in the presence of intense near-IR fields
[16].

The electronic dynamics induced by the field is described
by the time-dependent Schrödinger equation (TDSE)

Ĥ(t) |ψ(t)〉 = i ∂t |ψ(t)〉, (1)

where |ψ(t)〉 denotes the time-dependent electronic state of the
model system constituted of the most weakly bound electron

of the molecule and

Ĥ(t) = −∇2/2 + V (r) − μ · E(t) (2)

is its Hamiltonian in the length gauge. Here V (r) is an effective
field-free binding potential and −μ · E(t) is the interaction of
the active electron with the laser field. The linearly polarized
electric field along êx is defined as

E(t) = −∂t A(t), (3)

where A(t) is the vector potential given by

A(t) = E0

ωL

f (t) cos(ωLt + φ) êx . (4)

ωL is the IR career frequency and E0 the electric-field
amplitude. φ is the carrier-envelope phase (CEP) and

f (t) = sin2

(
πt

2τ

)
(5)

denotes the temporal envelope of the pulse of full width at
half-maximum (FWHM) τ .

The effective multiwell potential V (r) is as given in
Ref. [16]. It is a soft Coulomb potential describing the
attraction exerted on the single electron of the model system
by screened nuclear charges with a screening factor that, for
each nucleus, varies slowly with the distance separating the
electron from the nuclear charge. We assume that the CO2

molecule is prealigned along the y direction. The intense IR
laser pulse given by Eq. (3) is therefore applied normal to the
molecular axis. Thus the ionization and associated dynamics
are assumed to take place in the plane defined by the orthogonal
system of coordinates consisting of the molecular y axis and of
the polarization x axis of the applied time-dependent electric
field.

Figure 1(a) depicts the geometry of the system within these
assumptions and shows schematically three typical ionization
and recollision trajectories. The most probable recollision
processes take place following a short trajectory [29], in about
half an optical cycle and therefore on a time scale of the order
of 1 to 3 fs for wavelengths between 800 nm and 2 μm. The
electronic dynamics that takes places on this typical time scale
can be separated from the nuclear dynamics, whose time scale
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FIG. 1. (a) Model system with typical recollision trajectories.
(b) Schematic of the HOMO wave function of a symmetric CO2

molecule with CO internuclear distance R = Re � 1.4 Å � 2.6 a.u.
Blue, negative values; red, positive values. The wave function is
antisymmetric with respect to the x = 0 and y = 0 planes.
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is of the order of 15 fs for the asymmetric stretch, 25 fs for
the symmetric stretch, and 60 fs for the bending modes of
CO2. We therefore consider, in a first approximation, that the
nuclear motion is frozen with a fixed CO bond length R.

The TDSE, (1), describing the electronic dynamics is
solved with the split-operator method [26]. The initial state
is calculated using the imaginary time propagation technique
[27] and the ionization and recollision events are simulated
by propagating the calculated initial state during the pulse.
During the interaction with the field, the asymptotic part of
the wave packet is extracted and projected onto Volkov states
in order to describe analytically the long-range electronic
dynamics [28]. At the end of the pulse, corresponding to the
time t = tf = 2τ , the asymptotic part of the wave packet is
collected to obtain the energy-resolved transition amplitudes
and hence the photoelectron spectrum. The entire numerical
procedure is detailed in Ref. [16]. The calculated photoelectron
spectrum is the laser-induced electron diffraction spectrum
I(kx,ky), which gives the two-dimensional (2D) momentum
distribution of the elastically scattered electron wave packets.

III. LASER-INDUCED ELECTRON
DIFFRACTION SPECTRA

We discuss here the salient features of typical LIED spectra
in preparation for the derivation of the inversion procedure in
the next section. These spectra are calculated for the HOMO
orbital of CO2, shown in Fig. 1(b), as the initial state. We also
consider the spectra associated with the ionization out of a 2px

atomic orbital centered on the carbon atom. This is referred to
as the atomic case.

A. Influence of the wavelength

LIED photoelectron spectra provide a picture of the
momentum (k) distribution of the ionized electron. A typical
photoelectron spectrum I(kx,ky) obtained from the solution
of the TDSE for the HOMO orbital of CO2 at an extended
geometry R = 5 Å is given on log scale in Fig. 2 for three
wavelengths and a single-optical-cycle pulse (2τ = 2π/ωL)
with no CEP (φ = 0). Figure 2(a) shows the spectrum at a
wavelength of 800 nm, Fig. 2(b) at 1.4 μm, and Fig. 2(c)
at 2.0 μm for a laser intensity of 1014W/cm2. The highest
probabilities are in red and the lowest in blue.

The outermost contour of the circular shape of the spectrum
is elongated along kx , i.e., in the direction of the polarization
of the field. Two successive ionization events corresponding
to the maximum and minimum of E(t) in this ultrashort
pulse create an oscillating continuum wave packet which is
ultimately driven away from the molecule. The ionization
events happen along the direction of the field, giving pho-
toelectrons with momenta distributed as shown in the figure.
The circular shape corresponds to the maximum recollision
energy 3.17 Up = (k2

x + k2
y)/2, where Up is the ponderomotive

energy [29]. Since Up is proportional to λ2, an increase of the
wavelength directly increases the size of the 2D photoelectron
spectrum, as we can see in Fig. 2. Longer wavelengths thus
help in making out the interference patterns of the spectrum.
In the following we use the longest wavelength λ = 2.0 μm.
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FIG. 2. Normalized 2D photoelectron spectra I(kx,ky) (log scale;
see color map) obtained from the HOMO of CO2 for R = 5 Å when
exposed to a single-optical-cycle pulse of intensity I = 1014 W/cm2

and zero CEP. Wavelengths used are (a) λ = 800 nm, (b) λ = 1.4 μm,
and (c) λ = 2.0 μm.

