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Large energy superpositions via Rydberg dressing
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We propose to create superposition states of over 100 strontium atoms in a ground state or metastable optical
clock state using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components
of the superposition can differ by an order of 300 eV in energy, allowing tests of energy decoherence models with
greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity
of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular
formation, and diminishing Rydberg level separation for increasing principal number.
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I. INTRODUCTION

There are currently many efforts towards demonstrating
fundamental quantum effects such as superposition and entan-
glement in macroscopic systems [1–16]. One relevant class of
quantum states is so-called cat states, i.e., superposition states
involving two components that are very different in some
physical observable, such as position, phase, or spin. Here
we propose a method for creating such large superpositions
in energy. This is relevant in the context of testing proposed
quantum-gravity-related energy decoherence [17–19].

Our method relies on the uniform Kerr-type interaction
that can be generated between atoms by weak dressing with
a Rydberg state [20–22]. This can be used to generate cat
states in a way similar to the optical proposal of Ref. [23].
Using an optical clock state in strontium as one of the two
atomic basis states makes it possible to create large and
long-lived energy-superposition states. The superposition can
be verified by observing a characteristic revival. We analyze
the effects of relevant imperfections, including higher-order
nonlinearities, spatial inhomogeneity of the interaction, decay
from the Rydberg state, atomic motion in the optical lattice,
collective many-body decoherence triggered by blackbody-
induced transitions, molecular formation, and diminishing
Rydberg level separation for increasing principal number.
Our scheme significantly improves the precision of energy
decoherence detection.

Previous related, but distinct, work includes Ref. [24],
which briefly discussed the creation of energy-superposition
states in strontium Bose-Einstein condensates based on col-
lisional interactions. Reference [25] proposed the creation of
energy-superposition states of light, and Ref. [26] reported the
realization of a 14-ion Greenberger-Horne-Zeilinger (GHZ)
state, with 24 eV energy separation but without mentioning the
energy-superposition aspect. The present proposal promises
much greater sensitivity to energy decoherence thanks to a
much longer lifetime (compared to Ref. [25]) and to both
increased size and longer lifetime (compared to Ref. [26]).
Related work involving Rydberg states includes Refs. [27,28],
which describe detailed studies of the creation of moderate-
size cat states using Rydberg blockade. The number of
atoms is limited to the order of 10 in these schemes due to
competing requirements for the presence and absence of a
blockade between different Rydberg transitions in the same

ensemble. They also do not use metastable optical clock states,
resulting in only small differences in energy between the two
components. Reference [29] briefly discussed the creation of
moderate-size (15 atoms) GHZ-type states in strontium atom
chains, without mentioning the energy-superposition aspect.
Reference [29] uses attractive Rydberg interactions but not the
uniform Kerr-type interaction used in the present work. The
number of atoms in Ref. [29] is limited by unwanted transitions
to other nearby many-body states [30].
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FIG. 1. Proposed scheme for creation of large energy superpo-
sition. (a) Level scheme in strontium. The pseudospin states are the
singlet ground state |g〉 and a long-lived excited triplet state |e〉.
An off-resonant laser field �r dresses the excited state with the
Rydberg level |r〉. This creates a Kerr-type interaction between the
atoms in the excited state. The resonant laser field �e is applied for
population rotation. (b)–(d) The evolution of the Husimi distribution
of the collective spin state on the Bloch sphere. Application of the
Kerr-type interaction splits the initial coherent spin state (CSS) in
(b) into a superposition of two CSSs at opposite poles of the Bloch
sphere in (c). Applying a π/2 rotation along the x axis following the
cat creation process results in a superposition of all atoms being in
the ground or excited state.
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This paper is organized as follows. We begin with a
description of our scheme in Sec. II. In Secs. III and IV we
quantify the effects of the main imperfections and decoherence
sources on the fidelity of the final cat state. In Sec. V we find
an estimate for the size of cat states that can be realized with
high fidelity. We then show that our scheme is experimentally
realizable in Sec. VI, followed by a detailed discussion in
Sec. VII, demonstrating that the effects of atomic motion,
molecular formation, collective many-body decoherence, level
mixing, and blackbody-radiation-induced decoherence can
be suppressed. We conclude the paper in Sec. VIII with a
discussion of the application of energy-superposition states
for the detection of energy decoherence.

II. SCHEME

We now describe our proposal in more detail. In an
ensemble of N ultracold strontium atoms trapped in a three-
dimensional (3D) optical lattice [31], one can consider a
two-level system consisting of the singlet ground state |g〉
and a long-lived excited triplet state |e〉, which are separated
in energy by 1.8 eV. An interaction between the atoms can be
induced by dressing the clock state with a strongly interacting
Rydberg level [20–22], as shown in the level scheme of Fig. 1.
This induces a light shift (LS) on the atoms which depends on
the Rydberg blockade.

