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Work on classical closed orbits in the diamagnetic Kepler problem is predominately focused on the chaos
observed in the polar launch angle as opposed to the azimuthal launch angle. This is due to atomic systems,
along with widely studied external-field geometries (parallel magnetic and electric fields or pure magnetic field),
being uniform in azimuthal angle, rendering the azimuthal angle unimportant. In the case of crossed magnetic
and electric fields, this is no longer the case, and closed orbits do present an azimuthal launch angle dependence.
In atomic systems, due to their spherical symmetry, the electric-field orientation in the plane perpendicular to
the magnetic field does not affect the spectrum of orbits. However, in shallow n-type donors in anisotropic
semiconductors such as silicon, the orientation of the external fields with respect to conduction-band valleys will
be important. In this work we examine the Garton-Tomkins orbit in crossed magnetic and electric fields, and
analyze how it and its harmonics’ azimuthal dependencies behave through variation of the scaled field or scaled
energy. At low scaled fields, harmonics have either twofold or fourfold azimuthal dependencies determined by
the rotational symmetry of the individual harmonics. As the scaled field or scaled energy is increased, several
harmonics undergo significant bifurcations, resulting in large azimuthal angular regions of essentially closed
orbits, which will lead to strong resonances in experimental work.
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I. INTRODUCTION

The first resonances observed in atomic spectra within ex-
ternal fields were found in barium atoms in a magnetic field [1].
The oscillations in the spectra were linked to the chaotic
motion of electrons in the plane perpendicular to the external
field [2], the so-called Garton-Tomkins (hereon referred to as
GT) orbit. Since this discovery, many investigations have been
made in other atomic systems, mostly in hydrogen [3–10], due
to its relative theoretical simplicity. The relationship between
classically chaotic electron orbits and oscillating experimental
atomic spectra is now well understood. The addition of a
static electric field either parallel [11–15] or perpendicular
(crossed) [16–24] to the magnetic field provides other systems
which are solvable classically and experimentally observable.
Given that atomic hydrogen is classically regular in a pure
electric field [25–27] and chaotic in a pure magnetic field, the
system may be observed moving between these two extremes
as the ratio of magnetic to electric fields (scaled field) is
varied [11,12]. The system in crossed fields has, until recently,
been a much more complicated system to analyze theoretically
due to the loss of azimuthal rotational symmetry, leading to
a breakdown in traditional calculation methods. However, the
recent breakthrough in the derivation of a simple classical
theory for arbitrary field orientation utilizing the existing
framework in simpler field geometries [28] has allowed the
crossed-field system to be analyzed in a less numerically
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intensive manner. In the case of pure magnetic fields or
parallel magnetic and electric fields, the azimuthal angle is
unimportant due to the rotational symmetry of the system.
However, in crossed magnetic and electric fields, both polar
and azimuthal angles of the system need to be considered.
An additional layer of complexity can be introduced if we
consider shallow n-type dopants in semiconductors due to
the presence of conduction-band valleys. For example, in
silicon, there are six equivalent conduction-band valleys. The
application of a magnetic field along one of these directions
reduces the symmetry. It leads to two equivalent valleys
with rotational symmetry about the magnetic field direction
and four equivalent valleys whose rotational axes lay on
the perpendicular plane. As a result, the two sets of valleys
contribute to the properties of the semiconductor. The first
and only experimental results in such a system (silicon)
were published seven years ago [29] and were the first
observation of the so-called anisotropic diamagnetic Kepler
problem (ADKP). This led to a full theoretical treatment of
the effects of an anisotropic electron mass on the classical
orbits of the system [30] and a numerical investigation into the
experimental conditions needed to observe such an effect in a
range of widely utilized semiconductors [31].

In this work, we focus on the GT orbit and its harmonics in
crossed magnetic and electric fields. This is the most important
and stable orbit of the system in the analysis of experimental
spectra in the crossed-fields geometry [17]. The GT orbit has a
polar launch angle of θ = 90◦ relative to the applied magnetic
field, irrespective of the external field strengths (scaled field)
or electron excitation energy (scaled energy). Hence, the GT
orbit is an ideal candidate to analyze the azimuthal angle
dependence of the system. The crossed-fields system has
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been previously investigated thoroughly for bound closed
orbits (specifically, ε = −1.4) [22]. A previous study [18]
provided an analysis of the GT orbit’s first harmonic in weak
crossed fields at an energy close to the ionization threshold.
We build on this work here to include higher harmonics
of this orbit, a greater range of applied field strengths, and
scaled energies extending above the ionization threshold. We
also discuss the possibilities for extending the work in this
field geometry into the semiconductor environment. For our
calculations, we align the magnetic field along the z axis,
and the electric field along the x axis. Section II provides
the relevant theory for the crossed-fields system. Section III A
analyzes how systematically increasing the scaled field affects
the symmetries observed in different harmonics of the GT
orbit and how bifurcation processes cause changes in az-
imuthal dependencies. Section III B focuses on systematically
increasing the scaled energy, rather than scaled field, to affect
the symmetries in various harmonics of the GT orbit through
further bifurcation processes. Section III C analyzes some of
the bifurcations observed in Sec. III A in more detail, where
essentially closed orbits proliferate over large azimuthal angle
ranges. Section III D focuses on the third and sixth harmonics
of the GT orbit and an unusual form of bifurcation in which
azimuthal dependencies reduce, rather than increase, after the
bifurcation has occurred. Section IV gives a summary of the
important results and conclusions.