B. Interference patterns

To analyze in detail the interference patterns which build
up in the photoelectron spectra, we compare in Figs. 3(d)
and 3(c) the spectrum obtained from the HOMO of CO2 to
the spectrum obtained from a 2px atomic orbital with the
same ionization potential, at a wavelength of 2.0 μm. All
other parameters are as in Fig. 2. Figures 3(a) and 3(b) show,
respectively, the time variations of the electric field and of
the total ionization probability for the atomic (solid red line)
and for the molecular (dashed blue line) cases. For the atomic
calculation, the parameters of the soft-core potential V (r) in
Eq. (2) have been modified such that the atom has the same
ionization potential compared to the HOMO of CO2, i.e.,
9.2 eV at R = 5 Å. The electric field E(t) presents two main
symmetric maxima pointing in opposite directions. For both
the atomic and the molecular cases, the ionization takes place
in two successive bursts. The probability of ionization rises
just after each maximum of the field, and the delay separating
a maximum of the field and the associated ionization burst
is simply related to the time necessary for the ionized wave
function to reach the asymptotic region.

In the atomic photoelectron spectrum shown in Fig. 3(c)
very clear ringlike structures can be seen, which come
from the interference between different rescattered electron
wave packets. More precisely these structures are due to the
interference between long and short trajectories followed by
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FIG. 3. (a) Normalized electric field E(t) as a function of time.
(b) Ionization probability as a function of time for an atom
(solid red line) and a molecule (dashed blue line) with the same
ionization potential, IP = 9.2 eV. (c), (d) Associated normalized 2D
photoelectron spectra I(kx,ky) (log scale; see color maps) for the
atom (c) and the molecule (d) at R = 5 Å. A single-optical-cycle
pulse of intensity I = 1014 W/cm2 and wavelength λ = 2.0 μm is
used.

recolliding electrons [30]. They have a circular shape because,
for a given energy long and short trajectories accumulate a
fixed phase shift which is independent of the electron emission
angle.

Another interesting interference in the atomic LIED spec-
trum is due to the superposition of the pathways corresponding
to direct ionization and to ionization preceded by recollision
(i.e., to rescattering). This holographic interference of the
electron wave occurs only over a window of small ky values
due to the limited spread of directly ionized electrons in the
transverse direction [31–33]. It also appears mainly in the kx >

0 region in Fig. 3(c) (intensely red region) due to the particular
field E(t) shown in Fig. 3(a), which drags the electron in
the positive direction during the recollision. The associated
interference patterns are relatively localized, i.e., limited
in extension and are, therefore, difficult to measure in an
experiment. In addition, they are seen in both the atomic and
the molecular cases, as shown in the comparison with Fig. 3(d),
and they are therefore not the best candidates for an analysis
of the molecular structure.

There is, however, a very clear and important difference
between the atomic and the molecular spectra, which lies in the
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FIG. 4. Averaged 1D LIED spectraS(ky) (log scale) in the atomic
case (solid black line) and in the molecular case (dashed red line).
(a), (b) Parameters are as in Figs. 3 and 5, respectively: Total pulse
duration of (a) 1 optical cycle and (b) 3.5 optical cycles. All other
parameters are identical.

ky variation of the spectra. Indeed, of the different interference
patterns seen in the molecular spectrum, a multiple-slit-
like interference can be distinguished in the ky momentum
distribution. This multiple-slit-like interference pattern is due
to the scattering of the electron by the multiwell ionic potential
describing the interaction with the nuclei. The molecular
information, including the relative position of the nuclei, is
therefore mainly imprinted in the ky momentum distribution,
along the direction of the molecular axis. To get a simpler
spectrum that we can more easily analyze, we average the
electron signal I(kx,ky) over the kx momentum, keeping only
the ky variation. This yields the averaged 1D LIED spectrum

S(ky) =
∫

I(kx,ky) dkx . (6)

It has been demonstrated that the bond length R can directly
be measured from the fringe width seen in this 1D spectrum
[16].

Two such log-scale spectra are shown in Fig. 4(a) for the
cases presented in two dimensions in Figs. 3(c) and 3(d). The
averaged 1D atomic spectrum is shown as the solid black line,
and the molecular spectrum as the dashed red line. We clearly
see strong differences in these 1D spectra, which lie both in
the oscillatory behavior of the molecular spectrum and in the
slower decrease (with respect to ky) in the mean signal of the
molecular spectrum compared to the atomic spectrum.