A. Kerr-type Rydberg dressed interaction

When the entire ensemble is inside the blockade radius,
an off-resonant dressing laser with Rabi frequency �r and
detuning � couples the state with no Rydberg excitation
|ψ1〉 = ⊗i |φi〉 (where φ ∈ {e,g}) to a state where only one
of the atoms in the |e〉 level gets excited to the Rydberg level
|ψ2〉 = ∑

i |φ1 · · · ri · · ·φN 〉 with an enhanced Rabi frequency√
Ne�r [32], where Ne is the number of atoms in the excited

state. In general both �r and � can be time dependent.
Over the Rydberg dressing process, the Hamiltonian can be
diagonalized instantaneously,

D ≡ UHU † =
(

E− 0
0 E+

)
, (1)

where E± = �
2 (1 ±

√
1 + Ne�2

r

�2 ) and

U =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (2)

with θ = tan−1(
√

Ne�r

�
). The Schrodinger equation expressed

in the dressed-state basis |ϕ〉 = U |ψ〉 is

i
∂

∂t

(|ϕ−〉
|ϕ+〉

)
=

(
E− −iθ̇/2
iθ̇/2 E+

)(|ϕ−〉
|ϕ+〉

)
. (3)

To avoid the scattering of population from the ground
dressed state to the excited dressed state, the coupling term
θ̇ =

√
Ne�r�̇−√

Ne��̇r

Ne�2
r +�2 should be smaller than E+ (see Sec. VI

for examples).

FIG. 2. Effect of higher-than-second-order nonlinearities [from
the higher orders of Eq. (5)] on the fidelity of the cat state. The
weak-dressing parameter (w = �r

2�
) has to be reduced for larger atom

numbers N in order to keep a fixed fidelity Fnl [Fnl = 0.7 (green), 0.8
(red), 0.9 (blue) from top to bottom]. The insets show (a) the Husimi
Q function for an N = 100 cat state with Fnl = 0.9 (corresponding
to the black cross in the main figure), as well as (b) the corresponding
revival. The approximate revival of the initial CSS at the time t = 2τc

proves the existence of a quantum superposition at t = τc.

Focusing on the ground dressed state, the effective light
shift of the system is

E− = �

2

(
1 −

√
1 + Ne�2

r

�2

)
. (4)

Within the weak-dressing regime (
√

Ne�r

�
� 1) one can Taylor

expand the light shift to

E− = �

2

{
1 −

[
1 + 1

2

Ne�
2
r

�2
− 1

8

N2
e �4

r

�4
+ O

(
Ne�

2
r

�2

)3
]}

,

(5)

which can be simplified to E− ≈ (N2
e − Ne

w2 )χ0

2 , with w = �r

2�

and χ0 = 2w4�. Therefore adiabatic weak dressing of
atoms to the Rydberg level imposes an effective Kerr-type
Hamiltonian

H =
(

N̂e
2 − N̂e

w2

)
χ0

2
(6)

on the atoms within the blockade radius. The effects of
higher-order terms in the Taylor expansion are discussed in
Sec. III A and Fig. 2.

B. Generation of a cat state on the equator of the Bloch sphere

The two levels |gi〉 and |ei〉 for each atom are
equivalent to a spin-1/2 system with Pauli matrices
σ (i)

x = (|gi〉〈ei | + |ei〉〈gi |)/2, σ (i)
y = i(|gi〉〈ei | − |ei〉〈gi |)/2,

and σ (i)
z = (|ei〉〈ei | − |gi〉〈gi |)/2 acting on the atom at site

i. We define collective spin operators Sl = ∑N
i=1 σ

(i)
l . A

coherent spin state (CSS) is defined as a direct product of
single spin states [33]

|θ,φ〉 = ⊗N
i=1[cos θ |g〉i + sin θeiφ|e〉i], (7)

where all the spins are pointing in the same direction and φ

and θ are the angles on the (collective) Bloch sphere. The
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CSS can also be represented as [33]

|η〉 = |θ,φ〉 = (1 + |η|2)−N/2
N∑

Ne=0

ηNe

√
C(N,Ne)|N ; Ne〉,

(8)

where η = tan(θ/2)e−iφ , C(N,Ne) ≡ (
N

Ne
), and |N ; Ne〉 =

1√
C(N,Ne)

∑N
i1<i2<···<iNe

|g1 · · · ei1 · · · eiNe
· · · gN 〉 is the Dicke

state of Ne excited atoms, where |N ; Ne〉 is an alternative rep-
resentation of the |J M〉 basis with N = 2J and Ne = J + M .

Let us now discuss the time evolution of an initial CSS |η〉
under the Kerr-type interaction of Eq. (6). The state evolves as

|ψ(t)〉 = (1 + |η|2)−N/2
N∑

Ne=0

ηNee−iH t
√

C(N,Ne)|N ; Ne〉.

(9)
At the “cat creation” time τc = π

χ0
the linear term of Eq. (6)

creates a phase rotation, which changes the state to |η′〉 =
|e−i

χ0
2w2 τcη〉. The quadratic term produces coefficients of (1)

and (−i) for even and odd Ne’s, respectively. The state can
then be rewritten as a superposition of two CSSs, namely,

|ψ(τc)〉 = 1√
2

(ei π
4 |η′〉 + e−i π

4 | − η′〉), (10)

in analogy with Ref. [23]. Continuing the interaction for an-
other τc, one can observe the revival of the initial CSS. This re-
vival can be used as proof of the successful creation of a quan-
tum superposition at τc since a statistical mixture of CSS at τc

would evolve into another mixture of separate peaks [16,34].

