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Enhanced high-order harmonic generation from periodic potentials in inhomogeneous laser fields
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We theoretically study high-order harmonic generation (HHG) from solid-phase systems in spatially
inhomogeneous strong laser fields originated by resonant plasmons within a metallic nanostructure. The intensity
of the second plateau in HHG may be enhanced by two to three orders and be comparable with the intensity of
the first plateau. This is due to bigger transition probabilities to higher conduction bands. It provides us with a
practical way to increase the conversion efficiency of HHG with laser intensity below the damage threshold. It
presents a promising way to triple the range of HHG spectra in experimental measurements. It also allows us to
generate intense isolated attosecond pulses from solids driven by few-cycle laser fields.
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The study of light-matter interaction with intense laser
fields is a rapidly growing research area, which exhibits many
novel phenomena [1–3]. The high-order harmonic generation
(HHG) has attracted a lot of attention since it provides a
tabletop coherent x-ray source. It has been used for dynamic
imaging of molecular structures [4–6]. However, the low
conversion efficiency of HHG from gas-phase systems restricts
its applications. Recently, HHG has been experimentally
generated from bulk crystals [7–9] and solid rare gases
[10]. Due to the high density of solid-state materials, it is
possible to generate HHG with higher conversion efficiency
and to probe the structure of solids. Vampa et al. realized
all-optical reconstruction of crystal band structure [11]. This
method extends measurement schemes of solid-state material
band structures. Theoretically, HHG in solid-state materials
involves two contributions (interband and intraband currents).
The experimental measurement [7] shows one main plateau
in HHG from crystals. However, the theoretical simulations
[12,13] reveal double-plateau structures. The primary plateau
is a result of the resonant transition between the valence band
and the first conduction band, while a weaker second plateau
is due to transitions from high-lying conduction bands. The
intensity of the second plateau is a few orders lower than that
of the first one. This may be the reason why the second plateau
has not been well resolved experimentally.

Recently, an alternative technique, named the spatially
inhomogeneous field (or source of plasmonic enhancement
induced by the bow-tie nanostructure), assisted generation
of ultrashort attosecond (1 as = 10−18 s) pulses in atoms
and molecules, which has attracted much attention both in
experiments and theories [14–27]. In comparison with the
homogeneous field, the electrons obtain extra energy by further
acceleration in the inhomogeneous fields. This alternative
technique provides a way to increase the effective intensity of
the input laser fields by almost three orders. As we know, the
HHG from solids suffers from low damage-threshold intensity.
This plasmon-enhanced scheme may overcome this shortage.
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In this work, we will theoretically study the HHG from
solids in inhomogeneous laser fields induced by the bow-tie
structure growing on the semiconductor substrate. To our
knowledge, this has not been investigated.

Based on the single-electron approach, we describe the
light-solid interaction in one dimension, along the polarization
direction of the laser fields. In the length-gauge treatment, the
time-dependent Hamiltonian is written as

Ĥ (t) = Ĥ0 + exE(x,t), (1)

where Ĥ0 = p̂2

2m
+ V (x) and V (x) is a periodic lattice potential.

In our calculations, we choose the Mathieu-type potential
[28]. The specific form is V (x) = −V0[1 + cos(2πx/a0)],
with V0 = 0.37 a.u. and lattice constant a0 = 8 a.u. The band
gap and lattice constant mimic the structure of a semiconductor
with wide band gap, such as the Zincblende AlN [29–31].
The spatial dependence of the enhanced laser electric field
is perturbative and linear with respect to the position, and the
laser field can be approximated as (similar to Taylor expansion)

E(x,t) � E(t)(1 + εx), (2)

where ε � 1 is a parameter characterizing the strength
of inhomogeneity. The time-dependent Hamiltonian can be
rewritten as

Ĥ (t) = Ĥ0 + exE(t) + e(εx2)E(t), (3)

where the first two terms account for the Hamiltonian in
the case of homogeneous fields and the last term is an
additional term induced by the inhomogeneous field. Since
in solids electrons are delocalized through band motion,
nondipole corrections [32,33] to radiative interactions should
be included. In Fig. 1, we show a schematic illustration of
the laser field enhancement using a nanostructure of bow-tie
elements. The parameter d and the shape of the nanostructure
adjust the field inhomogeneity parameter ε.