Until now, LIED spectra were calculated for a single optical
cycle only. Figure 5 shows similar atomic and molecular
spectra, calculated with a 3.5-optical-cycle laser pulse. Even
though the pulse duration is much longer, there are only
three main maxima of the electric field which contribute
significantly to the ionization signal, as shown in Figs. 5(a)
and 5(b). These maxima give rise to three bursts of ionization
taking place in opposite directions. As a consequence, the
associated 2D momentum spectra are much more symmetric
with respect to kx = 0 than the spectra associated with a
single-cycle pulse shown in Fig. 3.
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FIG. 5. (a) Normalized electric field E(t) as a function of time.
(b) Ionization probability as a function of time for an atom
(solid red line) and a molecule (dashed blue line) with the same
ionization potential, IP = 9.2 eV. (c), (d) Associated normalized 2D
photoelectron spectra I(kx,ky) (log scale; see color maps) for the
atom (c) and the molecule (d) at R = 5 Å. A 3.5-optical-cycle pulse
characterized by an intensity of I = 1014 W/cm2 and a wavelength
λ = 2.0 μm is used.

The different kinds of interference patterns discussed above
are still visible. In particular, the multiple-slit-like interference
seen in the ky variation of the 2D molecular spectrum is
still present. The associated kx-averaged 1D spectra shown
in Fig. 4(b) therefore show a similar behavior compared to
the ultrashort single-cycle pulse. A comparison of Figs. 4(a)
and 4(b) shows that the longer pulse yields a higher value of
the cutoff energy. This is because the maximum value of E(t)
is higher for the longer pulse [see Figs. 3(a) and 5(a)]. The
particular oscillatory behavior of S(ky) in the molecular case
in Fig. 4(b) shows that it is possible to attempt an analysis
of the molecular structure from LIED spectra using few-cycle
laser pulses.

C. Influence of the internuclear distance

In Fig. 6 we explore the R dependence of the LIED spectra.
The intensity is 1014 W/cm2 and the pulse duration is 3.5
optical cycles at the wavelength 2.0 μm. Figures 6(a)–6(c) are
for R = 2.0 Å, R = 3.5 Å, and R = 5.0 Å, respectively. We
can conclude from this figure that the interference between
long and short trajectories and the interference between direct
ionization and ionization preceded by recollision (rescattering
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FIG. 6. R dependence of the normalized 2D photoelectron
spectra I(kx,ky) (log scale; see color maps) for the CO2 molecule.
The intensity is I = 1014 W/cm2 and the pulse duration is 3.5 optical
cycles. The wavelength is λ = 2.0 μm. The internuclear distance is
(a) R = 2 Å, (b) R = 3.5 Å, and (c) R = 5 Å.

signal) are not seriously affected by a variation of the
internuclear distance. On the other hand, the multiple-slit-like
interference patterns seen in the ky variation of the 2D
molecular spectrum change appreciably when the internuclear
distance varies.

This strong variation is confirmed by Fig. 7, which shows
the associated kx-averaged 1D LIED spectra. Figures 7(a)–7(c)
are for R = 2.0 Å, R = 3.5 Å, and R = 5.0 Å, respectively.
We see here that the analysis of the spectrum is facilitated by
large internuclear distances since the oscillation period of the
1D averaged spectrum decreases with R. Indeed, it was shown
in Ref. [16] that the fringe width 	k varies as π/R. This result
is used in Sec. V for the reconstruction of the initial MO.

For the laser parameters used in the present calculation,
i.e., I = 1014 W/cm2 and λ = 2.0 μm, the ponderomotive
energy is Up = 1.38 a.u., and, as shown in Fig. 6, the electron
spectrum extends over a range of momenta of a few atomic
units only, with ky � 2.95 a.u. As we can already infer from
Fig. 7(a) this range is not sufficient for an accurate analysis of
the spectrum when R < 3 Å. In the following we discuss this
analysis for the cases R = 3.5 Å and R = 5.0 Å. Analyzing the
LIED spectra at smaller internuclear distances would require
higher laser intensities or longer wavelengths.

The understanding of the LIED spectra described in detail
in this section can be used for the ultimate goal of this paper:
the derivation of an inversion procedure. In the next section we
describe the main ingredients of an analytical model that can
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FIG. 7. R dependence of the averaged 1D LIED spectra S(ky)
(log scale). The internuclear distance is (a) R = 2.0 Å, (b) R = 3.5 Å,
and (c) R = 5.0 Å. Other parameters are as in Fig. 6. Dotted vertical
lines mark the regularly spaced local minima of the three spectra.

lead to the image of the MO, in the present case the HOMO,
by inverting the LIED spectrum. This model is then used in
the last section to analyze the spectra and to reconstruct the
initial molecular orbital.

IV. THE INVERSE PROBLEM: AN ANALYTICAL MODEL

The 2D LIED spectrum I(kx,ky) calculated by solving
the TDSE contains information about the molecule within
the diffraction patterns, as described in Sec. III. Since this
spectrum originates from the HOMO orbital of CO2, both
structural and orbital information is necessarily imprinted in
it. Here the goal is to reconstruct the initial orbital from which
the photoelectrons are extracted. We are thus facing what
could be called an inverse problem, where we need a compact
analytical form for the photoelectron spectra S(ky) accurate
enough to assess both orbital and geometrical information.
This analytical form contains some parameters describing the
initial state. These parameters are fitted such that the analytical
form ofS(ky) reproduces its “exact” counterpart obtained from
the solution of the TDSE. Finally, the fitted parameters are used
to reconstruct the initial MO.

In general for the case discussed here, two main ingredients
are necessary: (i) an approximate description of the ionization
and associated dynamics that result in the photoelectron
spectra and (ii) a simplified functional form for the initial
state which will be used for the reconstruction. The first part
is the most challenging feature of the inverse problem and is
discussed in this section.