C. Creating the energy cat

To create an energy-superposition state we thus have to
apply the following steps. Starting from the collective ground
state |g〉⊗N , we apply a π/2 pulse on the |e〉-|g〉 transition
that results in the maximum eigenstate of the Sx operator
|η = 1〉 = ( |e〉+|g〉√

2
)⊗N , as shown in Fig. 1(b). Since the atoms

are confined to the ground states of optical lattice traps,
the position-dependent phase factors associated with laser
excitation of the clock state are constant over the course of
the experiment and can be absorbed into the definition of
the atomic basis states (detailed discussion can be found in
Sec. VII A). We now apply the Kerr-type interaction. The
large coefficient of the linear term in the Hamiltonian leads
to a rotation of the created cat state on the equator of a
Bloch sphere. Applying accurate interaction timing, the state
can be chosen to be a superposition of two CSSs pointing
in opposite directions along the y axis on the Bloch sphere,
|ψ(τc)〉 = 1√

2
(ei π

4 |η = i〉 + e−i π
4 |η = −i〉) [see Fig. 1(c) and

inset (a) of Fig. 2]. For example, a timing precision of δτc =
2w2

5π
√

N
τc results in an adequate phase uncertainty of δφ = 1

5
√

N

(examples can be found in the realization in Sec. VI). Applying
another π

2 pulse on the created cat state results in |e〉⊗N +|g〉⊗N√
2

,
which is a superposition of all the atoms being in the ground
and excited states, as shown in Fig. 1(d). The created state is a
superposition of two components with very different energies.
To verify the creation of the energy cat state one needs to
rotate the state back to the equator and detect the revival of the

initial CSS under the Kerr-type interaction [see also inset (b)
of Fig. 2].

III. IMPERFECTIONS

In this section we quantify the effects of the most important
imperfections with direct impact on the achievable cat-state
size. Other sources of imperfections, which can be made to
have relatively benign effects on our scheme, are discussed in
Sec. VII.

A. Higher-order nonlinearities

First, we only considered the linear and quadratic terms
in Ne in our Hamiltonian, which is accurate for very weak
dressing. Applying stronger dressing fields yields a stronger
interaction but also increases the importance of higher-order
terms in Eq. (5). To quantify the effects of these higher orders,
we calculate the fidelity of the cat state |ψ ′(τc)〉 generated
based on Eq. (4) with respect to the closest ideal cat state,

Fnl = maxθ,φ,α,τc
|〈ψ ′(τc)| 1√

2
(|θ,φ〉 + eiα|π − θ,φ + π〉)|2.

(11)

Figure 2 shows that the weak-dressing parameter w = �r

2�
has

to be reduced for larger atom numbers in order to achieve a
desired fidelity.

B. Effects of interaction inhomogeneities

We also considered a uniform blockade over the entire
medium, leading to a homogeneous interaction. In practice
the interaction is not perfectly homogeneous. One can apply
fourth-order perturbation theory to find the interaction of the
entire weakly dressed system as [35,36]

Ĥ =
∑
i<j

χ (rij )σ̂ i
eeσ̂

j
ee − �2

4�
N̂e. (12)

The many-body interaction is the sum of binary interactions

χ (rij ) = χ0
R6

b

r6
ij + R6

b

, (13)

where Rb = | C6
2�

|1/6 is the blockade radius in the
weak-dressing regime. This binary interaction has a
plateau-type nature [see Fig. 3(a)]. The inhomogeneity of
the interaction introduces a coupling to nonsymmetric states
since the Hamiltonian no longer commutes with the total spin
operator ([S2,H ] �= 0). We evaluate the fidelity of a cat state
created by the realistic nonuniform interaction with respect
to the ideal cat state. Writing the pair interactions χ (rij ) in
terms of small fluctuations εij around a mean value χm, we
decompose the Hamiltonian into a sum of two commuting
terms, V̂H =∑

i<j

χmσ̂ i
eeσ̂

j
ee− �2

4�
N̂e=χm( N̂2

e −N̂e
2 )− χ0

2w2 N̂e≈ χm
2 N̂2

e − χ0
2w2 N̂e and

V̂IH =∑
i<j

εij σ̂
i
ee σ̂

j
ee, corresponding to the homogeneous and

inhomogeneous parts, respectively. While the homogeneous
part leads to an ideal cat state, the inhomogeneous part reduces
the fidelity by a factor FIH = |〈η = 1|e−iV̂IH τc |η = 1〉|2, where
|η = 1〉 = ( |e〉+|g〉√

2
)N is the initial CSS. Taylor expanding the
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FIG. 3. Effect of interaction inhomogeneity. (a) Plateau-type
interaction between each pair of atoms dressed to the Rydberg
state. The interaction is uniform for separations up to of order the
blockade radius. (b) Infidelity caused by interaction inhomogeneity as
a function of cat-state size N for a constant blockade radius. Nonlinear
fidelity is set to Fnl = 0.9, the blockade radius Rb = 3.6μm is created
by Rydberg dressing to n = 80, and the atoms are considered to be
in a cubic trap with space diagonal D and lattice spacing of 200 nm.

inhomogeneous part of the evolution operator, one obtains
an estimate for the fidelity as explained in Appendix A.
Figure 3(b) shows the resulting infidelity as a function of
cat-state size for constant blockade radius.

