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Photoassociative cooling and trapping of a pair of interacting atoms

Subrata Saha,1 Somnath Naskar,1,2 and Bimalendu Deb1,3

1Department of Materials Science, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
2Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata-700033, India

3Raman Centre for Atomic, Molecular and Optical Sciences, IACS, Jadavpur, Kolkata 700032, India
(Received 5 October 2015; revised manuscript received 21 June 2016; published 19 August 2016)

We show that it is possible to cool interacting pairs of atoms by a lin ⊥ lin Sisyphus-like laser cooling scheme
using counterpropagating photoassociation (PA) lasers. It is shown that the center-of-mass (c.m.) motion of
atom pairs can be trapped in molecular spin-dependent periodic potentials generated by the lasers. The proposed
scheme is most effective for narrow-line PA transitions. We illustrate this with numerical calculations using
fermionic 171Yb atoms as an example.
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I. INTRODUCTION

The development of laser cooling and trapping [1–3] of
atoms over the last four decades has enabled a number
of breakthrough achievements such as the realization of
Bose-Einstein condensation [4], Fermi degeneracy [5], Fermi
superfluidity [6], superfluid-Mott transitions [7], and so on.
Illumination of slowly moving atoms with multiple laser
beams in a specific geometric configuration allows one to
manipulate both the internal and external degrees of freedom of
atoms. The internal degrees of freedom, such as the electronic
configuration or the spin polarization of atoms, can be manipu-
lated using circularly polarized resonant light as demonstrated
by Kastler [8] more than 60 years ago. The external degrees of
freedom such as the position and momentum of atoms can be
controlled using radiative forces [9–13]. Dispersive forces,
also called dipole forces, arise due to position-dependent
light shifts, leading to optically generated lattice for trapping
atoms in an ordered array. The techniques of laser cooling
and trapping of atoms developed so far have been essentially
a single-atom phenomenon, although the possibility of a
collective laser cooling scheme was theoretically discussed
by Vuletic and Chu [14] about 15 years ago.

Here, we propose a Sisyphus-like laser cooling scheme
where interatomic interactions play an essential role. Consider
the motion of two colliding atoms. The total kinetic energy
of the atom pair consists of relative and the center-of-mass
(c.m.) energy E and Ec.m., respectively. Cooling both atoms
simultaneously implies reducing either or both of these kinetic
energies. Such cooling by lasers will require photoassociative
transitions [15–17] that are cyclic. In photoassociation (PA), a
single photon connects the state of two interacting ground-state
atoms with an excited molecular bound state via so-called
free-bound dipole transitions. For PA to occur, relatively cold
atoms with temperatures typically at or below millikelvin
regime are required. Usually, the c.m. motion of atom pairs
is not of much spectroscopic interest and hence neglected
in PA spectroscopy. However, at a fundamental level, both
relative and c.m. motion of atom pairs become coupled by PA
process. The question then naturally arises as to whether it is
possible to reduce the kinetic energies of the two coupled
motion from millikelvin regime to lower temperatures by
Sisyphus mechanism using photoassociative transitions. We
show that it is indeed possible by coherent manipulation of

the coupled motion of atom pairs with counterpropagating PA
lasers in lin ⊥ lin configuration. Coherent coupling in a PA sys-
tem requires that the excited molecular states to which PA
lasers are tuned should have lifetime long and a relatively
large Franck-Condon (FC) overlap integral with the scattering
state of ground-state atoms [18,19]. The recent experimental
demonstrations of Rabi oscillations in two-electron atomic
systems such as Sr [18] and Yb [19] making use of ultranarrow
intercombination PA transitions strongly suggest that such PA
systems can be treated in a way somewhat analogous to the
methods used for two-level atoms.

Sisyphus cooling of atoms, first proposed by Pritchard [20],
involves an atom having degenerate sublevels in its electronic
ground and excited states. It uses counterpropagating polarized
lasers to produce spin-dependent and spatially modulated
light shifts that eventually lead to sub-Doppler cooling. We
here propose a photoassociative Sisyphus-like method with
sublevels corresponding to molecular angular momenta. For
two ground-state atoms in collision, the degenerate sublevels
correspond to multiple scattering channels having the same
asymptotic threshold. A PA system can access a single
vibrational and rotational level in an electronically excited
molecular potential. In narrow-line PA systems, cyclic PA
transitions or Rabi oscillations between an excited molecular
bound state and the continuum of ground-state scattering states
are possible as can be evidenced from experiments [18,19].

For single atoms, Sisyphus cooling relies on optical
pumping in multilevel atoms moving in an optical field
with spatially varying polarization. Optical pumping can also
be applicable for continuum-bound as well as continuum-
continuum transitions in diatomic molecules as discussed by
Mies [21] about 35 years ago. The “continuum” here refers
to the dissociation continuum of scattering states between two
free atoms. In case of PA, the initial motional state of two
atoms is a scattering state which can be considered as the
dissociation continuum of the ground-state molecule. Dark
state resonances and optical pumping into an atom-molecule
dark state in two-color PA of ultracold atoms have been ex-
perimentally observed [22,23]. The physical interpretation of
dark-state resonance and optical pumping in two-photon PA of
ultracold atoms has been discussed by Cohen-Tannoudji [24].
Another coherent effect related to dark-state resonance is
stimulated Raman adiabatic passage (STIRAP) which has been
extensively investigated by Bergman and co-workers [25] in
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FIG. 1. (a) A pair of slowly moving atoms 1 and 2 is subjected to
a pair of lin ⊥ lin counterpropagating PA lasers along z axis. (b) PA
process: Vg is molecular ground-state potential and Ve is excited PLR
potential. The ground-state scattering continuum state is coupled to
a rovibrational state in the excited potential by the two lasers. (c)
Energy-level diagram showing formation of spatially varying [w.r.t.
c.m. coordinate (Z)] spin-dependent ground-state potentials under
the action of applied lasers. (d) Optical pumping (green lines) and
spontaneous transition (curvy brown lines having width proportional
to the probability of transition) at mentioned c.m. coordinate where
light is σ− polarized. (e) Same as (d) where light is σ+ polarized. An
additional pair of counterpropagating broadband PA lasers in σ+ + σ−
configuration along the z axis may be used (not shown in the figure)
as repumping lasers (see the text).

three-level atomic systems. STIRAP with a continuum as an
initially populated or intermediate or a final target state has
also been studied by many workers [26–30] over the years. In
recent times, STIRAP using PA of ultracold atoms has been
discussed and debated by many authors [31–36].