A. Description of the dynamics

1. Exact transition amplitude

The field-induced dynamics can be modeled by depicting
the different steps in a recollision event [7] separately. In
agreement with this mechanism describing the ionization and
recollision processes, we separate the transition amplitude

a(kx,ky) into two parts, corresponding to directly ionized
electrons and to electrons ionized after a recolliding event.

If the exact solution |
(tf )〉 of the TDSE is known at the
end of the pulse, at time tf , the relevant transition amplitude
for LIED can be written as

a(kx,ky) = 〈
+
k |
(tf )〉, (7)

where |
+
k 〉 is the outgoing wave elastically scattered in

the direction of the electron wave vector k for a prescribed
asymptotic kinetic energy εk = k2/2. The formal solution of
the TDSE may be written at time tf as

|
(tf )〉 = Û (tf ← 0) |
(0)〉, (8)

where |
(0)〉 is the initial state and Û (t ← 0) is the evolution
operator obeying the TDSE,

i ∂t Û (t ← 0) = Ĥ(t) Û (t ← 0) . (9)

Ĥ(t) given in Eq. (2) contains both the binding and the driving
potentials. Depending on the situation, one of them could be
more influential than the other and could decide the outcome
of the dynamical process [34].

The simplest realistic picture of strong-field ionization in-
cluding the essential ingredients of tunnel ionization followed
by recollision requires one to consider at least a complete
optical cycle. For the derivation of the model, we therefore
consider a single optical cycle of duration tf = 2π/ωL. For
certain times t ′ within this cycle, the field reaches values
sufficient to trigger both tunnel ionization and the following
dynamics of the wave packet, which can be represented using
the exact form of the Dyson equation [35–37],

Û (tf ← 0) = Û0(tf ← 0)

+ i

∫ tf

0
Û (tf ← t ′)μ̂ · E(t ′) Û0(t ′ ← 0) dt ′,

(10)

where Û0(t ← 0) is the evolution operator associated with the
field-free Hamiltonian

Ĥ0 = −∇2/2 + V (r) . (11)

The Dyson equation, (10), is exact insofar as it involves
the exact evolution operator Û (tf ← t ′) between the time of
ionization t ′ and the final time tf . During this time interval a
recollision event may take place, whenever the electron wave
packet propagating in the laser field comes close enough to
the parent ionic core such that the Coulomb attraction starts to
dominate over the driving dipole interaction. To express this
idea, we then split the evolution operator Û (tf ← t ′), found
in the integral on the right-hand side (rhs) of Eq. (10), as

Û (tf ← t ′) = Ûv(tf ← t ′) − i

∫ tf

t ′
Û (tf ← t ′′)

×V (r) Ûv(t ′′ ← t ′) dt ′′, (12)

where Ûv is the evolution operator associated with the Volkov
Hamiltonian [36,38]

Ĥv(t) = −∇2/2 − μ̂ · E(t) . (13)
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The Volkov evolution operator Ûv(t2 ← t1) can be formally
written as

Ûv(t2 ← t1) =
∫

dk
∣∣�v

k(t2)
〉〈
�v

k(t1)
∣∣, (14)

where

�v
k(r,t) = e i [k+ A(t)] · r − i S(k,t)

2π
, (15)

S(k,t) being the classical action

S(k,t) = 1

2

∫ t

0
[k + A(τ )]2 dτ . (16)

Substituting Eq. (12) into Eq. (10) we get

Û (tf ← 0) = Û0(tf ) + Ûd (tf ) + Ûr (tf ), (17)

with the following definitions:

Û0(tf ) = exp(−i Ĥ0 tf ), (18a)

Ûd (tf ) = i

∫ tf

0
dt ′ D(tf ,t ′), (18b)

Ûr (tf ) =
∫ tf

0
dt ′

∫ tf

t ′
dt ′′ Û (tf ← t ′′) V (r)D(t ′′,t ′), (18c)

and

D(t2,t1) = Ûv(t2 ← t1) μ̂ · E(t1) Û0(t1 ← 0) . (19)

Among the three terms composing Û (tf ← 0) in Eq. (17),
Ûd (tf ) is responsible for direct ionization, whereas Ûr (tf )
includes recollision. It is to be stressed that Eq. (17), with
the definitions given in Eqs. (18) and (19), is still exact. This
type of Dyson expansion could be iterated by considering
multiple ionization and higher order recollisions. In the present
simplified model we stop at this second-order decomposition.

Now, using these equations, we can split the ionization
amplitude into two contributions,

a(kx,ky) = ad (kx,ky) + ar (kx,ky), (20)

with

ad (kx,ky) = 〈
+
k | Ûd (tf ) |
(0)〉 (21)

and

ar (kx,ky) = 〈
+
k | Ûr (tf ) |
(0)〉 . (22)

Equation (21) gives the transition amplitude associated with
direct ionization, while Eq. (22) gives the transition amplitude
associated with ionization preceded by recollision. Hence, the
2D LIED spectrum can be written as

I(kx,ky) = |ad (kx,ky) + ar (kx,ky)|2, (23)

an expression which shows clearly the appearance of an
interference between the direct and the recolliding ionization
pathways. Note that such an expression is common when
describing strong-field ionization using a SFA approach [39].