II. THEORY

Recently, a generalized theory was derived for the diamag-
netic Kepler problem with arbitrary external-field orientation
utilizing semiparabolic coordinates [28]. In the special case of
crossed magnetic and electric fields, this theoretical framework
provides a much simpler method for the computation of
the classical closed orbits of the system than was otherwise
available. The important results for the crossed-fields system
and the following numerical analysis are detailed here.

As is conventional, the equations are scaled in length

λ = 3

√
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, (1)
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0
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where k = 1/(4πε0) is Coulomb’s constant, ωc = eB/m is the
cyclotron frequency, Tc = 2π/ωc is the cyclotron period, F is
the electric field, B is the magnetic field, and E is the total
energy of the electron. Using this scaling, and converting the
system to semiparabolic coordinates, the equations of motion

for crossed magnetic and electric fields are [28]
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)
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where w = (dφ/dt)/ωc and φ is the azimuthal angle.
The equations given in this section are explicitly for the

case of an isotropic electron mass and are therefore directly
applicable to either atomic systems or shallow n-type donors
in isotropic semiconductors. While these equations do not take
into account the anisotropic electron mass present in semicon-
ductor environments such as silicon, which was detailed in
previous work [30], we believe for the specific case of the
magnetic field aligned along the (001) crystallographic axis,
and the electric field aligned along the (100) crystallographic
axis in the perpendicular plane, the results presented in this
work will provide a good approximation to expected results
for this system.

III. NUMERICAL RESULTS

In the numerical analysis, we are focusing on the GT
orbit, which is the most important orbit in the analysis of
experimental spectra in the crossed-fields geometry [17]. For
any value of the scaled field, or scaled energy, the GT orbit has
a polar launch angle of θ = 90◦ relative to the applied magnetic
field. In the case of silicon, this is only true in the case of the
magnetic field being aligned along a conduction-band valley.
If the magnetic field is aligned in any other direction, the
GT orbit is pulled out of the perpendicular plane due to the
anisotropy of the system [30].

The conditions imposed on our numerical investigation are
that the electron needs to return within a distance of 0.01λ

to the nucleus, in a time of less than 5Tc, to be considered
as a closed orbit. The condition of an orbit to return within
0.01λ to be considered as closed is somewhat arbitrary. In
silicon, for example, at a magnetic field strength of 4T , λ =
77 nm, we are therefore concentrating on orbits that return
closer than 0.77 nm to the nucleus, which is much closer than
the effective Bohr radius of ∼43 nm. The 5Tc orbit period
cutoff was chosen to coincide with the experimental results in
silicon by Chen et al. [29]. Under these closed-orbit conditions,
there are seven harmonics of the GT orbit present for f = ε =
0, as shown in Fig. 1. Different harmonics were defined by
the number of local minima present in the orbit trajectory with
reference to the nucleus. At low scaled fields and energies, this
is trivial; however, at high scaled fields and energies, the orbits
become much more complicated and identification of different
harmonics becomes increasingly difficult.

The azimuthal launch angle was sampled at 	φ = 0.1◦
intervals, and return angles were calculated as the electron
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FIG. 1. The seven harmonics of the GT orbit for f = ε = 0 and φ = 0◦. The color of the orbit evolves with time from launch (red) to return
(blue) as denoted by the direction of the arrows, which show the launch and return branches of the orbit path. The beginning of the orbit is not
visible after the third harmonic due to the overlap as it undergoes a greater than 360◦ rotation about the z axis. The periods of these harmonics
are successive multiples of 2Tc/3.
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FIG. 2. Panels (a), (b), and (c) show an example of a seemingly closed orbit for f = 0.01, ε = 0, and φ = 0◦. The color of the orbit evolves
with time from launch (red) to return (blue) as denoted by the direction of the arrows which show the launch and return branches of the orbit
path. Panel (a) is the entire orbit, panel (b) zooms in on the region around the nucleus to reveal the problem with using the closest point for
calculating the return angle. Panel (c) shows the orbit minus the last nineteen points to reveal a good estimate of the return angle. Note panel
(b) is magnified two orders of magnitude further than panel (c). Panel (d) shows the calculated return angle as a function of the number of
data points omitted from the closest pass to the nucleus. Two orbits of high curvature near the nucleus from Fig. 9 were considered. After ∼20
points from the nucleus, the return angle stabilizes and was therefore utilized as our condition for the calculation of the return angle.
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FIG. 3. Return distance (rret) to the nucleus as a function of azimuthal (a) launch and (b) return angle for f = ε = 0. Data points are shaded
according to their orbital period in the range 0 to 5Tc as indicated by the bar at the bottom of the figure. This convention will be adopted
throughout the paper. Vertical grid lines represent the angles of 0◦, 90◦, 180◦ and 270◦ with respect to the electric-field direction, on the plane
perpendicular to the magnetic field. The bracketed numbers represent the harmonic numbers as identified in Fig. 1.