IV. DECOHERENCE

The main source of decoherence in our system is depopu-
lation of the Rydberg level, which also determines the lifetime
of the dressed state (τẽ ≈ τrw

−2). In this section we identify
different Rydberg decay channels and discuss their effects on
the fidelity of the cat state. Loss due to collisions is reduced
by the use of an optical lattice trap with a single atom per site.
Reference [37] implemented a strontium optical clock using
a blue-detuned lattice (trap laser wavelength 390 nm) with a
collision-limited lifetime of 100 s, demonstrating that loss due
to the trap laser can be made negligible. Other sources of de-
coherence including blackbody-radiation-induced transitions,
collective many-body decoherence, and molecular formation
will be discussed in Sec. VII.

A. Rydberg decay channels

The main source of decoherence in our system is de-
population of the Rydberg level, which also determines the
lifetime of the dressed state (τẽ ≈ τrw

−2). The Rydberg-state
depopulation rate can be calculated as the sum of spontaneous
transition probabilities to the lower states (given by Einstein
A coefficients) [38–40]

τ−1
r =

∑
f

Aif = 2e2

3ε0c3h

∑
Ef <Ei

ω3
if |〈i|�r|f 〉|2, (14)

where ωif = Ef −Ei

�
is the transition frequency and 〈i|�r|f 〉 is

the dipole matrix element between initial and final states (see
Appendix B). The summation is only over the states |f 〉 with
lower energies compared to the initial state. Using a cryogenic
environment [41,42], blackbody-radiation-induced transitions
are negligible; see Sec. VII C for detailed discussion.

Considering the dressing to 5sns 3S1 in our proposal,
the possible destinations of dipole transitions are limited

to 3
P0,1,2, due to the selection rules. Around 55% of the

transferred population will be trapped within the long-lived
3P2 states, which we refer to as qubit loss. Around 35% of
the population is transferred to 3P1 states, which mainly decay
to the ground state |g〉 = 5s2 1S0 within a short time (e.g.,
τ5s5p 3P1

= 23 μs [43]), which we refer to as deexcitation.
The remaining 10% of the population is transferred to 3P0

states. Half of this population (5% of the total) contributes to
qubit loss, bringing the total loss to 60%, while the other half
(also 5% of the total) is transferred to the excited state, which
effectively causes dephasing of |ẽ〉 because the photon that is
emitted in the process contains which-path information about
the qubit state.

B. Effects of Rydberg decoherence on the cat state

The three decoherence types discussed in the previous
section have different effects on the cat state. Loss and
deexcitation completely destroy the cat state if they occur,
while dephasing is both unlikely and relatively benign. We
now explain these statements in more detail.

The majority (60%) of the dressed state’s decay goes to
nonqubit states |ẽ〉 ⇒ δ|ẽ〉|0〉p + √

1 − δ2|l〉|1〉p, where δ2 =
e−0.6γẽτc and |1〉p represents the emitted photon. In addition to
loss, 35% of the dressed state’s decay is deexcitation |ẽ〉 ⇒
δ|ẽ〉|0〉p + √

1 − δ2|g〉|1〉p, where δ2 = e−0.35γẽτc .
Decay of a single dressed-state atom transforms an atomic

symmetric Dicke state |N ; Ne〉 into a combination of the
original state |N ; Ne〉, a symmetric Dicke state |N ; Ne − 1〉
with one fewer excitation, and N different other Dicke states
(|N − 1; Ne − 1〉ĩ |l〉i) in which the ith atom is transferred
to a nonqubit state (the qubit is lost) but which are still
symmetric Dicke states for the remaining atoms. The re-
sulting state is

√
P0|N ; Ne〉|0〉P + √

PdeNe|N ; Ne − 1〉|1〉P +√
PlNe

N

N∑
i=1

|N − 1; Ne − 1〉ĩ |l〉i |1〉P , where Pk = λke
−λk is the

probability of losing or deexciting (k = l or de) an atom over
the cat creation time, with λk = γ(k)

N
2 τc (note that Ne ∼ N

2
since the cat creation happens on the equator of Bloch sphere)
and P0 = 1 − Pl − Pde. Here we focus on the regime where
the probability of a single atom decaying is sufficiently small
that the probability of two atoms decaying can be ignored.

Tracing over the lost qubit and the photonic state, one

obtains the density matrix ρc = P0ρ0 + Pl

N

N∑
i=1

ρi
l + Pdeρde,

where ρ0 and ρde are in the symmetric subspace with total spin
(J = N

2 ), while ρi
l are in N different symmetric subspaces

with total spin (J = N−1
2 ). The ρ0 component corresponds

to the ideal cat state. All the other components have very
small fidelity with ideal cat states, primarily because the decay
happens at a random point in time, which leads to dephasing.
For example, deexcitation of an atom at tde ∈ [0,τc] leads to

|ψde
c (tde)〉 = 2−N/2

N∑
Ne=1

√
C(N,Ne)

× e−iE(Ne−1)(τc−tde)
√

Nee
−iE(Ne )tde |N ; Ne − 1〉,

(15)
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where E(Ne−1) represents the dressed-state energy of (Ne − 1)
excited atoms [see Eq. (6)]. Inserting the expressions for ENe

and ENe−1, one sees that deexcitation adds a linear term
(iNeχ0tde) to the phase. This creates a rotation around the
z axis on the Bloch sphere. The uncertainty in the time of
decay tde therefore dephases the cat state, resulting in the
formation of a ring on the equator of the Bloch sphere,
which has a small overlap with the ideal cat state. The
fidelity of the resulting density matrix compared to an ideal
cat state in the same subspace (which corresponds to the
case where deexcitation happens at tde = 0) can be written
as Fde = 1

τc

∫ τc

0 |〈ψde
c (tde)|ψde

c (tde = 0)〉|2dtde. When the size
of the cat state is increased from N = 10 to N = 160,
the fidelity of the generated cat in the deexcited subspace
is reduced from Fde = 0.2 to Fde = 0.045. The fidelity in
each of the N subspaces where one atom was lost can be
calculated in a similar way, yielding equivalent results. The
total fidelity in the presence of Rydberg decoherence is then
Fdc = P0 + PlFl + PdeFde ≈ P0.