In the absence of the laser fields, the time-independent
Schrödinger equation (TIDSE) can be written as

Ĥ0φn(x) = Enφn(x). (4)
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FIG. 1. The nanostructure of bow-tie element. Schematic illus-
tration of laser field enhancement using a nanostructure of bow-tie
elements growing on the substrate of semiconductor crystals. The
incident direction of the laser pulses is vertical to the substrate.

We use B-spline functions [34] to expand the time-
independent wave function,

φn(x) =
Nmax∑

i=1

ciBi(x). (5)

Substituting Eq. (5) into Eq. (4), we obtain matrix equation

HC = ESC, (6)

where C is the column matrix and H and S are N × N square
matrices, respectively.

We use 2400 B-splines to calculate its eigenvalues in the
space region [−240, 240] a.u. and obtain the energy band
structure, which agrees well with the calculations by Bloch-
state expansion. By using the B-spline basis, we perform all
the calculations in the coordinate space. This method is proved
to be valid. For the details, we refer readers to Ref. [13].
Due to the drive of laser fields, electrons in the valence band
have probabilities to tunnel to conduction bands, i.e., Zener
tunneling, but the tunneling probabilities exponentially decay
with the increase of energy gap. Only a small portions of
populated electrons near the wave vector k = 0 on top of the
valence band can tunnel to conduction bands with the laser
parameters used in the current work. So we choose an initial
state calculated by our B-spline method with k = 0 on top of
the valence band with the minimal band gap. We can effectively
solve the time-dependent |ψ(t)〉 by using symmetric split-
operator algorithm [35]

|ψ(x,t0 + �t)〉 = e−iT̂ �t
2 e−iV̂eff�te−iT̂ �t

2 |ψ(x,t0)〉 + O(�t3),

(7)

where V̂eff = V (x) + exE(x,t) and T̂ is the kinetic operator.
In our calculations, we use the laser pulses with a cos2

envelope and the grid spacing is 0.03 a.u., which is sufficient
to obtain converged results. The time step is 1/4096 of an
optical cycle. In order to prevent spurious reflections from
the boundary, the total wave function is multiplied by a
mask function of the form cos1/8 with |x| > 216 a.u. at
each time step. After obtaining the time-dependent |ψ(t)〉
at an arbitrary time, we can calculate the time-dependent

FIG. 2. Comparison of HHG spectra between homogeneous and
inhomogeneous fields. HHG spectra in the case of the homogeneous
field (black solid curve), the inhomogeneous fields with ε = 0.0002
(violet dashed curve), and ε = 0.0005 (red dotted curve). (a) HHG
with full range. (b) The first HHG plateau with ε = 0.0005. (c) The
second HHG plateau with ε = 0.0005. The intensity, wavelength, and
duration of the driving laser pulses are 8.77 × 1011 W/cm2, 3200 nm,
and six optical cycles (o.c.), respectively.

laser-induced currents by

j (t) = − e

m
[〈ψ(t)|p̂|ψ(t)〉]. (8)

The HHG power spectrum is proportional to the modulus
square |j(ω)|2 of Fourier transform of the time-dependent
current in Eq. (8). Before the Fourier transform, we multiply
j (t) by a time-dependent Hanning window function in order to
increase the signal-noise ratio since the intensity of the second
plateau is quite low in the homogenous laser field. Based
on solid-physics theory, the energy eigenvalues of solid-state
materials show a multiple-band structure. Each band group can
be distinguished easily as illustrated in Ref. [13]. The intraband
contribution to the current is induced by transitions within the
same band, while the interband contribution mainly involves
transitions between the conduction bands and valence band.
By distinguishing the contributions from intra- or interbands,
we elucidate the mechanism of intensity enhancement in the
second HHG plateau.

First, we study the harmonic spectra of the periodic
systems under midinfrared laser pulses. The peak intensity
and the wavelength of the driving laser pulses are I =
8.774 × 1011 W/cm2 and λ = 3200 nm, respectively. We
show the harmonic spectra in the case of the homogeneous
and the inhomogeneous fields with different inhomogeneity
parameters ε in Fig. 2(a). The harmonic spectra show a
two-plateau structure in both the homogeneous field and
the inhomogeneous field. However, the second HHG plateau
exhibits intensity enhancement by two to three orders in the
inhomogeneous fields with a small ε = 0.0005 compared with
the case in the homogeneous field. In order to distinguish
the physics behind the harmonic spectra, we show the first
HHG plateau in Fig. 2(b) and the second HHG plateau
in Fig. 2(c). One can clearly observe both the odd- and
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FIG. 3. The distinction of contributions within the conduction
bands. HHG induced by full (black solid curve), conduction bands C1
(red dotted curve), and C2 plus C3 (blue dashed curve) contributions
in an inhomogeneous field with ε = 0.0005. The inset shows the HHG
induced by full conduction bands C1 and C2 plus C3 contributions
in the homogeneous field. The laser pulse parameters are the same as
those in Fig. 2.