2. Approximate transition amplitude

Evaluating the direct ionization amplitude ad (kx,ky) is
relatively easy compared to the recollision amplitude ar (kx,ky)

because of the appearance of Û (tf ← t ′′) in the expression of
Ûr (tf ). To make this evaluation tractable, we use the strong-
field approximation [37,40], and we replace Û (tf ← t ′′) with
the Volkov evolution operator Ûv(tf ← t ′′), with

Ûr (tf ) �
∫ tf

0
dt ′

∫ tf

t ′
dt ′′ Ûv(tf ← t ′′) V (r)D(t ′′,t ′) . (24)

Replacing Û (tf ← t ′′) with Ûv(tf ← t ′′) in Eq. (24) means
that after the first recollision event, we neglect the Coulomb
force compared to the interacting IR field, an approximation
valid in the asymptotic region, where the Coulomb interaction
is negligible.

As the second step in simplifying the model, the outgo-
ing waves |
+

k 〉 are approximated by plane waves |�pw
k 〉.

This approximation is justified asymptotically. Within these
approximations we obtain

ad (kx,ky) � i

∫ tf

0
dt ′ e−iS̄1

〈
�

pw
k′

∣∣μ̂ · E(t ′) |
(0)〉 (25)

and

ar (kx,ky) �
∫ tf

0
E(t ′)dt ′

∫ tf

t ′
dt ′′ e−iS̄2

〈
�

pw
k′′

∣∣V (r)|
r〉, (26)

where

S̄1 = 1

2

∫ tf

t ′
[k + A(τ )]2dτ − Ip t ′, (27a)

k′ = k + A(t ′), (27b)

S̄2 = 1

2

∫ tf

t ′′
[k + A(τ )]2dτ − Ip t ′, (27c)

k′′ = k + A(t ′′), (27d)

|
r〉 = Ûv(t ′′ ← t ′) x |
(0)〉. (27e)

In Sec. III, it has been noted that the most interesting fea-
tures of the photoelectron spectrum lie in the high-momentum
(ky) part of the 1D averaged spectra. This is because these
electrons are characterized by de Broglie wavelengths short
enough to resolve subangstrom spatial scales. Thus, describ-
ing the low-energy part of the spectrum and the parallel
momentum (kx) distribution of the photoelectrons accurately
is not essential. It has also been shown that high energies
are reached by electrons ionized around a maximum of the
field and hence around a minimum of the potential vector
[7,41]. Thus A(t ′) can be neglected in Eq. (27b). In addition,
electrons with high kinetic energies mainly recollide with
the ionic core at a minimum of the field, corresponding to
a maximum of the vector potential [7,41]. In Eq. (27d) we
therefore use A(t ′′) � ±E0/ωL x̂. The potential vector A(t ′′)
therefore induces a strong shift of the parallel component kx

of the electron momentum. In practice, this shift is of no
significance in the present approach, since it will be averaged
out in the calculation of Eq. (6) and we therefore do not take
it into account in the following.

Within these approximations and to avoid discrepancies
between the SFA spectrum and the spectrum obtained from the
solution of the TDSE, one should restrict the analysis of the 1D
averaged signal to the highest ky momentum components only.
The interest of this severe approximation lies, however, in the
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fact that it simplifies the model by allowing the separation of
the temporal from the spatial integrals involved in Eq. (25).
Thus, for the direct ionization amplitudes, one has

ad (kx,ky) � Ad 〈�pw
k

∣∣ x |
(0)〉, (28)

where

Ad = i

∫ tf

0
E(t ′) e−iS̄1 dt ′ . (29)

Similarly, the recollision amplitude becomes

ar (kx,ky) �
∫ tf

0
E(t ′)dt ′

∫ tf

t ′
dt ′′ e−iS̄2

〈
�

pw
k

∣∣V (r)|
r〉. (30)

Using the closure property of the plane-wave basis set one
obtains

|
r〉 =
∫

dk′e−ik′2	t/2
〈
�

pw
k′

∣∣x|
(0)〉 ∣∣�pw
k′

〉
, (31)

where 	t = t ′′ − t ′ � 0.7 (2π/ωL) is the mean time during
which the electron wave packet propagates in the continuum
[7,41]. The temporal and spatial integrals can thus be separated
in expression (30) of the recollision amplitude as

ar (kx,ky) � Ar

〈
�

pw
k

∣∣V (r) |
r〉, (32)

where

Ar =
∫ tf

0
dt ′

∫ tf

t ′
dt ′′ E(t ′) e−iS̄2 . (33)

Finally, the approximate transition amplitude is given by

a(kx,ky) � Ad

〈
�

pw
k

∣∣x|
(0)〉 + Ar

〈
�

pw
k

∣∣V (r)|
r〉 . (34)

This equation has to be developed on a suitable basis of initial
states for the final analytical form of the LIED spectra.

B. Initial molecular wave function

Equation (34) expresses the ionization amplitude as the
sum of two terms, each written in the form of a product of
spatial and temporal integrals. The first term is associated with
direct ionization, and the second with recollision events. As we
see from the LIED spectra, the information we are interested
in is encoded in the spatial integrals. Thus in the following
discussion, the temporal integrals Ad and Ar are taken as
adjustable coefficients in order to match the approximate
spectrum with the calculated spectrum.