azimuth at the twentieth-last sample point of a given loop
of its trajectory. This choice is due to the majority of
orbits in this system, at finite scaled fields and energies, not
being completely closed. Therefore, the closest point to the
nucleus may lie in a different angular region to the general
return direction of the orbit. We found, through analyzing
orbits whose curvature was high around the nucleus, that the
omission of the final nineteen points was sufficient to minimize
this effect, as seen in Fig. 2. The return angles should therefore
be seen as good approximations, rather than exact quantities,
and are more accurate for orbits that return closest to the
nucleus. Figures 2(a), 2(b), and 2(c) show an example of this
phenomenon where the final point would yield a return angle
of φ ∼ 315◦ rather than the ∼120◦ expected.

A. Scaled field dependence of launch and return angles

In this section, we systematically increase the scaled field, at
a fixed scaled energy of ε = 0, to investigate how the azimuthal

dependencies of the first seven harmonics of the GT orbit
evolve in crossed magnetic and electric fields.

We first consider the case of magnetic field alone. Figure 3
shows the azimuthal dependence of both launch and return
angles for the GT orbit and its harmonics under pure
magnetic-field conditions (f = 0). There is no azimuthal angle
dependence in this case, as expected, given the rotational
symmetry of the system in a pure magnetic field. The variation
in return distance (rret) for the different harmonics is an artifact
of the numerical procedure rather than a real physical effect.
However, considering the scale on the left axis, all harmonics
return very close to the nucleus and in the following numerical
results hereafter, this effect is negligible as the scale increases.

We now introduce a small electric field along the x axis
perpendicular to the applied magnetic field. Figure 4 shows
the azimuthal dependence of both launch and return angles of
the GT orbit with a small crossed electric field of f = 0.01
applied in the plane perpendicular to the magnetic field
along φ = 0◦. This small perturbation is enough to break the

FIG. 4. Return distance (rret) to the nucleus as a function of azimuthal (a) launch and (b) return angle for f = 0.01 and ε = 0.
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FIG. 5. Return distance (rret) to the nucleus as a function of azimuthal launch (left column) and return (right column) angle for f = 0.1
and ε = 0. The second row is a magnification of the first row to reveal the relatively weak azimuthal angle dependencies of the third and sixth
harmonics.

rotational symmetry of the system and a twofold azimuthal
angle dependence appears in both the launch and return angles,
corresponding to orbits returning with or against the electric
field. This is in accordance to what was observed in bound
closed orbits [22]. Interestingly, the third and sixth harmonics
show no azimuthal dependence. Intuitively, one would expect
these harmonics to show at least some azimuthal dependence,
especially given their periods are longer than the first and sec-
ond harmonics. These azimuthal-angle independent orbits are
essentially periodic and have a threefold rotational symmetry
about the z axis (as shown in Fig. 1); therefore, the net effect
of the electric field along them is negligible.

From the scale on the left side of Fig. 4, which is of the order
of 10−6 λ, we can see that the azimuthal angle dependence is
relatively weak as the entire 360◦ range contains closed orbits.
Interestingly, the return distance for the azimuthal-dependent
harmonics is nearly identical for different harmonics of similar
return angle in Fig. 1. In regards to the minima of the
return angle of the azimuthal-dependent harmonics, the closest
passes to the nucleus occur at azimuthal angles which fall
away from the angles at φ = 0◦, 90◦, 180◦, and 270◦, on
the plane perpendicular to the magnetic field. One may then
expect the azimuthally independent harmonics to contribute
the strongest oscillations to the spectrum. However, this would
be a false conclusion, given that the lower harmonics have a

much stronger stability under variation of the polar launch
angle.

While not studied in detail within this work, recurrence
strengths observed from closed orbits in atomic systems, and
those in an anisotropic environment such as silicon, may differ
due to the presence of six conduction-band valleys. In atomic
systems for the case of f = 0, the recurrence peak heights
decrease with increasing harmonics, due to their corresponding
polar angle dependencies.

The azimuthal dependence observed in non-rotationally-
symmetric orbits gives an insight into how resonances in the
crossed-field geometry are weaker than those in rotationally-
symmetric systems [18,21]. In such cases, every closed orbit
is part of a large family of closed orbits sharing the same
polar launch angle but different azimuthal launch angles. In the
crossed-fields case, due to the loss of rotational symmetry, this
is no longer the case, as is seen in the azimuthal dependencies
obtained in our calculations.