The elementary process underlying our method is schemat-
ically shown in Fig. 1. Let a pair of slowly moving atoms be
subjected to a pair of lin ⊥ lin counterpropagating PA laser
beams having the same frequency. Let us consider, for the
sake of simplicity, two colliding ground-state atoms 1 and 2
with total energy Et = E + Ec.m. and total angular momentum
Jg = 1 are being acted upon by the lin ⊥ lin counterpropagat-
ing PA lasers. Suppose the lasers are tuned near resonance to
a particular excited bound state |b〉 ≡ |v,Je〉, with vibrational
quantum number v and rotational quantum number Je from a
relative energy having significant free-bound FC factor. We
here closely follow the Sisyphus method of Dalibard and
Cohen-Tannoudji [37], but generalize for photoassociative
transitions. The physical processes underlying our proposed
photoassociative cooling of atom pairs differ from those of
standard Sisyphus method of cooling of single atoms in the
following respects: First, in case of standard Sisyphus method
there is only one kind of external degrees of freedom of
motion which is the c.m. momentum of single atoms while
in our proposed photoassociative Sisyphus method, two kinds
of external degrees of freedom of motion are involved: these
are the relative momentum p and the c.m. momentum Pc.m. of
the two colliding atoms.

In an elementary process of PA where one photon from
PA laser is absorbed followed by spontaneous emission of
one photon from the excited molecular state, the momentum
conservation dictates that the change in c.m. momentum
�Pc.m. = Pfinal

c.m. − Pinitial
c.m. , where Pinitial (final)

c.m. denotes the initial
(final) CM momentum, should satisfy

�Pc.m. = �[kPA − kspon] (1)

with kPA and kspon being the momentum of PA laser photon
and spontaneously emitted photon, respectively. Since the
relative motion of the two atoms occurs under the influence of
molecular potentials, the relative momentum p is not a good
quantum number to specify the conservation of momentum in
this situation. Second, in case of standard Sisyphus method,
energy exchange between the atoms and photons occurs at the
expense of the c.m. motional energy of single atoms, but in
our proposed scheme energy exchange can happen between
photons and the total motional energy Et which is a sum of
E = p2/2μ and Ec.m. = P 2/2M where μ and M denote the
reduced and total mass of the atom pair. This means that energy
transfer can happen to both the c.m. and relative motions of the
atom pair from the photonic fields. This is because PA process
couples both relative and c.m. motion. Recently, coupling
between the relative and c.m. motion of exactly two atoms
in an anharmonic trap has been experimentally demonstrated
by Sala et al. [38]. These experimental results and the recent
observation of Rabi oscillations in PA [18,19] indicate that a
two-level type treatment of a free-bound system is possible.
Third, by standard Sisyphus method one can trap single atoms,
while by our proposed method one can trap the c.m. motion
of atom pairs. In this context, it is to be noted that, unless
PA occurs in a tightly confined trap, the trapping potential has
practically no influence over PA transitions since PA occurs
near the trap center where trapping potential is negligible. The
interatomic separations at which PA transitions take place are
typically far below or of the order of a nanometer. So, unless
trapping size is reduced to a nanometer or less, PA process will
not be affected by the trapping potential [19]. So, to subject
a pair of cold atoms into counterpropagating PA lasers, one
can prepare pairs of atoms in a two-atom Mott insulator where
each lattice site is occupied by two atoms as is done in the
recent experiment by Taie et al. [19]. PA lasers will then act
almost independently on separated atom pairs in optical lattice.
In that case, the lasers that generate the lattice should be far
off PA resonance so that they do not disturb the PA process.
Once the atom pairs are cooled enough for their c.m. motion to
be trapped by dipole forces, the lattice lasers may be switched
off since the c.m. motion of the pairs is trapped in the periodic
dipole potentials generated by PA lasers.

In contrast to Sisyphus cooling of single atoms where only
one kind of external motional energy scale is involved, in
the present case there are two external energy scales: c.m.
and relative motional energy. The change in c.m. momentum
of the atom pair is governed by the principle of momentum
conservation of light scattering. The energy conservation
is maintained by a decrease in total energy Et when the
spontaneously emitted photon carries away the excess energy
that is released from the coupled relative and c.m. motion. Two
atoms colliding with opposite momenta will have maximum
probability to come closer to each other and so to couple with
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PA laser. This means that an atom pair with zero or very small
c.m. energy is most likely to be influenced by PA laser. We
assume that the c.m. kinetic energy Ec.m. is much smaller than
the relative motional energy E, PA resonance is then primarily
determined by E when the lasers are tuned close to an excited
molecular bound level from the threshold of ground-state
continuum. The PA detuning parameter δE = E/� + ωL − ωb

is an explicit function of E, where �ωb is the bound-state
energy measured from the continuum threshold and ωL is the
angular frequency of the PA laser.

The strength of PA coupling is given by Frank-Condon
(FC) overlap factor. In the low-energy regime, the FC factor
as a function of E shows a prominent peak at a particular
energy E = Ē. Let δE=Ē = 0 if ωL = ω̄L. So, Ē and ω̄L can
be termed as resonance energy corresponding resonance laser
frequency ω̄L. In the weak-coupling limit, Sisyphus cooling
remains effective so long as the laser detuning |δ| � γ or |δ| �
γ , where γ is the spontaneous linewidth. So, the spontaneous
emission into the continuum from the excited bound state may
lead to continuum states with an energy spread of the order of
�γ . If the final energy Ef after the spontaneous emission is
less than Ē, we have cooling effect.

On the other hand, if Ef is greater than Ē, the atoms
may go out of cooling cycle. Therefore, we need a repumping
mechanism to bring back the atoms that acquire higher relative
energy as a result of spontaneous emission. This can be accom-
plished by applying counterpropagating broadband PA lasers
in σ+ + σ− configuration, in addition to the monochromatic
Sisyphus cooling lasers. These broadband repumping lasers
should have the same central frequency ω̄L − γ such that
the pair of atoms having energy E � Ē + �γ comes to PA
resonance with the central frequency and are repumped into
the cooling cycle. We consider σ+ + σ− configuration for
repumping lasers, that is, one laser with σ+ and the other
σ− polarization, because this configuration leads to space-
independent light shift of the Zeeman sublevels, redistributing
the population in both ground- and excited-state sublevels [39].
In the present context, the Zeeman sublevels refer to the total
magnetic quantum number of the two atoms because the two
atoms are correlated and the photoassociative transitions occur
between the correlated two-atom state and the molecular bound
state.