To proceed further with the evaluation of the spatial inte-
grals, we need to specify the initial wave function 
(r,0) =
〈r|
(0)〉. Insofar as the SAE method is valid, this initial wave
function is a molecular orbital. In quantum chemistry, this is
usually expressed as a linear combination of atomic orbitals
(LCAO method) and there are many basis set ansatzes for
representing localized atomic wave functions. Here the initial
HOMO orbital is taken as an antisymmetric linear combination
of 2px atomic orbitals [see Fig. 1(b)]:


(r,0) = �2px
(r + R) − �2px

(r − R) (35a)

= �−
2px

(r) − �+
2px

(r) . (35b)
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FIG. 8. Overlap (linear scale) between the Gaussian-type, (37),
and the Slater-type, (36), orbitals used in the present study as a
function of the dimensionless ratio ζ/

√
α (see text for details).

Ideally one would choose for �2px
(r) a Slater-type orbital

of the form

�s
2px

(r) = Ns x e−ζ r , r = (x2 + y2)1/2, (36)

with the normalization factor Ns = ζ 2√8/3π in two dimen-
sions, where ζ is the Slater exponent. This analytical form,
once introduced in Eq. (35b), is a reasonable candidate for
representing the HOMO orbital, but an important disadvantage
then lies in the difficulty of evaluating multicenter integrals
such as the recolliding integral of Eq. (34). It appears that this
difficulty can be removed if the Slater orbital, (36), is replaced
by a Gaussian-type orbital of the form

�
g

2px
(r) = Ng r cos θr e−α r2

, (37)

with the normalization factor Ng = α
√

8/π , where α is the
Gaussian exponent. Actually, the Gaussian function, (37), can
be approximated to the Slater orbital (36) with the appropriate
choice of α.

Figure 8 shows the overlap between the wave functions
(37) and (36) as a function of the dimensionless ratio ζ/

√
α.

It is clear that for ζ � 2.165
√

α, the Slater and Gaussian
orbitals are very similar, with an overlap of about 98%. In the
following, for evaluation of the integrals, we use Gaussian-type
atomic orbitals, but for reconstruction of the initial molecular
state we use Slater-type orbitals whose sizes are defined from
the optimal ratio ζ/

√
α = 2.165.

C. Approximate 1D photoelectron spectrum

The expression for the approximate transition amplitude
a(kx,ky) given in Eq. (34) can now be evaluated for the initial
HOMO wave function given in Eq. (35b) as

a(kx,ky) = Ad

[〈
�

pw
k

∣∣ x ∣∣�−
2px

〉 − 〈
�

pw
k

∣∣ x ∣∣�+
2px

〉]
+Ar

[〈
�

pw
k

∣∣ V |�−
rec〉 − 〈

�
pw
k

∣∣V |�+
rec〉

]
, (38)

where |�±
rec〉 denotes

|�±
rec〉 =

∫
dk′e−ik′2	t/2

〈
�

pw
k′

∣∣ x ∣∣�±
2px

〉 ∣∣�pw
k′

〉
. (39)

The first two integrals in Eq. (38) represent direct ionization
from displaced (oxygen 2px) orbitals and the last two represent
the ionization amplitudes after a recollision event. The two
integrals associated with direct ionization amplitudes are
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just Fourier transforms of products of the dipole operator
x with displaced 2px orbitals. In momentum space, this
spatial translation becomes a simple phase shift of the form
exp [±ikyR] of the Fourier transform signal of �±

2px
. Taking

this simplification into account, Eq. (38) can be reduced to

a(kx,ky) = Ad sin(kyR)
〈
�

pw
k

∣∣ x ∣∣�2px

〉
+Ar

[〈
�

pw
k

∣∣ V |�−
rec〉 − 〈

�
pw
k

∣∣V |�+
rec〉

]
. (40)

Evaluation of the direct ionization amplitude using a
Gaussian-type orbital yields

ad (kx,ky) = Ad sin(kyR)
(
k2
x − 2α

)
e− k2

x+k2
y

4α , (41)

provided that Ad accounts for all constant factors.
Calculation of the recollision amplitude ar (kx,ky) is more

involved since it requires the knowledge of the functional form
of the recolliding wave functions �±

rec(�r). Using a Gaussian-
type orbital �2px

located at the origin for the initial state, we
obtain

�0
rec(r) ∝ α − iβ − 2β2x2

(α − iβ)3
eiγ r2

, (42)

where γ = αβ/(α − iβ) and β = 1/(2	t). The wave func-
tions �±

rec(r) are identical to �0
rec(r) except for a phase shift,

so that the corresponding recollision wave functions are given
by

�−
rec(r) = eiγR2

e+i2yγR �0
rec(r), (43a)

�+
rec(r) = eiγR2

e−i2yγR �0
rec(r) . (43b)

In the near IR (λ = 800 nm to 2.5 μm) parameter β of
Eq. (42) is in the range 10−2 to 10−3 a.u. In comparison, the
Gaussian orbital exponent α is usually of the order of 1 a.u.
These orders of magnitudes can be used in order to simplify
further the expression of the ionization amplitude.