We now increase the electric field further. Figure 5 shows
the azimuthal angle dependence of launch and return angles
with the scaled field raised by an order of magnitude to
f = 0.1. The azimuthal-dependent harmonics from Fig. 4
show virtually the same twofold launch and return azimuthal
angle dependence as before, except now on a much larger
scale of 10−4 λ. Interestingly, with the increase in scaled field
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FIG. 6. Return distance (rret) to the nucleus as a function of azimuthal (a) launch and (b) return angle for f = 0.25 and ε = 0. Due to the
growing complexity of the figures being presented, harmonic labels will not be included, but may still be identified through the shading based
on the orbit period.

leading to a stronger perturbation away from the rotational
symmetry at zero field, the peaks alternate between shortest
and longest harmonics returning closer to the nucleus. The
azimuthal-independent harmonics from Fig. 4 appear to con-
tinue showing no azimuthal angle dependence until we zoom
in to reveal a very small fourfold launch and return azimuthal
dependence in Figs. 5(c) and 5(d). We attribute this fourfold
azimuthal dependence to these orbits having an approximate
rotational symmetry about the z axis. The field has perturbed
these harmonics enough from this rotational symmetry that
every pass of either the x or y axis yields a shift from being
predominantly with or against the electric field, leading to the
fourfold azimuthal angle dependence. In the first, fourth, and
seventh harmonics, the minima around φ = 45◦ in return angle
have become slightly more stable relative to the minima around
φ = 225◦. To be concrete, an orbit is more stable than another
if it has a larger number of neighboring orbits which are consid-
ered as closed orbits. The number of neighboring orbits is, of
course, dependent on the sampling step size of the calculations,
as realistically, there is a continuous spectrum of orbits which
cannot be enumerated. However, for a constant step size in
azimuthal angle, an increase in stability is identified in our
calculations as a widening of the parabolic dispersion at φ =
45◦ return angle relative to the dispersion centered at φ = 225◦.
A similar behavior is also observed for the second and fifth
harmonics. It is interesting to note that the launch and return
angles of the third and sixth harmonics in Figs. 5(c) and 5(d)
occur near the angles φ = 0◦, 90◦, 180◦, and 270◦ with respect
to the external-electric-field orientation. We expect this to lead
to different relative peak heights in experimental results be-
tween these harmonics and the others than observed at f = 0.

Increasing the scaled field further, Fig. 6 shows the
azimuthal angle dependence of launch and return angles for
a scaled field of f = 0.25. The azimuthal dependencies have
grown so much that there are angles where the azimuthal-
dependent harmonics of Fig. 4 are no longer considered as
containing closed orbits. The relative stability of the third
harmonic, especially, is still very strong, as indicated by its
small azimuthal dependence. The increase in scaled field leads

to some minima positions beginning to shift. Specifically, for
the azimuthal-dependent harmonics in Fig. 4, the longer-period
harmonics shift their minima away from the minima of
the shorter-period harmonics and towards the electric-field
orientation. A different effect is observed in the third and sixth
harmonics, with the latter shifting the two minima at φ = 0◦
and φ = 180◦ away from the minima it shared with the third
harmonic at lower fields. However, the other two minima at
φ = 90◦ and φ = 270◦ remain tied to the third harmonic. The
increase in stability of return-angle minima in the φ = 0–180◦
range over minima in the φ = 180–360◦ range has also become
more pronounced with the increase in scaled field.

Figures 7(a) and 7(b) show the azimuthal angle dependence
of launch and return angles for a scaled field of f = 0.5. The
electric field strength has perturbed the system to the extent that
harmonics previously seen as weakly azimuthally dependent
now show a strong azimuthal dependence, leading to a more
complicated picture of the system. Due to the complicated
nature of these figures, and subsequent figures at higher scaled
fields, it is more useful to separate harmonics who shared the
same return angle at zero scaled field into different figures to
allow an easier analysis of the system. These are shown in
Figs. 7(c)–7(h).

Figures 7(c) and 7(d) show the launch and return azimuthal
dependencies of the first, fourth, and seventh harmonics. The
longer-period harmonics become increasingly separated from
the first harmonic as the scaled field is increased and the
minima of the seventh harmonic is now closest to the electric-
field orientation. The difference in stability between the two
minima of the same harmonic is also further accentuated with
the seventh harmonic showing a significant increase in stability
over the shorter-period harmonics.

In Figs. 7(e) and 7(f) the second and fifth harmonics are
shown. The opposite behavior is observed in these harmonics
than was observed for the first, fourth, and seventh harmonics.
The fifth harmonic is being drawn away from the electric-
field orientation. As seen for the seventh harmonic, as it is
being drawn away from the second harmonic by the increasing
electric field, the stability increases.
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FIG. 7. Return distance (rret) to the nucleus as a function of azimuthal launch (left column) and return (right column) angle for f = 0.5
and ε = 0. Due to the complexity of panels (a) and (b), further panels are given for harmonics who have the same return angle at low scaled
fields to gain better insight into the evolution of the system. The second row shows the first, fourth, and seventh harmonics, the third row shows
the second and fifth harmonics, and the fourth row shows the third and sixth harmonics.
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FIG. 8. Return distance (rret) to the nucleus as a function of azimuthal launch (left column) and return (right column) angle for entire set
of harmonics and comparable harmonics at f = 1 and ε = 0.