Since the repumping lasers give a space-independent shift
for all the sublevels, there is no additional optical force
resulting from this light shift. Regarding the bandwidth of the
repumping lasers, the bandwidth may be set at a few times
of γ or one order of magnitude larger than γ . If γ is in
the kHz regime as in the case of metastable excited states
or spin-forbidden intercombination transitions in Yb and Sr
atoms, the bandwidth of the repumping lasers would be in
MHz regime. For larger γ , the bandwidth of the repumping
lasers has to be large enough. The repeating cycles of the
repumping laser pulses should be much smaller than γ so that
once the atom pair is excited to the bound state, the pair can
quickly decay back to the ground-state continuum without any
memory effect of the pulse [40].

Broadband laser cooling [41,42] with σ+ + σ− scheme is
theoretically described by Parkins and Zoller [43]. Doppler
cooling of atoms or atomic ions with broadband or pulsed
lasers has been experimentally demonstrated [40,44]. In recent

times, broadband laser cooling methods have been successfully
applied for vibrational or rotational cooling of some specific
molecules [45–48]. Our proposed scheme may be compared
to Sisyphus laser cooling of diatomic molecules [46,49,50].
The c.m. and relative motion of atom pairs are equivalent to
translational and vibrational motion of a diatomic molecule. In
general, laser cooling of molecules is extremely difficult due
to the presence of a plethora of rovibrational levels hindering
cyclic transitions that are needed for laser cooling. Neverthe-
less, direct laser cooling of some specific molecules [46,51]
has been successfully demonstrated in recent times.

The optical pumping has been used to demonstrate vibra-
tional cooling of molecules in a recent experiment [46]. These
recent advances towards laser cooling of diatomic molecules
and coherent PA [18,19] motivate us to explore Sisyphus-like
scheme to cool and trap an analogous system of a pair of atoms
in a state of slow collision. This will allow one to optically
control both the relative and c.m. motions between two atoms.

In our proposed scheme, we have two coupled and com-
peting variables involved: relative and c.m. momentum. The
relative momentum is a fast variable and the c.m. momentum
is a slow one. For narrow PA linewidth, one can thus
adiabatically eliminate relative motion leaving c.m. motion
to follow an optical potential obtained by averaging over E

near Ē. Since the c.m. energy Ec.m. is much smaller than
the depth of the optical potential, the c.m. motion of the pair
will eventually be trapped. Since the optical pumping will
preferentially bring the atom pair at the bottom of the potential
well with the release of mostly relative kinetic energy, by
successive absorption-emission cycles the pair will be cooled.
In case of single atoms, Sisyphus or other sub-Doppler cooling
and trapping methods such as velocity selective coherent
population trapping (VSCPT) make use of a number of optical
coherent effects such as Rabi oscillations, dressed states,
optical pumping, saturation effects, light shifts, dark-state
resonances, etc., at the backdrop of randomness introduced by
spontaneous emission [39]. As we embark to extend Sisyphus
method to photoassociative continuum-bound systems, the
question naturally arises as to whether similar coherent effects
can be obtained using continuum-bound optical transitions.
The problem of coherent coupling, Rabi oscillations, and
dressed states in continuum-bound coupled systems had been
addressed by a number of workers in the 1980s [52–54] and
early 1990s [55], particularly in the context of autoionization
or photoionization. It was theoretically shown that Rabi oscil-
lations in a continuum-bound system are possible provided the
continuum-bound matrix element is strong and the continuum
has a narrow resonance [54]. In fact, fulfillment of exactly such
conditions have enabled experimental demonstrations of Rabi
oscillations in PA [18,19]. Saturation effects in PA have also
been studied experimentally by many groups [56–58].

A class of excited molecular bound states known as purely
long-range (PLR) states [59] will play a particularly useful
role in our proposed method. These states are localized at
nanometer scale separations at which electronic charge overlap
of the two atoms may be negligible. As a result, the number of
rovibrational levels or scattering channels that can be optically
coupled to PLR states is drastically reduced. Furthermore, in
some cases, PLR states can be accessible by photoassociative
transitions from a single scattering channel [60–62] only.
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PLR potentials are usually quite shallow, and so capable of
supporting only a small number of vibrational levels. As a
consequence, the free-bound FC factor at ultralow collision
energy can be large. At ultralow temperatures, the collision
energy of the initially two free atoms is quite low. This can
lead to a narrow PA resonance, providing a unique advantage
for generating coherent photoassociative coupling.

The remainder of the paper is organized in the following
way. In the next section, we present theory of generat-
ing molecular spin-dependent periodic optical potentials for
cooling and trapping an atom pair. In Sec. III, we discuss
the implementation of our proposed scheme and present
numerical results using a pair of fermionic 171Yb atoms and
their photoassociative coupling to a PLR state. The paper is
concluded in Sec. IV.

II. THEORETICAL METHOD

We now present general mathematical formalism of a
simple one-dimensional scheme of photoassociative cooling
and trapping (PACT) as schematically depicted in Fig. 1. In the
center-of-mass (c.m.) frame, we can express the Hamiltonian
of our system in terms of c.m. and relative coordinates R =
(r1 + r2)/2 and r = r1 − r2, respectively. The Hamiltonian
describing the interaction of a pair of cold atoms with the PA

lasers is Ĥ = Ĥ c.m.
0 + Ĥ0

rel + ĤI , where

Ĥ0
rel =

∫ ∞

0
E

′ |E ′ 〉〈E ′ |dE
′ + �ωb|b〉〈b| (2)

describes relative motion between the two atoms with |E〉
representing the continuum of ground-state scattering states
in the relative energy (E′) basis and |b〉 being an excited
molecular bound state. Here,

Ĥ c.m.
0 = P̂ 2

c.m./2M = −[�2/2M]∇2
R (3)

is the kinetic term of c.m. motion. The interaction part

ĤI =
[∫ ∞

0
�bE

′ e−iωLt |b〉〈E ′ |dE
′ + H.c.