even-order harmonics from the HHG spectra in the case of the
inhomogeneous field. The generation of the even harmonics is
due to the fact that the symmetry of the system is broken. The
energy of the first few fast-decaying HHG is lower than the
band gap. They show a perturbative character which is similar
to the below-threshold HHG in the gas phase [36].

In order to obtain further insights into the effect of spatial
inhomogeneity on the HHG process in Fig. 2, we make
a distinction about HHG induced by conduction bands C1
and C2 plus C3 contributions in Fig. 3, respectively. The
mechanism of the first HHG plateau is mainly determined
by interband transitions between the conduction band C1 and
the valence band, which have been pointed out by previous
researchers in homogeneous fields [11–13]. One can find that
the second HHG plateau is the results of interband transitions
between conduction bands C2 plus C3 and the valence band.
The enhancement of HHG comes from the contribution of
these higher conduction bands.

We then perform a time-frequency analysis [37] of the
harmonics obtained in Fig. 2, as shown in Figs. 4(a) and
4(b), respectively. However, the harmonic emission behavior
changes dramatically in the case of inhomogeneous field in
Fig. 4(b), which disturbs the HHG trajectories and generates
both odd- and even-order harmonic spectra. For the second
HHG plateau, the spatial inhomogeneity dramatically affects
the harmonic emission process, which presents enhancement
processes around −0.25 o.c. and 0.75 o.c. and shows a
suppressed process at 0.25 o.c. In order to further explain
the phenomenon that only the second HHG plateau has a
magnitude enhancement of two to three orders in the case of
inhomogeneous field, we present the time-frequency analysis
of the interband contributions in Figs. 4(c) and 4(d). It clearly
shows a two- to three-order magnitude enhancement of the
second HHG plateau, while the magnitude of the first HHG
plateau is still comparable. This agrees with our analysis [13]
that interband transitions play key roles in HHG and thus may
explain why only the second plateau is dramatically enhanced.

We finally show energy band structure and time-dependent
electron population of the conduction bands in Fig. 5. In

FIG. 4. Time-frequency analysis of HHG. Time-frequency anal-
ysis of HHG in a homogeneous field in panels (a) and (c) and an
inhomogeneous field in panels (b) and (d). Panels (a) and (b) are
time-frequency analyses with full contribution. Because the two HHG
plateaus are mainly determined by interband contribution, we show
time-frequency analysis of interband contribution in homogeneous
field in panel (c) and inhomogeneous field in panel (d). The color is
plotted on the logarithmic scale.

Figs. 5(a) and 5(b), one can find that the energy bands
calculated by Bloch states agree well with those by the B-spline
basis. The minimal gap between the valence band and the
first conduction band is about 4.2 eV, which corresponds
to harmonic order 11 in Fig. 2(b). According to the energy
band structure and the population of the conduction bands,
one can further get insight into the HHG enhancement. As
previously mentioned, the harmonic plateaus are determined

FIG. 5. Energy band structures and populations of conduction
bands. Band structures calculated by Bloch states expansion are
compared with the result obtained by the B-spline basis in panels
(a) and (b), respectively. The electron populations as a function of
time for the C1 band and C2 plus C3 band in homogeneous field (red
curve) are illustrated in panels (c) and (d), respectively. The olive
curves present results in the inhomogeneous field.
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FIG. 6. Transitional probabilities of conduction bands. Transi-
tional probabilities calculated by |〈φn0 |x̂|φn〉|2 (black solid curve)
for homogeneous field and an additional term |〈φn0 |x2|φn〉|2 (orange
dashed curve) for spatial inhomogeneous field.

by the transition process between the conduction bands and
valence band, i.e., interband contribution. Transition between
the first conduction band and valence band contributes to the
first plateau, while the second plateau is attributed to transitions
between high-lying conduction bands and the valence band. In
Fig. 5(c), it illustrates that the first conduction band electron
population has a small increment in the case of the inhomoge-
neous field compared with that in the case of the homogeneous
field, which explains why the change of the intensity of the
first plateau is not obvious. However, in Fig. 5(d), one can
clearly see that electron population of the second conduction
band has a dramatic increment at the center of the laser pulse,
which could lead to more electrons coupling to the valence
band and give rise to two to three orders of enhancement of
the second HHG plateau.