Since the binding potential V (r) is characterized by three
attractive centers, the recollision amplitude ar (kx,ky) [second
part on the rhs of Eq. (40)] contains, for the HOMO of CO2, six
integrals. Indeed, from the HOMO, ionization may originate
from any of the two oxygen atoms and recollision may take
place on any of the three atoms. Fortunately, these six integrals
are similar. In the case of the HOMO, the electron wave packet
is launched from both of the oxygen atoms labeled O1 and O2 in
Fig. 1. Upon recollision, the contribution from the first oxygen
atom O1 will scatter from the parent atom O1 itself as well as
from the two neighboring atoms: from the carbon atom C and
from the second oxygen atom O2. This part of the rescattering
amplitude, shown in Fig. 1, can be written as

aO1
r (kx,ky) = 〈

�
pw
k

∣∣V |�+
rec〉, (44)

where the three-center potential V , supposed to be of a
Coulomb form, is given by

V (r) = − qO

|r + R| − qC

|r| − qO

|r − R| . (45)

What matters most for the recollision is the scattering taking
place in the vicinity of Coulombic cores. At first order near
the singularities of the potential wells, i.e., for x → 0 and
y → { −R, 0, R }, and taking into account Eqs. (42) and (43),

the above integral can be reduced to

aO1
r (kx,ky) ∝ −eikyR − eiβR2 − e−ikyR eiβ4R2

|ky | . (46)

Similarly, for the wave packet originating from the second
oxygen atom, we obtain

aO2
r (kx,ky) = 〈

�
pw
k

∣∣V |�−
rec〉

∝ e−ikyR + eiβR2 + eikyR eiβ4R2

|ky | . (47)

Finally, the total recollision amplitude is

ar (kx,ky) = Ar

1 − ei4βR2

|ky | sin(kyR) . (48)

Combining Eqs. (41) and (48) we obtain the 2D transition
amplitude. The transition probability is the square modulus of
this transition amplitude. Finally, averaging over the parallel
momentum component kx , the 1D spectrum is written as

S(ky) =
(

|Ad |2 e− k2
y

2α + |Ar |2
k2
y

)
sin2(kyR) . (49)

Again, Ad and Ar account here for all constant factors. Eq. (49)
is the compact analytical form we use in the next section for
our inversion procedure.

V. RESULTS: RECONSTRUCTION OF ORBITALS

Equation (49) is the final result we intended to derive for
solving the inverse problem. Taking |Ad |, |Ar |, α, and R as
four independent adjustment variables, this expression can be
compared with 1D averaged LIED spectra calculated from
the solution of the TDSE. In general, the model can be used
for any internuclear distances of the CO2 molecule. However,
as discussed previously, with the particular laser parameters
chosen in the present study our model is not expected to
perform well for small values of R. We thus chose only two
cases for this comparison: R = 3.5 Å and R = 5.0 Å.

To ease the multiparameter fitting procedure, it is well
known that the search for the best fit should start from a
good-guess value. Here the range of the parameter R can
be obtained easily from the spectrum itself by measuring the
fringe width 	k = π/R as discussed in Ref. [16]. Thus we
are left with three completely unknown parameters and one
partially known parameter. The fitting process is performed
here using the well-known Levenberg-Marquardt algorithm
[42], because of its robustness for finding the best possible
solutions even if the procedure starts with initial guess values
relatively far from the final one.

The fitting process is performed on the high-kinetic-energy
part of the spectra. The highest accessible kinetic energy and
hence the highest momentum component kmax

y are defined
by the cutoff energy 3.17 Up, which is fixed by the laser
parameters used in the calculation or experiment. In order
to obtain reliable values for the parameters, the fitting process
must be repeated several times. This is done by varying the
lower limit of the kinetic momentum kmin

y taken into account,
between 1.15 and 1.25 a.u. in the present calculation.
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TABLE I. Fitted values of the parameters involved in the SFA
analytical model of Eq. (49).

Ad (a.u.) Ar (a.u) R (Å) α (a.u.)

0.00478 0.000808 3.628 0.535
0.00506 0.000720 3.616 0.516

R = 3.5 Å
0.00513 0.000634 3.624 0.527
0.00405 0.001087 3.619 0.520

Average 0.00476 0.000812 3.622 0.525
0.0157 0.00385 5.141 0.676
0.0121 0.00639 5.141 0.625

R = 5.0 Å
0.0137 0.00507 5.142 0.657
0.0145 0.00452 5.142 0.669

Average 0.0140 0.00496 5.142 0.657

Values of the relevant parameters obtained for four lower
limits are listed in Table I. The values obtained for the
internuclear distance R are very stable and accurate. In
addition, the values obtained for the orbital exponent α are
relatively stable. Since these two parameters are the ingredients
used to reconstruct the molecular orbital, (35b), they will lead
to a very similar orbital, whatever the other parameters chosen
in Table I. In practice, we average over several fits in order to
extract these parameters (see Table I).

Typical numerical and model 1D LIED spectra are shown
in Fig. 9, for R = 3.5 Å [Fig. 9(a)] and R = 5.0 Å [Fig. 9(b)].
Numerical spectra S(ky) obtained by solving the TDSE are
shown as solid blue curves and fitted (model) spectra are shown
as dashed red curves, as a function of ky . As is apparent in the
figure, the model and the numerical calculations fit well. For
both cases considered here, the relative errors in the retrieved
internuclear distances are of the order of 3%: We obtained

0.0

0.5

1.0

1.5

2.0

2.5

S
S

(k
y
)

(a
rb

.
un

it
)

(a)

1.2 1.4 1.6 1.8 2 2.2
0.0
1.0
2.0
3.0
4.0
5.0

ky (a.u.)

(k
y
)

(a
rb

.
un

it
)

(b)

FIG. 9. One-dimensional averaged LIED spectra S(ky) (linear
scale). Solid blue lines are spectra calculated using the time-
dependent Schrödinger equation and dashed red lines show the results
of the best fits using the analytical SFA model. (a) R = 3.5 Å and
(b) R = 5.0 Å.
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FIG. 10. (a), (c) Initial wave functions used for the TDSE
calculation with R = 3.5 Å (a) and R = 5.0 Å (c) (linear scale;
see color map). (b), (d) Associated reconstructed molecular orbitals
(linear scale; see color map).