]
, (4)

where �bE = −〈b|d1 · E(r1) + d2 · E(r2)|E〉 is molecular
dipole coupling, d1 and d2 are atomic dipole moments with r1
and r2 being the position vectors of atoms 1 and 2, respectively.
We can then write �bE in terms of molecular dipole operator
D(r) in the form

�bE = −〈b|D · ε̂(R)
√

2E0 cos(kL · r/2)|E〉, (5)

where ε̂(R) = [σ̂− cos(kL · R) − iσ̂+ sin(kL · R)] is the polar-
ization vector. Since ĤI depends both on relative and c.m.
coordinates, the relative and c.m. motion becomes coupled.
The optically generated force is given by

F = ∇R

∫ ∞

0
{ρE′b[�bE

′ (R)e−iφ(r,R)]e−iωLt + c.c.}dE′, (6)

where ρEb is the density matrix element representing
continuum-bound coherence and φ(r,R) is the position-
dependent phase part of the applied laser field. This force
F is a sum of two forces: one is dipole force Fdip and another
is dissipative force Fdis.

Here, we consider the simplest one-dimensional (1D)
model of Sisyphus cooling. A pair of PA lasers are applied
along the z axis, so we have kL · R = kLZ. At Z = nλ/4 (n
is an integer) the polarization is σ− for even n and σ+ for odd
n. After having done a lengthy calculation (see Appendixes A
and B), we derive the expression for dipole force as given by

Fdip(Z) = −�δĒ

π

{
d

dZ

[∫ ∞
0 GE(Z)dωE

]
δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(Z)dωE

}
, (7)

where δE = [ωL − (ωb − E
�

)] and γ is the spontaneous
linewidth of the bound state. Here, the spontaneous emission
is taken into account by a master-equation approach as
elaborated in Appendix B. It is worth mentioning that the
master-equation approach to discrete systems such as two-level
atoms or a single-mode cavity field is well known. However,
the master-equation approach to a coupled continuum-bound
system is not adequately addressed in the literature. Unlike
discrete systems, master-equation formalism for continuum-
bound systems leads to integrodifferential equations which
are in general difficult to solve analytically.

As derived in Appendix A, the optical potential can be
expressed as

Uopt = �δĒ ln

[
1 +

1
π

∫ ∞
0 GE(Z)dωE

δ2
Ē

+ γ 2

4

]
. (8)

In weak-intensity limit (as mentioned in Appendix A)

Uopt = �δĒ

1
π

∫ ∞
0 GE(Z)dωE

δ2
Ē

+ γ 2

4

. (9)

Separating out GE(Z) in the form GE(Z) = (E)�(Z), we
obtain Uopt = �δĒS0�(Z), where

S0 =
1
π

∫ ∞
0 (E)dωE

δ2
Ē

+ γ 2

4

(10)

is a parameter that describes saturation effect in PA. In terms
of S0 the excited bound-state population ρbb in steady state can
be written as

ρbb = S0�(R)

2 + 2S0�(R)
. (11)

S0 can be considered as the photoassociative counterpart
of saturation parameter of a two-level atom. The saturation
intensity in TLA is the intensity at which the parameter
becomes unity at resonance. Equation (10) shows that for
δĒ = 0, S0 = 1 when (4/π�)

∫ ∞
0 (E)dE = γ 2. Note that

(E) is proportional to laser intensity. It is now clear that
the saturation intensity in PA will depend on FC factor: the
larger the FC factor, the lower is the saturation intensity.
The amount of FC factor depends primarily on the amplitude
of the scattering wave function at internuclear separations
near the outer or inner turning point of the excited bound
state, rather than the scattering phase shift. In this context,
an interesting question is the effect of unitarity regime of
scattering on the saturation. The unitarity happens when the
scattering phase shift is π/2 and, as a consequence, the
magnitude of scattering T -matrix element attains its maximum
value of unity. As the phase shift goes through π/2 as a function
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of energy, scattering cross section shows a resonance structure.
Whether this unitarity-limited scattering will maximize FC
factor depends on whether the most prominent antinode of
the scattering wave function at unitarity appears near the
outer turning point of the excited molecular bound state. For
instance, in case of cold collision between bosonic atoms
or between two-component fermionic atoms, the scattering
is predominantly of s wave and so the unitarity-limited
scattering wave function ψ0(r) asymptotically behaves as
ψ0(r) ∼ sin(kr + δ0) ∼ cos(kr), where we have put the value
of the s-wave phase shift δ0 = π/2. So, in the limit k → 0, the
scattering wave function will maximize at asymptotically large
separations. Now, on the question as to whether this will lead
to the maximization of FC factor obviously depends on the
location of outer turning point. If the outer turning point lies
at such large separations where the scattering wave function
attains its asymptotic behavior, then the FC factor will maxi-
mize for a fixed laser intensity. On the other hand, for p-wave
scattering, the reverse effect will happen since the p-wave
scattering wave function ψ�=1(r) behaves as ψ�=1(r) ∼ sin(kr)
at large separations. The behavior of scattering wave function
at short separations can not be analytically predicted a priori,
and hence no definite relationship of unitarity regime with
saturation effect in PA can be established. One can notice
from Eq. (2) that for large saturation parameter, the population
of the excited bound states ρbb approaches 1

2 . This means
that the other half of the total population is contained in
the ground continuum states when the saturation parameter
is large. However, we work much below the saturation limit,
i.e., S0  1.

Let Je = 2 as in Fig. 1. The form of �(Z) is then given by

�(Z)mJg =±1 = −A ± B cos(2kLZ),
(12)

�(Z)mJg =0 = const,

where A and B are constants that depend on Clebsch-Gordon
(CG) coefficients. We thus obtain light-shifted periodic poten-
tials for c.m. motion for different magnetic quantum numbers,
that is, we get spin-dependent potentials for c.m. motion. The
c.m. momentum changes due to absorption of a photon from
one plane wave and its subsequent emission into another plane
wave. Let us consider a point Z = λ/4 where the field is
circularly polarized in positive sense. For such polarization,
three possible transition pathways may arise in Fig. 1(e):
(1) The continuum state with at mJg

= 1 can couple to bound
state mJe

= 2. This state can decay to mJg
= 1 and all other

transitions are forbidden. (2) The state with mJg
= −1 can

be excited to mJe
= 0 state and it can decay to mJg

= 1 or
mJg

= −1 or mJg
= 0 state. (3) The state with mJg

= 0 can be
excited to mJe

= 1 state and it can decay to state mJg
= 1 or

mJg
= 0 state. All the spontaneous transition lines shown here

have widths proportional to the square of the corresponding
CG coefficients. The net effect is the maximum occupation
probability happens for the state mJg

= 1 having the lowest
c.m. energy at the potential minima. This argument applies
similarly for locations where the field is circularly polarized in
the negative sense as shown in Fig. 1(d). Now, as an atom pair
moves up the hill from lower potential energy side, it loses its
c.m. kinetic energy. After reaching the top of the hill and just
about to start gliding down, the optical pumping intervenes,

transferring the pair into a state which is at the potential minima
where the probability of downward bound-free transition by
spontaneous emission is maximum due to the largest CG coef-
ficient. The previously gained potential energy is carried away
by the emitted photon. As a consequence, the atom pair loses its
total kinetic energy. Now, if kc.m. � 0, most of the energy lost
is the relative energy. The c.m. motion now repeats climbing
up the next hill and so on. In this process, eventually the atom
pairs become cooled and trapped in the minima of the potential.