Figures 7(g) and 7(h) show the third and sixth harmonics
which, at low fields, showed no azimuthal dependence. Here
the sixth harmonic shows the strongest azimuthal dependence,
as one would expect, given its longer orbit period. The minima
positions of these harmonics have diverged from each other

around φ = 0 and 180◦ but remain more closely tied together
at φ = 90 and 270◦.

Doubling the field now, Fig. 8 shows the azimuthal angle
dependence of launch and return angles for both the entire
set of harmonics and selected harmonics at f = 1. Here the
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FIG. 9. Variation of the fourth harmonic as the launch angle (“L” in figure titles) is increased from φ = 200 to 250◦ in 5◦ increments. The
color of the orbit evolves with time from launch (red) to return (blue) as denoted by the direction of the arrows which show the launch and
return branches of the orbit path. The return angle (“R” in figure titles) increases with launch angle until φ = 225◦, after which it decreases
with increasing launch angle leading to the unusual feature present in Fig. 8(d).

complexity of the results has increased and harmonics sharing
the same return angle at zero scaled field need to again be
considered separately. At this high scaled field, the relationship
between comparable harmonics has been essentially broken.
This can be seen most readily in Figs. 8(c) and 8(d), where
there is no longer a resemblance between harmonics previously
observed to be similar in nature. The first harmonic here
remains relatively unchanged from earlier figures; however,
the fourth and seventh harmonics have broken their twofold
symmetry with new minima presenting themselves in the
results. There is a discontinuity in the calculations due to orbits
breaking the 5Tc threshold. An unexpected feature presents

itself in the fourth harmonic between φ = 200 and 250◦ launch
angle and φ = 90 and 135◦ return angle. In the return angle,
rather than the standard parabolic dispersion in return distance
with azimuthal angle, the curve folds back, almost upon itself,
once reaching the minimum. In Fig. 9, a series of fourth
harmonic orbits with increasing launch angle in this region
show this is not an artifact of the return-angle calculation
process but rather a real effect due to the relative strength of
the electric field.

Figures 8(e) and 8(f) show the second and fifth harmonics
where large angular regions of essentially closed orbits now
dominate the azimuthal spectrum. This resembles the so-called
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‘orbit mixing’ observed in Ref. [28] and is characteristic of a
bifurcation process which leads to the breaking of previously
held azimuthal symmetries. A finer mesh of scaled fields in
the region from f = 0.5–1 (presented in Sec. III C) shows
these large angular regions were also present before the
breaking of symmetries in the fourth and seventh harmonics in
Figs. 8(c) and 8(d). These bifurcations may be experimentally
observable, as bifurcation processes have been in other field
configurations in atomic systems. Furthermore, the scaled
fields in which this is being observed in the crossed-fields
system are similar to those found for the parallel-fields
geometry [28].

Conversely to the other harmonics, Figs. 8(g) and 8(h)
show the third and sixth harmonics retaining their fourfold
symmetry. However, their minima have shifted away from
their low field positions completely. Perhaps surprisingly,
minima which where shared between these harmonics at lower
scaled fields are still present even at this high scaled field.

Increasing the field further, Fig. 10 shows the azimuthal
angle dependence of launch and return angles for both the
entire system and selected harmonics at f = 1.5. As at f = 1,
the system is very complicated and harmonics sharing the
same return angle at zero scaled field need to be considered
separately. Concentrating on the first, fourth, and seventh
harmonics in Figs. 10(c) and 10(d), the fourth harmonic is
showing an increased stability as it aligns itself with the
external electric field. Given we have moved from low to
high scaled fields, the first harmonic has remained relatively
unchanged, in that it has retained its twofold azimuthal
dependence and its minima remain close to their original
positions at low scaled field.

In the second and fifth harmonics shown in Figs. 10(e)
and 10(f), the fifth harmonic still presents a large angular
area of stability in the return angle. The second harmonic
now shows a clear fourfold azimuthal dependence at this high
scaled field due to the bifurcation seen occurring at f = 1.
The fifth harmonic shows a much higher degree of azimuthal
dependency, indicating it has undergone many bifurcations.

In Figs. 10(g) and 10(h), the third and sixth harmonics,
which up until f = 1 had held their original fourfold symme-
try, now display sixfold and eightfold azimuthal dependencies,
respectively, indicating they have undergone many bifurcation
processes in moving from f = 1–1.5.

Over the course of Sec. III A, we have shown the return
distance as a function of both launch and return angles
separately. While this is insightful for investigating the
azimuthal dependencies of the harmonics, the relationship
between launch and return angles is difficult to access. In
Fig. 11, we show the return angle as a function of launch
angle as the scaled field is increased from f = 0–1.5. As
is expected at f = 0, due to the rotational symmetry of the
system, there is a linear relationship between launch and
return angles. However, as the scaled field is increased, and the
rotational symmetry is broken, the linear relationship between
launch and return angles is also broken. Discontinuities begin
to appear in the curves at f = 0.25 due to orbits not returning
within 0.001λ of the nucleus. Moving to higher scaled fields,
the gradients of the lines vary substantially. A steep gradient
would indicate greater chaos in the orbit, as a small change
in initial launch angle results in a large variation in return

angle. Conversely, a shallow gradient would indicate an
element of stability in the orbits, as a small variation in return
angle is observed for large variations in initial launch angle.
Interestingly, at high scaled fields, the closed orbits seem to
congregate along the diagonals of the figures. Orbits which
arrange themselves along the diagonal defined by equal launch
and return angles correspond to orbits with high rotational
symmetry about the magnetic field, which we have shown
to be more stable to variations in scaled field in earlier
figures.