About 5% of Rydberg decoherence will transfer back to the
excited state, which acts as dephasing (modeled by a Lindblad
operator |ẽ〉〈ẽ|). The dephasing operator commutes with the
Hamiltonian for cat-state creation. Its effect can therefore be
studied by having it act on the final cat state. For example,
it can cause a sign flip of |e〉 for the first atom, resulting
in a state ( |e〉+i|g〉√

2
)( |e〉−i|g〉√

2
)⊗(N−1) + ( |e〉−i|g〉√

2
)( |e〉+i|g〉√

2
)⊗(N−1).

Applying the π/2 rotation results in a new energy cat
|g〉|e〉N−1+|e〉|g〉N−1√

2
, which is clearly still a large superposition in

energy. So the effect of dephasing errors is relatively benign.
Moreover, given the small relative rate of dephasing compared
to loss and deexcitation, the probability of having a sign flip
over the cat creation time for the case with decoherence fidelity
of Fdc = 0.8 (considered in Fig. 4) will only be 1%.

In conclusion, the fidelity of the cat state is, to a good
approximation, equal to the probability of not losing or
deexciting any qubits over the cat creation time, Fdc = P0 =
e−0.95 N

2 γẽτc .

30 40 50 60 70 80 90 100
0

40

80

120

160

FIG. 4. Maximum achievable cat-state size as a function of the
principal number n of the Rydberg state. Rydberg-state decay is
adjusted to cause 20% infidelity. The interaction inhomogeneity is
set to create less than 1% infidelity (see Fig. 3), and the higher-order
nonlinearities are set to create 10% (red circles), 20% (purple pluses),
and 30% (blue squares) infidelity (see Fig. 2). The inset shows the
required cat creation time as a function of n for the case where the
higher-order nonlinearities cause 10% infidelity.

V. ESTIMATE OF REALIZABLE CAT-STATE SIZE

Taking into account the mentioned imperfections, Fig. 4
shows the achievable cat-state size as a function of the principal
number n. Up to n ∼ 80, the size increases with n. Higher
n leads to a stronger interaction, hence allowing weaker
dressing, and to smaller loss, favoring the creation of larger
cats. However, for n ∼ 80 the diminishing spacing between
neighboring Rydberg levels (which scales like n−3) limits the
detuning and hence the interaction strength since χ0 = 2w4�

and w has to be kept small (see Fig. 2). As a consequence, larger
cat states cannot be achieved at higher principal numbers.

Here we justify the behavior of Fig. 4 in a more detailed
scaling argument. For a constant fidelity the maximum achiev-
able cat-state size N at each principal number n is limited
by Rydberg decay, Fdc = e−λ, where λ = 0.95N

2 τcγẽ. Let us
analyze how λ scales with N and n. The Rydberg decay rate
scales as γ|ẽ〉 ∝ w2n−3. In order to have a constant nonlinearity
fidelity of Fnl = 0.8, the dressing strength w has to scale like
N−0.84 (see Fig. 2). The cat creation time τc = π

χ0
∝ w−4�−1

scales differently before and after the transition point n ∼ 80.
Before the transition point the scaling of � can be obtained
by noting that the trap size is a fraction of the blockade
radius, � = C6

2R6
b

∝ n11

N2 , where the exact value of the fraction

coefficient is determined by FIH (see Fig. 3). Therefore we
conclude that λ ∝ N4.7

n14 , which states that before the transition
point larger cat states are realizable by dressing to higher
principal numbers, N ∝ n3 for constant fidelity. However,
after the transition point the small level spacing imposes a
limit on the detuning, � ∝ n−3. Therefore after the transition
point λ ∝ N2.7, which is independent of n. This prevents the
realization of larger cat states at higher principal numbers.
One sees that superposition states of over 100 atoms are
achievable with good fidelity. In Fig. 4 the interaction inho-
mogeneity is tuned to create less than 1% infidelity. Dressing
to an S orbital is desired due to its isotropic interaction in
the presence of trap fields. In Fig. 4, after the transition point
in n the detuning is chosen such that 90% of the Rydberg
component of the dressed state is 5sns 3S1. Note that without
a cryogenic environment the maximum achievable cat-state
size in Fig. 4 would be reduced from 165 to 120 atoms (see
Sec. VII C).

VI. EXPERIMENTAL REALIZATION

Experimental implementation of our scheme seems feasi-
ble. Rydberg excitations in strontium have been realized over
a wide range up to n = 500 [44–47]. Rydberg dressing of two
atoms has been used to create Bell-state entangled atoms [48].
Recently, Rydberg dressing of up to 200 atoms in an optical
lattice has been reported [49], where the collective interaction
was probed using interferometric techniques. Reference [49]
also identified a collective many-body decay process, which
is, however, not a limiting factor for our scheme, as discussed
in Sec. VII D.