III. RESULTS AND DISCUSSIONS

Next, we discuss practical implementation of our proposed
scheme. A set of good internal states (molecular angular mo-
menta) of two colliding atoms represent a scattering channel. It
is preferable to have only one ground-state scattering channel
that can be subjected to Sisyphus cooling cycle so that atoms
have no chance to be transferred to other ground-state channel
by spontaneous emission [63,64]. Alternatively, the energy
difference between asymptotic thresholds of different ground-
state channels should be large enough compared to bound-free
spontaneous linewidth so that atoms can be cycled only
between the chosen (cooling) channel and the excited bound
state. Although Sisyphus mechanism will predominantly bring
the atom pair into the potential minima reducing the kinetic
energy, there is still finite probability of transitions to two
free atoms into the continuum with higher energies due to
spontaneous emission. In order to recycle these higher-energy
atoms back into cooling cycles, the linewidth of PA lasers
should be larger than the spontaneous linewidth γ .

For numerical illustration, we consider fermionic 171Yb
atoms which have p-wave PLR excited states that are recently
used to demonstrate p-wave optical Feshbach resonance [63–
65]. For these PLR molecular states, the projection � of
the total angular momentum F = J + I on the internuclear
axis is a good quantum number. Further, when one includes
the rotation � of the relative motion between the two atoms,
the good quantum numbers are T = F + �� and its projection
mT on the space-fixed axis. We consider 0− (�e = 0) PLR
state for which only odd Te are allowed [65–67]. These PLR
states are accessible by PA transitions only from odd partial
waves (odd �) and nuclear spin triplet (I = 1). Let the two
counterpropagating PA lasers be tuned near resonance to Tg =
2 ↔ Te = 3 transition that is dominated by p-wave (� = 1)
contribution at low energy. We choose vibrational quantum
number ν = 1 for Te = 3 having binding energy −355.4 MHz
below the threshold of the corresponding PLR potential.
By selection rules, Te = 3 is accessible via PA only from
Tg = 2 at low energy. Because, from the consideration of
fermionic symmetry of the two ground-state 171Yb atoms, s

and d and all higher even partial-wave ground-state scattering
states will be associated with nuclear spin-triplet state (I = 0).
Optical dipole transitions to Te = 3 from these two states will
be forbidden since the molecular electronic wave functions
(molecular orbitals) of these two ground states and the excited
state belong to the same symmetry (even) under reflection at
the midpoint of the internuclear axis. On similar arguments,
spontaneous emission from Te = 3 to all even partial-wave
ground-state channels (i.e, s and d wave) is forbidden [65]. The
molecular dipole moment D will couple ground and excited
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FIG. 2. (E) as a function of relative kinetic energy E.

molecular electronic states of opposite electronic center of
symmetry. Since the excited electronic state we consider here
0− (�e = 0) has positive symmetry [65], the ground electronic
state of negative symmetry only will be coupled to this excited
state. The molecular ground state of all even partial waves
has positive symmetry due to fermionic symmetry of the two
nuclei with I = 0, and therefore spontaneous emission from
excited state to s, d, and higher even partial-wave channels are
ruled out. f -wave channel is not dominant at low energy and
so can be ignored.

The dependence of stimulated linewidth (E) on E is
shown in Fig. 2. (E) is proportional to the square of FC factor.
Figure 2 exhibits that (E) attains a prominent maximum
near E � 750 μK with a broad width. This feature can be
attributed to the nature of PLR bound state which can be
accessible from almost asymptotic regime of ground-state
continuum. From Fig. 2, we notice that at E = 3 mK, the FC
factor reduces to about one tenth of its peak value near E =
0.75 mK. As discussed in the preceding section, successive
absorption-spontaneous emission cycles will on an average
reduce the relative kinetic energy. Therefore, the spontaneous
emission will not be a major hindrance to cooling as long as
there are no other states except the single-channel continuum
to which the atom pair can decay. Suppose initial relative
energy is 750 μK at which the PA coupling is maximized as
Fig. 2 shows. Although the atom pair will be preferentially
transferred towards lower relative energy side, there will be
still some finite probability that spontaneous emission will
push two atoms to higher-energy side. To bring them back
into cooling cycle, a pair of broadband PA lasers (see the
Introduction section). Since γ � 364 kHz, repumping lasers
with bandwidth of a few MHz will suffice the purpose. The
inset to Fig. 2 shows that the peak structure of PA coupling
at E = Ē is sufficiently broad compared to γ . At energies
E = Ē ± 10γ , the stimulated PA linewidth (or equivalently
square of the FC factor) changes by about 1% only from its
peak value at E = Ē. This weak dependence of PA couping on
E near the resonance energy Ē when the laser is tuned to the
resonance frequency ω̄L [= (Ē/� + ωb] facilitates us to obtain
an approximate analytical solution of the master equation in
the steady state as discussed in Appendix B. Figure 2 further
shows that for E < 8 μK, PA coupling is vanishingly small.
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FIG. 3. Strength V0 (in kHz) of the potential Uopt is plotted against
detuning δĒ .

This is due to threshold effect. In the limit E → 0, FC factor
goes to zero. As PA coupling goes to zero, cooling will stop.