B. Scaled energy dependence of launch and return angles

In this section, we focus on fixing the scaled field and
varying the scaled energy. The purpose is to investigate how
increasing the scaled energy affects the symmetries of the first
seven harmonics of the GT orbit. The scaled energy is varied
in integer steps over the region ε = 0–4 as was utilized in our
previous work [28]. This region of scaled energy has been
shown to be important in the analysis of experimental results
published in silicon [29,30]. The scaled field is taken at fixed
values of f = 0.25 and 0.5, as these scaled fields showed
interesting features in the calculations.

Figures 12 and 13 show the launch and return azimuthal
dependencies for the seven harmonics of the GT orbit as the
scaled energy is incrementally increased for a fixed scaled field
of f = 0.25. As was shown in our previous work, increasing
the energy in such a way affects the periods of the orbits
substantially [28]. This can be observed in these figures as
changes in shading as the scaled energy is increased. The
sixth and seventh harmonics disappear from the calculations
altogether at ε = 3 and ε = 1 respectively, as they now exceed
5Tc. The first and fourth harmonics are shown on the left
columns of these figures. The first harmonic showed very
little change when increasing the scaled field; however, with
increasing scaled energy, the launch and return angle minima
are shifting toward φ = 90 and 270◦. This effect is not
observed in Sec. III A and points to the scaled energy being a
more effective tool in shifting the minima of these orbits with
respect to the external electric-field orientation.

The fourth harmonic undergoes another form of bifurcation
with increasing scaled energy between ε = 2 and ε = 4,
moving from a twofold to fourfold azimuthal dependence.
At ε = 3, a large azimuthal region of essentially closed orbits
exists which is an indication of a bifurcation process taking
place. One would expect this feature to cause an increase in ex-
perimental recurrence peak height at this scaled energy for this
harmonic. Therefore, in the crossed-fields system, bifurcations
occur either with varying scaled field or scaled energy.

The middle columns of Figs. 12 and 13 show the second and
fifth harmonics’ evolution with increasing scaled energy. In
this scaled-energy range, both harmonics undergo bifurcations
and move from twofold to fourfold azimuthal dependencies.
The fifth harmonic, having the longest period, is more
susceptible to changes in the system. Therefore, its bifurcation
occurs at a lower value of ε = 1 than the second harmonics’
at ε = 3. The fifth harmonic also shows the potential for
another bifurcation at scaled energies exceeding ε = 4. Both
bifurcations in the two harmonics occur over large launch
and return azimuthal angle regions, and therefore will have a
significant effect in experimental data.
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FIG. 10. Return distance (rret) to the nucleus as a function of azimuthal launch (left column) and return (right column) angle for entire
system and harmonics who share the same return angle at low scaled fields at f = 1.5 and ε = 0.

The right columns in Figs. 12 and 13 show the third and
sixth harmonics and their evolution with increasing scaled
energy. Interestingly, these harmonics undergo a bifurcation
between ε = 0–1; however, they move from a fourfold az-
imuthal dependence back to twofold. This seems at odds with

every other bifurcation process observed, as they all move from
a lower to higher azimuthal angle dependency. This different
form of bifurcation is examined in more detail in Sec. III D.

Figures 14 and 15 show the launch and return azimuthal
dependencies for the seven harmonics of the GT orbit as the
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FIG. 11. Return angle as a function of launch angle for f = 0–1.5 and ε = 0.

scaled energy is incrementally increased for a fixed scaled
field of f = 0.5. The first harmonic shows the same behavior
as was observed at f = 0.25 with the launch and return angle
minima moving toward φ = 90◦ and φ = 270◦ with increasing
scaled energy. The fourth harmonic once again undergoes a
bifurcation moving from a twofold to fourfold dependence.

However, here the bifurcation appears at a lower scaled energy
than previously seen at f = 0.25 due to the instability the
higher scaled-field induces in the azimuthal dependence. This
bifurcation also evolves in the same way as can be seen
when comparing figures at f = 0.25, ε = 4 and f = 0.5,
ε = 2.
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FIG. 12. Return distance (rret) to the nucleus as a function of azimuthal launch angle at f = 0.25 as the scaled energy is increased in integer
increments from ε = 0 to 4. In the figure, scaled energy increases from top to bottom. The left column shows the first, fourth, and seventh
harmonics, the middle column shows the second and fifth harmonics, and the right column shows the third and sixth harmonics.