The Rydberg state 5sns 3S1 is accessible from the 5s5p 3P0

level with a 317-nm laser field. The required Rydberg transition
Rabi frequency �r/2π (up to 15 MHz) can be obtained with
the tunable single-frequency solid-state laser of Ref. [50]. The
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relatively large detuning values (4 MHz < �/2π < 340 MHz
in Fig. 4) make the interaction stable against Doppler shifts.

Fulfilling the adiabaticity condition discussed in Sec. II A
is not difficult. In a highly adiabatic example, θ̇

E+
= 0.01, the

dressing laser can be switched from zero to �r

2π
= 15 MHz

over 18 ns (for �
2π

= 270 MHz and 165 atoms). For this
example, 99.991% of the population returns to the ground state
at the end of dressing, so adiabaticity is almost perfect. This
adiabatic switching time of 18 ns is many orders of magnitude
shorter than the related cat creation time of 1.4 ms. Adequate
interaction timing precision is also required to align the created
cat on the equator of Bloch sphere as explained in Sec. II C. For
the 165-atom cat state mentioned above, a timing precision of
order δτc = 2w2 δφ

χ0
= 4�

5
√

N�2
r

≈ 7.5 ns is required for a phase

precision of order δφ = 1
5
√

N
= π/150.

The Husimi Q function can be reconstructed based
on tomography, i.e., counting atomic populations after
appropriate rotations on the Bloch sphere. Modern
fluorescence methods can count atom numbers in the
required range with single-atom accuracy [49,51].

VII. OTHER SOURCES OF IMPERFECTION

A. Effects of atomic motion in the optical lattice

Laser manipulation of the atomic state leads to phases that
depend on the atomic position. Atomic motion could therefore
lead to decoherence. To suppress this effect, in the present
proposal the atoms are confined to the ground states of the
optical lattice traps. As a consequence, all position-dependent
phase factors are constant over the course of the experiment
and can be absorbed into the definition of the excited states.
We now explain these points in more detail. Let us consider
the j th atom, and let us assume that it is initially in the
ground state (zero-phonon state) of its optical lattice site.
We will denote the corresponding state |g〉j |0〉j . Applying
the part of the Hamiltonian that is due to the laser to this state
gives [�e(t) eikx̂j |e〉j 〈g|]|g〉j |0〉 = �e(t)|e〉j eikx̂j |0〉j . We can
rewrite the position operator x̂j as the sum of the constant
position of the j th site of the trap x0j plus a relative position

operator ξ̂j = s(â†
j + âj ), where s =

√
�

2mωtr
is the spread of

the ground-state wave function, ωtr is the trap frequency, and
(âj ,â

†
j ) are the phononic annihilation and creation operators

of the j th atom. In the Lamb-Dicke regime (η = ks√
2

� 1) one
can expand the exponential to get

eikx̂j = eikx0j eikξ̂j = eikx0j [l + iη(âj + â
†
j ) + O(η2)]. (16)

The phase factor eikx0j is constant over the course of the ex-
periment and can be absorbed into the definition of the atomic
basis states by defining |e′〉j ≡ eikx0j |e〉j . The Hamiltonian
describing the laser excitation can now be written in the new
basis |g,0〉j , |e′,0〉j , |e′,1〉j as⎛

⎝ 0 �e η�e

�e 0 0
η�e 0 ωtr

⎞
⎠

⎛
⎝|g,0〉j

|e′,0〉j
|e′,1〉j

⎞
⎠. (17)

Starting from the spin and motional ground state |g,0〉j ,
the probability of populating the state |e′,1〉j , corresponding to

the creation of a phonon, will be negligible if �eη � ωtr . With
the parameters that we considered in our proposal (�e ∼ 1
kHz, η = 0.1, ωtr

2π
∼ 400 kHz) [31], the population of |e′,1〉j

will be eight orders of magnitude smaller than the population
in the motional ground state.

B. Effects of high density

The relatively small lattice spacing of order 200 nm might
raise concerns about molecule formation and level mixing. At
high atomic densities there is another potential loss channel,
Rydberg molecule formation [52]. Molecule formation only
occurs when the attractive potential due to Rydberg electron-
neutral atom scattering moves the two binding atoms to a very
small separation (of order 2 nm), where the binding energy
of the molecules can ionize the Rydberg electron and form
a Sr2

+ molecule [53]. Without the mass transport, stepwise
decay or ionization of the Rydberg atom is ruled out by
the quantization of Rydberg state, as has been discussed and
experimentally tested in [52], because even at high densities
the small molecular binding energy of nearby atoms is orders
of magnitude smaller than the closest Rydberg levels for all
the principal numbers. The occurrence of ion-pair formation
is also highly unlikely in this system [53]. We propose that
confining the atoms by an optical lattice can prevent the
described mass transport and completely close the molecule
formation loss channel. High atomic density can also lead to
strong level mixing at short distances [54,55]. However, the
experiment of Ref. [48] shows that the plateau-type interaction
can persist in the presence of strong level mixing because most
molecular resonances are only weakly coupled to the Rydberg
excitation laser.