R = 3.62 Å instead of 3.50 Å and R = 5.14 Å instead of
5.00 Å (see averaged R values in Table I).

Taking the average values of the fitted internuclear distances
R and Gaussian exponents α we can reconstruct the initial state
used to derive Eq. (49). Finally, as discussed in Sec. IV B, this
initial state can also be given in terms of Slater-type orbitals.
These functions will give the best possible simple form of the
initial state. Reconstructed approximate Slater forms of the
initial states are shown in Fig. 10. Figures 10(a) and 10(c) show
the initial states used in the TDSE calculation for R = 3.5 Å
and R = 5.0 Å, respectively. Figures 10(b) and 10(d) are the
corresponding reconstructed MOs.

The overlap between the reconstructed orbital and the
initial state used in the numerical TDSE calculations is higher
than 96%: 96.3% for R = 3.5 Å and 97.2% for R = 5.0 Å.
This reconstruction shows that for large internuclear distances
LIED techniques could be used to image MOs with a
rather good accuracy using a simple multiparameter fitting
procedure.

It is also possible to depict the discrepancy in the recon-
structed orbitals caused by the inaccuracies in R and α by
plotting the difference between the exact and the reconstructed
orbitals. These differences are shown in Fig. 11 using the
same color code as in Fig. 10, for R = 3.5 Å [Fig. 11(a)] and
R = 5.0 Å [Fig. 11(b)]. The discrepancy shown in this figure
is due to the combined errors in the reconstructed values of
both the orbital exponent α and the internuclear distance R.

Any error in the internuclear distance R would be crucial
since it would cause a significant mismatch in the location of
the reconstructed orbital. Here, since the fitted value of R is
very close to its exact value, this problem does not appear.

A small error in the orbital exponent α is, on the other
hand, not as crucial since the overlap between the exact wave
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FIG. 11. Difference between the initial states and their recon-
structions (linear scale; see color map). (a) R = 3.5 Å and (b)
R = 5.0 Å. The color map used here is the same as that in Fig. 10.

function and the reconstructed orbital varies smoothly with α.
We have calculated the optimal α values for our exact initial
states by computing the overlap between the initial state and the
LCAO form we have adopted in this study. We have obtained
αopt = 0.624 a.u. for R = 3.5 Å and αopt = 0.626 a.u. for R =
5.0 Å. The relative errors in the fitted values of α are therefore
of the order of 16% for R = 3.5 Å and 5% for R = 5.0 Å. We
again see here that our inversion procedure is more accurate
for the largest internuclear distance.

Being a model developed using a single-active-electron
approximation, analyzing LIED processes with multielectron
ionization channels may reveal additional discrepancies in
the retrieved values of the parameters. One of the main
problems with including interactions between electrons is the
difficulty of solving such situations analytically. Aiming for a
compact analytical form given with a relatively small number
of fitting parameters, an extension of the model beyond the
SAE approximation is far from trivial in the spirit of an inverse
problem.

Other approximations could be relaxed more easily. For
example, higher order processes of recollision events can be
included in the picture by applying the SFA to the desired
higher order terms. This may improve the model, but to
our best understanding, the second-order development used
here retains the main elements necessary for an accurate
reconstruction procedure for linear molecules with large
internuclear distances (R > 3 Å).

The inverse problem discussed in this paper in the case
of the HOMO orbital of the CO2 molecule can be relatively
easily extended to the deeper HOMO-1 orbital by modifying
the analytical model slightly. In this case, the atomic orbitals

of the three composite atoms have a significant overlap and
form a symmetric MO. But the relative contributions of the C
and O atoms are different. This gives an additional parameter
which should be introduced into the model. This additional
parameter would also have to be retrieved by an inversion
procedure. It should also be relatively easy to make some
other simple modifications to the analytical model to treat
other linear molecules.

VI. CONCLUSION

In this paper, we discuss some possibilities for imaging
molecular orbitals (MOs) offered by laser-induced electron
diffraction following the strong-field ionization of a prealigned
linear molecule. The problem is discussed in detail for the
HOMO orbital of the carbon dioxide molecule.

The system is described theoretically in the framework
of a single active electron model. The strong field photo-
electron spectra are obtained by solving the time-dependent
Schrödinger equation (TDSE) for different initial internuclear
distances. An approximate, but compact analytical model is
also developed for these photoelectron spectra using three
classes of approximations: (i) the single-active-electron ap-
proximation, (ii) the strong-field approximation, and (iii)an
approximate LCAO ansatz for the initial MO.

This analytical model contains some parameters which
are fitted by comparison with the TDSE results. This fitting
procedure allows for the extraction of the internuclear distance
and the corresponding Slater-type orbital exponents. The
initial ansatz for the MO is then reconstructed with these
parameters, providing an accurate representation of the initial
state used in the TDSE, with an overlap which is higher than
96%.

This approach can be effectively used for the reconstruction
of the HOMO with a good accuracy. It should be possible to
extend this model to other initial orbitals and to other linear
molecules. In the future, the inclusion of the nuclear dynamics
could enable this model to image reaction dynamics such as
the photodissociation of linear molecules.
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