As a result of photoassociative Sisyphus process, we get
five spin-dependent c.m. potentials of pair of 171Yb atoms for
ground state Tg = 2 as given by

Uopt
(
mTg

= ±2
) = −V0

2

[
−8

7
± cos(2kLZ)

]
,

Uopt
(
mTg

= ±1
) = −V0

4

[
−13

7
± cos(2kLZ)

]
, (13)

Uopt
(
mTg

= 0
) = − 6

14
V0,

where V0 = − 14
75 �δĒS0. The c.m. motion can be trapped in

mTg
= ±2,±1 state provided δĒ is negative as can be seen from

Fig. 3 which shows that the Uopt is attractive (repulsive) when
δĒ < 0 (>0). We take laser intensity 10 mW/cm2. Figure 3
shows that V0 varies with δĒ reaching a maximum of about
440 Hz at δĒ = 0.5γ , where we have set γ = 364 kHz which
is taken to be double the atomic linewidth of 182 kHz [68].
When δĒ is negative V0 is positive, implying the existence
of trapping potential, but when δĒ is positive V0 becomes
negative, showing no trapping is possible. The c.m. recoil
limit for 171Yb2 is Ec.m.

r = 1.3 kHz. The parameter S0 = 0.013
and 0.0006 for δĒ/γ = −0.5 and −10, respectively. In near-
resonant case (δĒ ∼ γ ), the c.m. motion will be subjected to
cooling due to Sisyphus process while for far-off resonant
case (|δĒ| � γ ) the c.m. motion will be trapped in shallow
potentials. With the given intensity of PA laser we can cool the
atom pairs to about a few microkelvin.

IV. CONCLUSION

In conclusion, we have proposed a Sisyphus-like method
with photoassociative transitions for optically cooling and
trapping an atom pair by optical dipole force that acts on
the c.m. of the pair. As in the case of molecules, laser cooling
of a pair of interacting atoms is a challenging problem. There
is no general method of laser cooling of molecules due to
the existence of a large number of closely lying rovibrational
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levels. Only in some specific cases of favorable level structure,
laser cooling of molecules is possible. Similarly, to cool an
interacting pair of atoms by photoassociative Sisyphus-like
laser cooling technique, one has to look for some favorable
atomic systems which have a single asymptotic collision
channel with degenerate molecular magnetic sublevels and
narrow-line PA transitions. The atoms should be precooled so
that the c.m. momentum is small enough to be subjected to
Sisyphus mechanism with counterpropagating PA lasers. We
have shown that fermionic 171Yb is one such favorable PA
system due to the existence of narrow-line PA transitions. Our
method critically depends on the strength and nodal structure
of the free-bound overlap integral at low energy. In this context,
we have shown PLR states play an important role. We have
also discussed repumping of the atom pair with relatively high
energy into the cooling cycle by using broadband PA lasers
in σ+ + σ− polarization configuration. The use of spectrally
filtered broadband lasers [45,47] will be particularly useful for
our purpose. For instance, suppose all frequency components
higher than the resonant frequency ω̄L are filtered out from
the repumping lasers. Then, the repumping lasers will recycle
into the cooling cycles those atom pairs which have energies
higher than the resonant energy Ē. In this context, it is to be
born in mind that while Sisyphus lasers will optically pump
the atom pairs in different ground-state sublevels, broadband
repumping lasers are needed only to recycle the atom pairs
which go far-off resonant on the higher side of the energy due
to spontaneous emission. Apart from cooling and trapping of
atom pairs, our proposed method will be particularly important
for preparing a system of spatially isolated ultracold atom
pairs for conversion into molecules with spatial control over
association process. This method will also be applicable for
manipulating interactions between two atoms with trapped
c.m. motion. Particularly important prospect for our method
will be a scenario where one can simultaneously cool and
manipulate onsite interactions in a Mott insulator of atoms
in optical lattice, and thereby to explore new aspects of
many-body physics with ultracold atoms. By this way, in the
near future it might be possible to explore p-wave or d-wave
pairing or superfluidity with fermionic 171Yb or 40K atoms
in an optical lattice. In essence, our proposed scheme and
theoretical method will stimulate further studies, opening new
perspectives in research with cold atoms and molecules.
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APPENDIX A: CENTER-OF-MASS DIPOLE FORCE

The equation of motion for c.m. momentum (Pc.m.) is
given by dPc.m./dt = i

�
[HI ,Pc.m.] which yields dPc.m./dt =

∇R[
∫ ∞

0 �bE
′ (E′,R)e−iφ(r,R)e−iωLt |b〉〈E ′ |dE

′ + H.c.]. As a
result, the c.m. of the two atoms experiences an optical force
F = 〈dPc.m./dt〉, where 〈. . . 〉 implies averaging over initial
states. The c.m. and relative motions of the system of two atoms
become coupled due to photoassociative coupling. We are
dealing with cold atoms for which the time scale of evolution
of c.m. motion can be assumed to be much less than that of

relative motion. We can then safely decouple the two degrees
of motions and obtain

F =
∫ ∞

0
∇R{〈|b〉〈E ′ |〉rel〈[�bE

′ (R)e−iφ(r,R)]e−iωLt 〉c.m.dE
′

+ c.c.}. (A1)

One can relate 〈|b〉〈E ′ |〉rel to density matrix element ρE′b as
derived in Appendix B. So, the optically generated force is
given by Eq. (6). It is convenient to express Eq. (6) in a frame
rotating at the frequency ωL of the laser field. This is achieved
by introducing the variable ρEb = ρEbe

iωLt . We can thus write
F = Fdip + Fdis, where

Fdip =
∫ ∞

0
[e−iφ(r,R)∇R{�bE′(R)ρE′b}

+ eiφ(r,R)∇R{�E′bρbE′ (R)}]dE′, (A2)

Fdis =
∫ ∞

0
i{∇Rφ(r,R)}[ρbE′eiφ(r,R)�E′b(R)

− ρE′be
−iφ(r,R)�bE′(R)]dE′. (A3)

For plane wave only dissipative force and for standing wave
only dipole force exists. In the latter case, φ(r,R) = 0. We
are interested in conservative dipole force, hence, we consider
standing wave [φ(r,R) = 0].

In order to calculate the forces, we need to evaluate
the free-bound density matrix element ρEb. With relaxation
processes included, the atomic density matrix is given by the
solution of the master equation for the density matrix. For an
all discreet atomic system, the master equation is well known.
For a coupled discrete-continuum system such as in the present
case, density matrix approach is not adequately addressed in
the literature.