C. Effects of blackbody radiation

Blackbody radiation (BBR) could reduce the lifetime by
transferring the Rydberg state population to neighboring
Rydberg levels (with both higher and lower principal numbers
n), as illustrated in Fig. 5(a). The BBR-induced transition
probability is given by the Einstein B coefficient �BBR =∑
f

Bif = ∑
f

Aif

e

�ωif
kB T −1

[38–40], where T is the environment

temperature, kB is the Boltzmann constant, and both ωif and
Aif are defined in Sec. IV A.

At environment temperatures of 300, 95 [41], and 3 K [42],
including the BBR-induced transitions increases the total
decoherence rate �ẽ by 120%, 40%, and 1% [see Fig. 5(b)]
for n ≈ 80, which results in maximum achievable cat-state
sizes of 120, 150, and 165 atoms, respectively (considering
Fnl = 0.7, Fdc = 0.8). Note that cryogenic environments
with 95 and 1 K were used in a strontium lattice clock
experiment [41] and in a cavity QED experiment with
Rydberg atoms [42], respectively.

BBR could also disturb the Ramsey-type interferometry
used for detecting energy decoherence by producing an ac
Stark shift; this effect is quantified in Sec. VIII. Furthermore,
BBR-induced decoherence could be inhomogeneous due to
temperature inhomogeneities in the environment. This would
introduce unwanted coupling to nonsymmetric Dicke states in
the cat creation process. The use of a cryogenic environment
significantly suppresses these effects as well.
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D. Effects of collective many-body decoherence

BBR-induced transitions to neighboring Rydberg levels
[see Fig. 5(a)] can also lead to collective many-body de-
coherence [49,56]. The interaction between the target nS

Rydberg level and some of the populated neighboring n′P
levels is of a strong long-range dipole-dipole type due to the
formation of Förster resonances. This strong interaction causes
an anomalous broadening [56]. The mentioned decoherence
process only starts after the first BBR-induced transition
occurs. However, the weak dressing strength and small
ensemble size (N < 200) in our scheme make the probability
of populating the target Rydberg state and, consequently,
neighboring Rydberg levels very small. For example, at
environment temperatures of 300, 95, and 3 K and for
dressing to n ≈ 80, the probabilities of not populating the
strongly interacting neighboring Rydberg levels over the cat
creation time for cat-state sizes of 120, 150, and 165 atoms,
respectively, are PBBR(0) = exp(−N

2 w2�BBRτc) = 98.63%,
99.26%, and 99.96%, respectively. It has been observed in
the realization of many-particle Rydberg dressing [49] that
when the transition probability is low enough [of the order of
PBBR(0) � 82%, as can be calculated from the information
provided in Ref. [49]], the many-body decoherence effects
are negligible, and the decoherence rate is dominated by the
Rydberg depopulation rate (see Sec. IV).

VIII. TESTING ENERGY DECOHERENCE

In the context of modifications of quantum physics, de-
coherence in the energy basis is quite a natural possibility to
consider [17–19]. It is usually introduced as an additional term
in the time evolution for the density matrix that is quadratic in
the Hamiltonian, dρ

dt
= i

�
[H,ρ] − σ

�2 [H,[H,ρ]], which leads
to a decay of the off-diagonal terms of the density matrix in the
energy basis according to ρnm(t) = ρnm(0)e−iωnmt e−γEt [18],
where γE = σω2

nm. Here ωnm is related to the energy difference
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FIG. 5. Depopulation of strontium Rydberg levels due to BBR-
induced transitions. (a) BBR-induced transition rates (Einstein B

coefficients) from 5s80s 3S1 to the neighboring 5snp 3
P2 (dark blue),

5snp 3
P1 (light blue), and 5snp 3

P0 (blue) levels. The sum of these
transition rates gives the total BBR-induced depopulation rate �BBR .
The inset is a 20 times enlarged view. (b) Rydberg depopulation rates
due to spontaneous decay (�s shown as blue diamonds) and BBR-
induced transitions �BBR at environment temperatures of 300 K (red
circles), 95 K [41] (purple circles), and 3 K [42] (green circles) as a
function of the principal number. The use of a cryogenic environment
significantly suppresses the unwanted effects of BBR.

of the two components, and σ can be interpreted as a time
scale on which time is effectively discretized, e.g., related
to quantum gravity effects. It is of interest to establish
experimental bounds on the size of σ , which could, in
principle, be as small as the Planck time (10−43 s).

The corresponding decoherence rate for the energy cat
in this proposal would be γE = σ (N�E

�
)2, where �E is the

energy difference between the ground and excited states of
each qubit and N is the cat-state size. To detect the energy
decoherence one prepares the energy cat state, followed by a
waiting period. To observe the decoherence effect, one detects
the Ramsey fringes for the revival. The visibility of the Ramsey
interference is also sensitive to other decoherence sources,
where in the absence of a dressing laser the dominant ones are
the trap loss rate �, which reduces the visibility by a factor
exp(−N�t), and phase diffusion, which is explained below.