The second harmonic again moves from a twofold to
fourfold dependence through a bifurcation between ε = 1
and 2. As was the case with the fourth harmonic, the second
harmonic undergoes its bifurcation at a lower scaled energy
with the increased scaled field. This bifurcation also evolves in

the same manner at both scaled fields. The fifth harmonic starts
as a twofold dependence at ε = 0 and undergoes many bifurca-
tions and azimuthal-dependence symmetries with increasing
scaled energy. The major bifurcation occurs between ε = 0
and 1. As was the case with other harmonics discussed, this

023409-13



C. BLEASDALE, R. A. LEWIS, AND A. BRUNO-ALFONSO PHYSICAL REVIEW A 94, 023409 (2016)

FIG. 13. Return distance (rret) to the nucleus as a function of azimuthal return angle at f = 0.25 as the scaled energy is increased in integer
increments from ε = 0 to 4. In the figure, scaled energy increases from top to bottom. The left column shows the first, fourth, and seventh
harmonics, the middle column shows the second and fifth harmonics, and the right column shows the third and sixth harmonics.

bifurcation occurs at a lower scaled energy than was observed
at f = 0.25.

The third and sixth harmonics, in contrast to those discussed
previously, have a much different azimuthal dependence

than was observed at f = 0.25. The shift from fourfold to
twofold dependence, seen at f = 0.25, no longer occurs. The
third harmonic undergoes a new small bifurcation between
ε = 2 and 3 evolving from a fourfold to sixfold azimuthal
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FIG. 14. Return distance (rret) to the nucleus as a function of azimuthal launch angle at f = 0.5 as the scaled energy is increased in integer
increments from ε = 0 to 4. In the figure, scaled energy increases from top to bottom. The left column shows the first, fourth, and seventh
harmonics, the middle column shows the second and fifth harmonics, and the right column shows the third and sixth harmonics.

dependence. The sixth harmonic undergoes a large change
between ε = 1 and 2, with new features presenting themselves
in both launch and return azimuthal angles.

C. Bifurcation evolution with varying scaled field

In Sec. III A, numerous bifurcations and changes in symme-
try were visible in calculations when increasing the scaled field
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FIG. 15. Return distance (rret) to the nucleus as a function of azimuthal return angle at f = 0.5 as the scaled energy is increased in integer
increments from ε = 0 to 4. In the figure, scaled energy increases from top to bottom. The left column shows the first, fourth, and seventh
harmonics, the middle column shows the second and fifth harmonics, and the right column shows the third and sixth harmonics.

from f = 0.5 to 1. In this section, we focus on this scaled field
region in finer detail using increments of f = 0.05 to gain a
more detailed understanding of the bifurcations and azimuthal
dependencies within this range.

Figures 16 and 17 show the azimuthal angle dependencies
of the first, fourth, and seventh harmonics for launch and
return angles respectively over this scaled-field range. The
first harmonic undergoes very little change in this region.

023409-16



AZIMUTHAL DEPENDENCE OF THE GARTON-TOMKINS . . . PHYSICAL REVIEW A 94, 023409 (2016)

FIG. 16. Return distance (rret) to the nucleus as a function of azimuthal launch angle for the first, fourth, and seventh harmonics in the
scaled-field region of f = 0.5 to 1 in steps of f = 0.05.

The only noteworthy change coming in the orbit returning
at approximately φ = 250◦ which increases in stability with
increased scaled field over this range.

The fourth harmonic also remains relatively unchanged
until f = 0.9 where another feature begins to return close
enough to the nucleus to be considered as having closed orbits.
At f = 0.95 this feature is becoming quite substantial and
stable to the point that at f = 1, it is the dominant feature
in this harmonic. This feature is unusual in that the return

angle azimuthal dependence is nonparabolic in nature. This
was explored earlier for this particular case in Fig. 9; however,
other instances do occur in the calculations for other harmonics
and fields.

The seventh harmonic showed significant change in
Sec. III A with another feature, a discontinuity, and the
possibility of a bifurcation in the most stable of the two
minima at f = 0.5. All of these are now explained in the
series of figures shown in this section. The feature comes
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FIG. 17. Return distance (rret) to the nucleus as a function of azimuthal return angle for the first, fourth, and seventh harmonics in the
scaled-field region of f = 0.5 to 1 in steps of f = 0.05.

about in much the same way as was observed in the fourth
harmonic. However, here this feature begins to present itself
at f = 0.6 and is much more sensitive to variations in scaled
field than the regular twofold dependence. As in the fourth
harmonic, this feature presents a nonparabolic relationship in
return-angle azimuthal dependence. At f = 0.9, this feature
develops a discontinuity, which is due to those missing orbits
now exceeding 5Tc. These orbits would still be present in

experimental data of course as this cutoff is arbitrary for
numerical purposes. The most stable orbit of the two at
f = 0.5 undergoes its bifurcation from f = 0.65 to 0.85
where a significant azimuthal angle range contains essentially
closed orbits.

Figures 18 and 19 show the azimuthal angle dependencies
of the second and fifth harmonics for launch and return
angles, respectively, over the same scaled-field range. The
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FIG. 18. Return distance (rret) to the nucleus as a function of azimuthal launch angle for the second and fifth harmonics in the scaled-field
region of f = 0.5 to 1 in steps of f = 0.05.

second harmonic, much like the first, undergoes relatively little
change. However, at higher fields, the most stable of the two
minima forms a wide range of closed orbits in what looks to
be the beginnings of a bifurcation.