Let ρc = �
∫

ρEEdωE and ρbc = ∫ ∞
0 �Eb(R)ρbEdωE . Us-

ing the normalization condition ρbb + ρc = 1, we can write

ρ̇c = iρbc − iρcb − γρbb. (A4)

Now, we get from density matrix equation (Appendix B)

ρ̇bc =
(
i� − γ

2

)
ρbc + i�

∫ ∞

0
�Eb(R)ρbEωEdωE

+
∫ ∞

0
�bE(R)

{∫ ∞

0
�bE′(R)ρE′EdωE′

}
dωE

− i

2π

∫ ∞

0
GEρbbdωE. (A5)

The solution of density matrix (Appendix B) equation of
ρ̇E′E(t) can be formally written as

ρE′E(t) = ρE′E(0)eiωEE′ t + i

�
eiωEE′ t

[
�E′b

∫ t

0
ρbEeiωE′Et ′dt ′

−�bE

∫ t

0
ρE′b(R)eiωE′Etdt ′

]

+γ0η
∗
bE′ηbE

∫ t

0
ρbb(t ′)eiωE′E (t ′−t)dt ′, (A6)

where ωEE′ = E−E′
�

.
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Putting the expression ρE′E(t) in Eq. (A5),

ρ̇bc =
(
i� − γ

2

)
ρbc + i�

∫ ∞

0
�Eb(R)ρbEωEdωE − i

2π

∫ ∞

0
GEρbbdωE

+i

∫ ∞

0
�Eb(R)

{∫ ∞

0
�bE′ (R)

[
ρE′E(0)eiωEE′ t + γ0η

∗
bE′ηbE

∫ t

0
ρbb(t ′)eiωE′E (t−t ′)dt ′

]
dωE′

}
dωE

+1

�

∫ t

0

[∫ ∞

0
|�Eb|2

(∫ ∞

0
�bE′ρE′be

iωE′E (t−t ′)dωE′

)
dωE

]
dt ′

−1

�

∫ t

0

[∫ ∞

0
�EbρbE

(∫ ∞

0
|�E′b|2eiωE′E (t−t ′)dωE′

)
dωE

]
dt ′. (A7)

We assume ρE′E(0) = ρc(0)δ(E′ − E). While doing the
energy integrals, we have assumed that δE � δĒ . This ap-
proximation can be justified in the following way. Since the
coherence term ρbE has the linewidth γ which is quite small
compared to the scale of energy variation of PA coupling �(E)
near the resonant energy Ē as discussed in the theory section
(see Fig. 2), ρbE can be taken as rapidly varying function of
energy compared to all other energy-dependent quantities:

ρ̇bc =
(
iδĒ − γ

2

)
ρbc − i

2π

∫ ∞

0
GE(R)dωE[2ρbb − 1]. (A8)

After doing some algebra, we get the steady-state solutions

ρbb =
1

2π

∫ ∞
0 GE(R)dωE

δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(R)dωE

, (A9)

ρbc = −
1

2π

∫ ∞
0 GE(R)dωE

(
δĒ − i

γ

2

)
δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(R)dωE

. (A10)

From the dipole force from Eq. (A2) we get

Fdip = −�δĒ

π

{
∇R

∫ ∞
0 GE(R)dωE

δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(R)dωE

−
2�

2π

∫ ∞
0 GE(R)dωE

[∇R

∫ ∞
0 GE′(R)dωE′

]
[
δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(R)dωE

]2

}
, (A11)

where GE(R) = 2π
�

|�bE(R)|2 = (E)�(R).

We define the saturation parameter S0 = 1
π

∫ ∞
0 (E)dωE

δ2
Ē
+ γ 2

4

. At

the weak-intensity limit, the second term on the right side Fdip

[Eq. (A11)] can be neglected. At weak intensity (i.e., S0  1)
the dipole force becomes

Fdip(R) = −�δĒ

π

[
∇R

∫ ∞
0 GE(R)dωE

δ2
Ē

+ γ 2

4 + 2
2π

∫ ∞
0 GE(R)dωE

]
. (A12)

The optical potential is

Uopt = −
∫

Fdip(R)dR

= �δĒ ln

[
1 +

1
π

∫ ∞
0 GE(R)dωE

δ2
Ē

+ γ 2

4

]
. (A13)

At weak intensity (S0  1) the optical potential is

Uopt = �δĒ

1
π

∫ ∞
0 GE(R)dωE

δ2
Ē

+ γ 2

4

. (A14)

In terms of S0, Eq. (A9) can be written as

ρbb = S0�(R)

2 + 2S0�(R)
. (A15)

When S0 → ∞, ρbb → 1
2 .

APPENDIX B: DERIVATION OF THE MASTER EQUATION
FOR PA SYSTEM

To incorporate spontaneous decay in the continuum-bound
system under consideration, we derive the master equation
of the the system from first principles. The excited molec-
ular bound state can spontaneously decay to the continuum
scattering states of two ground-state atoms due to coupling
of the system with a reservoir of electromagnetic vacuum
modes. The Hamiltonian is H = HS + HR + HSR , where
HS ≡ Ĥ0

rel
, the system Hamiltonian as given in Eq. (2).

HR = ∑
κσ �ωκσ â†

κσ âκσ represents the Hamiltonian for the
reservoir of the infinite number of electromagnetic modes
denoted by the wave number κ and the polarization σ with
âκσ (â†

κσ ) denoting photon annihilation (creation) operator
for the (κσ ) mode. Here, we are considering the incoherent
interaction of the vacuum modes only. We have dropped
PA laser interaction part of the Hamiltonian for the sake of
simplicity. The system-reservoir interaction Hamiltonian can
be expressed as

HSR =
[∑

κσ

âκσ e−iωκσ t

∫
dE VE(κσ )S+

E eiωbE + H.c.

]
,

(B1)

where ωbE = E/� + ωb, with ωb being the frequency of
the bound state measured from the threshold of the contin-
uum. VE(κσ ) = −Evac(κ)( �D · ε̂σ )ηbE is the vacuum-induced

continuum-bound coupling with Evac(κ) =
√

�ωκ

2ε0V
, ε̂σ be-

ing the unit vector of polarization and V is the volume,
�D is the molecular dipole moment operator, and ηbE =∫ ∞
0 d3r φb(�r)ψE(�r) is the bound-free overlap integral, φb(�r)

and ψE(�r) being, respectively, the bound and free wave
functions.
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The equation for the incoherent part of the reduced density matrix of the system [70] is

ρ̇inc = −
∫ t

0
dt ′TrR{[HSR(t),[HSR(t ′),ρ(t ′)R0]]}. (B2)

R0 is an initial reservoir density operator. Substituting Eq. (B1) in (B2), and expanding the commutator, we have