The large energy difference of the cat state increases the
sensitivity of the Ramsey interferometry that we are using for
the detection of energy decoherence. Therefore it is important
to consider the effect of fluctuations in the detuning between
the laser and the atomic transition. Let us first note that
the cat state is more sensitive to multiparticle (correlated)
than single-particle (uncorrelated) noise, which results in a
phase diffusion affecting the visibility of Ramsey fringes
by e−N2δ2

c t
2

and e−Nδ2
uct

2
, respectively [26]. Comparing the

two cases, correlated fluctuations should be
√

N times more
stabilized than uncorrelated fluctuations. The most important
source of noise in our system is the fluctuation of the laser
frequency. A probe laser linewidth as narrow as 26 mHz [57]
has been achieved in optical atomic clock experiments, and
there are proposals for much smaller linewidths [58,59] with
recent experimental progress [60], justifying our example of a
10-mHz linewidth (see below).

Other sources of multiparticle and single-particle noise
have been well studied in the context of strontium atomic
clocks [61,62] and are comparatively negligible. Here we
address a few of them in our scheme. One of the noise
sources is the trap field’s intensity fluctuation; however,
using the magic wavelength makes the atomic transition
frequency independent of the trap laser intensity. Considering
the variation of the Stark shifts due to the trap laser as a
function of frequency at the magic wavelength [37], the relative
scalar light shifts could be kept within 0.1-mHz uncertainty by
applying a trap laser with a 1-MHz linewidth. In addition to the
scalar light shift, the inhomogeneous polarization of trap fields
in 3D optical lattices can result in an inhomogeneous tensor
light shift [63]; however, the use of the bosonic isotope 88Sr
with zero magnetic moment cancels the tensor light shift [31]
in our scheme. Environmental temperature fluctuations δT also
lead to atomic frequency fluctuations that are proportional to
T 3δT due to the BBR-induced light shift [61]. This is another
reason why a cryogenic environment is advantageous. For
example, controlling the environment temperature of 95 K [41]
to within a range of δT = 1 K keeps the BBR-induced noise
shift below 1 mHz.

A conservative estimate of the experimentally measurable
energy decoherence rate can be obtained by considering
the case where the energy decoherence dominates all other
decoherence sources during the waiting period. Increasing the
cat-state size N is helpful because it allows one to enhance
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the relative size of the energy decoherence contribution.
For example, choosing t ∝ N−1 keeps the loss and phase
diffusion contributions fixed, while the energy decoherence
still increases proportionally to N . Using a cat state with
N = 165 atoms (see Fig. 4), which corresponds to N�E =
300 eV, assuming a laser linewidth of 10 mHz (see above),
and considering a trap loss rate of � = 10 mHz [52], the
minimum detectable discretization time scale σ is of order
10−34 s. This would improve the measurement precision by
4 and 11 orders of magnitude compared to what is possible
based on Refs. [25,26], respectively.
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APPENDIX A: EFFECTS OF INTERACTION
INHOMOGENEITY

Here we explain the steps in calculating the effects of
inhomogeneous interaction on the cat state’s fidelity FIH =
|〈η = 1|e−iV̂IH τc |η = 1〉|2 (see Sec. III B). Taylor expand-
ing e−iV̂IH τc and considering the expectation values 〈η =
1|σ̂ i

ee|η = 1〉 = 1/2 and 〈η = 1|σ̂ i
eeσ̂

j
ee|η = 1〉 = 1

4 + δij

4 , one
obtains an estimate for the fidelity. The first order of the

expansion is zero because we defined εij as fluctuations around
a mean value. The second order can be calculated using 〈η =
1|V̂ 2

IH |η = 1〉 = 1
2

∑
i �=j

1
2

∑
l �=m

Cijlmεij εlm, where Cijlm = 1/16

if all the indices are unequal, Cijlm = 1/8 if there is a pair
of equal indices, and Cijlm = 1/4 when there are two pairs of
equal indices. The convergence of the expansion for the fidelity
can be tested numerically. In Fig. 3(b) the ratio of the third
order to the second order of the expansion for FIH is O(3)

O(2) =
10−6,5 × 10−5,8 × 10−4,8 × 10−3 for D

Rb
= 0.1,0.2,0.3,0.4,

respectively, suggesting good convergence in this regime.

APPENDIX B: DIPOLE MATRIX ELEMENTS

In strontium one needs to consider both valence electrons
(|i〉 = |n1in2i l1i l2iLiSiJiMi〉) in the calculation of the dipole
matrix elements [40]

|〈i|�r|f 〉|2 = max(l2i ,l2f ) (2Lf + 1)(2Jf + 1)(2Li + 1)

×
{
Jf 1 Ji

Li S Lf

}2{
Lf 1 Li

l2i l1i l2f

}2

× |〈n2i l2i |r|n2f l2f 〉|2,
(B1)

where L and S are the total orbital angular momentum and
spin, l and s refer to individual electrons, and J and M refer to
total angular momentum. The active electron in the transition
is labeled by 2, 〈n2i l2i |r|n2f l2f 〉 is the radial dipole matrix
element between the initial and final states, and the curly
bracket is a Wigner 6j symbol.

[1] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland,
Science 272, 1131 (1996).

[2] M. Brune, E. Hagley, J. Dreyer, X. Maı̂tre, A. Maali, C.
Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett.
77, 4887 (1996).

[3] G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Rev. A 56,
2249 (1997).

[4] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw,
and A. Zeilinger, Nature (London) 401, 680 (1999).

[5] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).
[6] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E.

Lukens, Nature (London) 406, 43 (2000).
[7] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)

413, 400 (2001).
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[39] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H.
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