In addition, we calculate the transition probabilities be-
tween the conduction and the valence bands in Fig. 6, to
reveal the population enhancement in the case of inhomo-
geneous fields. The effect of spatial inhomogeneity on the
transition probabilities can be described by the additional term
|〈φn0 |x2|φn〉|2, in which n0 represents the initial valence band
state and n represents the conduction band states. One can
clearly see two minimal values of transition probabilities in
the case of homogeneous field (black solid curve) at the energy
about 10 and 24 eV, which correspond to the two energy gap
positions within the conduction bands in Figs. 5(a) and 5(b).
The enhancement of transition probability is negligible in the
first conduction band (corresponds to the energy range below
10 eV), while a one to two orders of enhancement of transition
probability has been obtained in the conduction bands C2
and C3 (corresponds to the energy range from 10 to 40 eV)
caused by the effect of spatial inhomoneity. This provides a
deeper insight to the fact that one can just observe obvious
enhancement of intensity in the second HHG plateau.

Due to the intensity enhancement of the second HHG
plateau in the case of inhomogeneous field, it can be used
for intense isolated attosecond pulse generation. In order to

FIG. 7. Synthesis of attosecond pulses. (a) HHG in few-cycle
laser fields. The inhomogeneity (ε) of laser fields is 0.0007. We choose
two different CEP values, 0 and 0.5π . The violet dotted curve in panel
(a) shows the HHG in the case of homogeneous field with CEP =
0.5π . The field parameters are the same as those in Fig. 2 except
for the pulse duration. Attosecond pulses generated by synthesis of
harmonics with order 50–100 in the case of the inhomogeneous field
with ε = 0.0007, CEP = 0.5π and in the case of the homogeneous
field with CEP = 0.5π are presented in panels (b) and (c), respectively.
The intensity has been normalized.

obtain a supercontinuous HHG spectra, we adopt three-cycle-
duration pulses with inhomogeneity parameter ε = 0.0007.
In Fig. 7(a), one can also observe two to three orders of
enhancement of intensity at the second HHG plateau in few-
cycle pulses. The carrier-envelope phase (CEP) can be used to
control the cutoff energy of HHG under the inhomogeneous
fields. In Figs. 7(b) and 7(c), the coherent superposition of
harmonics has been adopted in the case of inhomogeneous field
with ε = 0.0007 and homogeneous field with CEP = 0.5π .
Isolated attosecond pulses with durations of 650 and 725 as
are produced by superposing the harmonics with order 50–100.
One can draw a conclusion that the spatially inhomogeneous
fields cannot only realize two to three orders of enhancement
of the second plateau but also control the HHG trajectories and
narrow the width of the attosecond pulses.

In summary, by numerically solving the time-dependent
Schrödinger equation, the HHG process in the solid-state
materials under the action of a spatially inhomogeneous
laser field is simulated in the coordinate space. The spatially
inhomogeneous field has been demonstrated to be capable of
realizing the dynamic control of quantum pathes. The two-
band model is inadequate in this case. Multiband transitions
and nonadiabatic effects have to be considered. Unlike the
gas phase, the inhomogeneous fields changed the transition
rules to the higher conduction bands in solids. As a result,
a two to three order intensity enhancement of the second
plateau can be obtained in the case of the inhomogeneous field,
which is comparable with the intensity of the first plateau. The
bigger transition probabilities to the high-lying conduction
bands come from the enhancement of the transition matrix
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elements. An efficient scheme to break the bottleneck of low
damage threshold has been proposed. In the homogeneous
laser field, the intensity of the second plateau is quite low. Only
the intense first plateau in HHG is experimentally observed.
This work sheds light upon enhancement of the second HHG
plateau and a promising way to triple the range of HHG
spectra in experimental measurements. This can also be used

to generate intense narrow isolated attosecond pulses from
solids.
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