ρ̇inc = −
∑

κσκ ′σ ′

∫ ∞

0
dE

∫ ∞

0
dE′

∫ t

0
dt ′TrR({[V∗

E(κσ )V∗
E′(κ ′σ ′)SESE′ρ(t ′)R0

−V∗
E(κσ )V∗

E′(κ ′σ ′)SEρ(t ′)SE′R0]e−i(ωbEt+ωbE′ t ′)â+
κσ â+

κ ′σ ′e
i(ωκσ t+ωκ′σ ′ t ′) + H.c.}

+ {[VE(κσ )VE′(κ ′σ ′)S+
E S+

E′ρ(t ′)R0 − VE(κσ )VE′(κ ′σ ′)S+
E ρ(t ′)S+

E′R0]

× ei(ωbEt+ωbE′ t ′)âκσ âκ ′σ ′e−i(ωκσ t+ωκ′σ ′ t ′) + H.c.} + {[VE(κσ )V∗
E′(κ ′σ ′)SES+

E′ρ(t ′)R0

−V∗
E(κσ )VE′(κ ′σ ′)S+

E ρ(t ′)SE′R0]e−i(ωbEt−ωbE′ t ′)â+
κσ âκ ′σ ′e−i(ωκσ t−ωκ′σ ′ t ′) + H.c.}

× {[V∗
E(κσ )VE′(κ ′σ ′)S+

E SE′ρ(t ′)R0 − VE(κσ )V∗
E′(κ ′σ ′)SEρ(t ′)S+

E′R0]

× ei(ωbEt−ωbE′ t ′)âκσ â+
κ ′σ ′e

−i(ωκσ t−ωκ′σ ′ t ′) + H.c.}). (B3)

Tracing over the vacuum modes [69] and using

Tr{R0âκσ â+
κ ′σ ′ } = δκκ ′δσσ ′, Tr{R0â

+
κσ âκ ′σ ′ } = 0,

Tr{R0âκσ âκ ′σ ′ } = Tr{R0â
+
κσ â+

κ ′σ ′ } = 0, (B4)

we are left with the last term containing âκσ â+
κ ′σ ′ . After making the change of variable τ = t − t ′, Eq. (B3) reduces to

ρ̇inc = −
∑
κσ

∫ ∞

0
dE

∫ ∞

0
dE′

∫ t

0
dτ {V∗

E(κσ )VE′(κσ )S+
E SE′ρ(t − τ )

−VE(κσ )V∗
E′(κσ )SEρ(t − τ )S+

E′ }eiωEE′ t eiωbE′ τ e−iωκσ τ + H.c. (B5)

Under Markov approximation, we get

ρ̇inc = −
∑
κσ

∫ ∞

0
dE

∫ ∞

0
dE′eiωEE′ t

{
S+

E SE′ρ(t)V∗
E(κσ )VE′(κσ )

∫ t

0
dτei(ωbE′−ωκσ )τ

−VE(κσ )V∗
E′(κσ )SEρ(t)S+

E′

∫ t

0
dτei(ωbE′−ωκσ )τ

}
+ H.c. (B6)

We can write VE′(κσ ) = gκσ ηbE where gκσ = −Evac(κ)( �D · ε̂σ ) and VE(κσ )V∗
E′(κσ ) = |gκσ |2ηbEη∗

bE′ . Now, we convert the sum∑
κσ into an energy integral using the relation

∑
κσ

|gκσ |2 =
∫

D2

6π2ε0�c3
ω3

κdωκ. (B7)

For bound-continuum system, the spontaneous linewidth can be defined as γ = γ0
∫ ∞

0 dE|ηbE |2, where γ0 = D2

3πε0�c3 ω
3
b.

As the time of interest t � 1/ωbE , where ωbE is generally in the optical frequency domain, we can take upper limit of above
time integral to ∞. Writing the integral as∫ ∞

0
dτ ei(ω

bE
′ −ωκσ )τ = lim

ε→0

∫ ∞

0
dτ ei(ω

bE
′ −ωκσ +iε)τ

= − lim
ε→0

1

i(ωbE
′ − ωκσ + iε)

= πδ(ωκσ − ωbE
′ ) + iP

(
1

ωκσ − ωbE
′

)
, (B8)

where P represents the Cauchy principal part which leads to Lamb shift. This is quite small and so can be ignored for the present
purpose. So, we write Eq. (B6) as

ρ̇inc = −
∫ ∞

0
dE

∫ ∞

0
dE′eiωEE′ t γ0

2
{S+

E SE′ρ(t)η∗
bEηbE′ − SEρ(t)S+

E′η
∗
bE′ηbE}

−
∫ ∞

0
dE

∫ ∞

0
dE′e−iωEE′ t γ0

2
{ρ(t)S+

E′SEη∗
bE′ηbE − SE′ρ(t)S+

E η∗
bEηbE′ }. (B9)
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Using Eq. (B9) we get

(ρ̇bb)inc = −γρbb,

(ρ̇bE)inc = −γ

2
ρbE, (B10)

(ρ̇EE′)inc = γ0ρbbη
∗
bE′ηbE.

The complete master equation for our system is ρ̇ = ρ̇coh + ρ̇inc, where

ρ̇coh = − i

�

[
H coh

I ,ρ
]

(B11)

with H coh
I = [

∫ ∞
0 �bE

′ |b〉〈E ′ |dE
′ + H.c.] is the interaction Hamiltonian in the interaction picture due to PA laser only. Thus, for

continuum-bound coupled system as in the present case, the density matrix elements are given by

�ρ̇bE =
(

i�δE − �γ

2

)
ρbE + i

[∫ ∞

0
�bE

′ (R)�ρE
′
EdE′ − �bE(R)ρbb

]
, (B12)

�ρ̇E
′
E = −i(E

′ − E)ρE
′
E + i[�E′b(R)ρbE − ρE′b�bE(R)] + γ0ρbbη

∗
bE′ηbE, (B13)

�ρ̇bb =
[
i

∫ ∞

0
ρE

′
b�bE

′ (R)dE′ + c.c.

]
− �γρbb, (B14)

where δE = � + ωE and � = ωL − ω0 (ωL,ω0) is laser and atomic frequency, respectively (ωE = E/�).
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Bloch, Nature (London) 425, 937 (2003).
[8] A. Kastler, J. Phys. Rad. 11, 255 (1950).
[9] A. Ashkin, Science 210, 1081 (1980).

[10] V. S. Letokhov and V. G. Minogin, Phys. Rep. 73, 1 (1981).
[11] S. Stenholm, Rev. Mod. Phys. 58, 699 (1986).
[12] C. Cohen-Tannoudji and W. Phillips, Phys. Today 43(10), 33

(1990).
[13] H. J. Metcalf and P. van der straten, Laser Cooling and Trapping

(Springer, New York, 1999).
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