The fifth harmonic undergoes more significant change
over this scaled-field range. The most stable minima in this
harmonic at f = 0.5 continues to increase in stability to
the point that at f = 0.85, almost a third of the entire

azimuthal-angle space is dominated by essentially closed
orbits. We should expect such a large feature to be apparent
in experimental data. At higher scaled fields this large area
undergoes multiple bifurcations; however, the area around
φ = 180◦ remains very stable in both launch and return angles.

Figures 20 and 21 show the azimuthal angle dependencies
of the third and sixth harmonics for launch and return
angles respectively over the same scaled-field range. Both
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FIG. 19. Return distance (rret) to the nucleus as a function of azimuthal return angle for the second and fifth harmonics in the scaled-field
region of f = 0.5 to 1 in steps of f = 0.05.

harmonics retain their fourfold azimuthal dependence over
this scaled-field range. As the scaled field is increased, the
orbits in both harmonics become less stable as seen by the
increasing curvature of the parabolas in the calculations.
The third harmonic begins a small bifurcation process at the
higher end of this scaled-field region; however, it is unlikely
this would be significant in any experimental results.

D. Reduction of azimuthal dependence
in third and sixth harmonics

In Sec. III B, we observed that in Figs. 12 and 13, the
third and sixth harmonics moved from a fourfold to twofold
azimuthal dependence through a bifurcation process when the
energy was increased from ε = 0 to 1. This was unexpected
as every other form of azimuthal symmetry change we have
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FIG. 20. Return distance (rret) to the nucleus as a function of azimuthal launch angle for the third and sixth harmonics in the scaled-field
region of f = 0.5 to 1 in steps of f = 0.05.

observed involved moving from a lower to higher azimuthal
angle dependency. In this section, we revisit this feature using
a finer scaled-energy mesh of 	ε = 0.1 to gain a better insight
into this different form of bifurcation.

Figures 22 and 23 show the launch and return azimuthal
angle dependencies, respectively, for the third and sixth
harmonics at f = 0.25 and scaled energies ranging from ε = 0

to 1 in steps of 0.1. We observe that as the scaled energy is
increased from ε = 0 to 0.1, the relative height of the peaks
in the azimuthal dependence changes substantially. These
harmonics appear to be much more sensitive to variations
in scaled energy than scaled field. By increasing the scaled
energy to ε = 0.3, the two peaks either side of the external
electric-field orientation at φ = 0◦ have nearly disappeared
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FIG. 21. Return distance (rret) to the nucleus as a function of azimuthal return angle for the third and sixth harmonics in the scaled-field
region of f = 0.5 to 1 in steps of f = 0.05.

completely. This creates a large azimuthal area of closed
orbits as the scaled energy is incrementally increased, which
encompasses the external electric field orientation at φ = 0◦
in both launch and return angles.

IV. CONCLUSION

The azimuthal dependence of the first seven Garton-
Tomkins orbit harmonics have been investigated thoroughly

in crossed magnetic and electric fields. In cylindrically sym-
metric external-field geometries, this azimuthal dependence
is absent. However, in the crossed-fields geometry, due to the
breaking of the rotational symmetry around the magnetic-field
axis, this is no longer the case and the azimuthal angle
dependence must be considered. In this work, we focused on
the isotropic case which is relevant to both atomic systems and
isotropic semiconductors. However, we believe these results to
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FIG. 22. Return distance (rret) to the nucleus as a function of azimuthal launch angle for the third and sixth harmonics at f = 0.25 for
varying scaled energy between ε = 0 and 1 in 0.1 steps.

also be applicable to a specific case in the sixfold conduction
band semiconductor environment of silicon, where the
magnetic field is aligned along the (001) crystallographic axis
and the electric field is aligned along the (100) crystallographic
axis in the perpendicular plane. We found that by introducing
a weak electric field perpendicular to the applied magnetic
field, the Garton-Tomkins orbit and its harmonics which
lack rotational symmetry about the magnetic-field axis show

twofold azimuthal dependence. However, for harmonics
which are essentially periodic, namely the third and sixth
harmonics, a fourfold azimuthal dependence was observed.
These rotationally symmetric harmonics were also more
stable against increases in scaled field. We also found that the
symmetries of the Garton-Tomkins orbit, and its harmonics,
were more sensitive to variations in scaled energy than scaled
field.
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FIG. 23. Return distance (rret) to the nucleus as a function of azimuthal return angle for the third and sixth harmonics at f = 0.25 for
varying scaled energy between ε = 0 and 1 in 0.1 steps.

In the course of our calculations, many bifurcation pro-
cesses were observed where a continuum of essentially closed
orbits were present over up to a third of the entire azimuthal
angle range. As is the case with bifurcations in other field con-
figurations, we expect these regions to present large resonances
in experimental data. We also found here the possibility of a
bifurcation reducing the azimuthal angle dependence of the
third and sixth harmonics at f = 0.25 and small positive scaled

energies. This is counter to all other bifurcation processes
which were observed in our investigation.
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