
PHYSICAL REVIEW A 94, 023407 (2016)
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Cross sections for one- and two-photon detachment of O−(1s22s22p5 2Po) have been determined in a joint
experimental and theoretical study. The absolute measurement is based on the animated-crossed-beam technique,
which is extended to the case of pulsed lasers, pulsed ion beams, and multiphoton detachment. The ab initio
calculations employ R-matrix Floquet theory, with simple descriptions of the initial bound state and the
residual oxygen atom which reproduce well the electron affinity and ground-state polarizability. For one-photon
detachment, the measured and computed cross sections are in good mutual agreement, departing significantly from
previous reference experiments and calculations. The generalized two-photon detachment cross section, measured
at the Nd:YAG laser wavelength, is in good agreement with the R-matrix Floquet calculations. Long-standing
discrepancies between theory and experiment are thus resolved.
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I. INTRODUCTION

The one-photon detachment of the oxygen negative ion
O−(1s22s22p5 2Po) was first investigated some 60 years ago
by Branscomb and Smith [1] and then by Branscomb et al. [2].
A third, absolute measurement by Smith [3] provided slightly
different cross sections, while the relative measurement of
Branscomb et al. [4] extended the photon energy range. Two
later independent absolute measurements [5,6], albeit over a
limited energy range, confirmed the values of [3,4]. These
were thus considered as a reference and have since been
used to normalize relative photodetachment cross sections for
other ions such as C−, B−, O−

2 [7–10]. The determination
of photodetachment cross sections for the open-shell O− ion
remains a challenging task for theories, as electron correlations
and polarization effects play an important role. A number of
attempts over the last few decades (see [11] and references
therein) yielded results that vary widely and do not match
the experimental data, neither in magnitude nor in shape.
The values of the latest and most extensive calculation [11]
lie significantly higher than those of [3,4]. The pronounced
disagreement between theory and experiment and the use of
the latter for normalizing other quantities calls for further
investigation.

The two-photon detachment of O− has not been widely
studied and the agreement between the few results available
is not particularly good. The only existing experiment gives
a generalized cross section of (4.2+1.9

−1.6) × 10−50 cm4 s at a
wavelength of 1064 nm [12]. An early calculation based on
perturbation theory and a one-electron model potential [13]
yields, after interpolation, a value of 1.8 × 10−49 cm4 s, which
is more than four times larger. The results obtained using an
adiabatic theory [14] are almost an order of magnitude larger
than experiment. Clearly, there is room for improvement.

Here, we report the results of a new absolute measurement
of the one-photon and generalized two-photon detachment
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cross sections. The measurement was performed using the
animated-crossed-beam technique which does not require
assumptions about the profiles of the laser and ion beams, and
which has been successfully applied to the photodetachment
of H− [15]. The technique is extended to the two-photon case,
at the price of a few additional, reasonable assumptions. We
have also performed a series of calculations for the one-photon
and generalized two-photon detachment cross section using
the R-matrix Floquet method [16,17]. Standard R-matrix [18]
calculations were also performed for the one-photon case. As
we shall show below, the new theoretical and experimental
values are in good agreement, and depart from the commonly
admitted values.

II. EXPERIMENT

The experimental setup, sketched in Fig. 1, is essentially the
same as that used by Génévriez and Urbain [15]. The oxygen
anions are produced by a duoplasmatron source fed with N2O
gas and accelerated to 4 or 6 keV. The anion beam is directed
towards the interaction region by a set of planar deflectors. Its
direction x in the interaction region is defined by a circular
diaphragm (D1, radius 1 mm) and a rectangular diaphragm
(D2, 1 mm along z, 100 μm along y). These are carefully
aligned with the apertures of the quadrupolar deflector Q and
the detector located downstream to ensure the detection of all
the oxygen atoms produced by the laser. The second diaphragm
is a slit whose width is of the order of the spot size of the
focused laser beam, strongly reducing the background signal
from sections of the ion beam where the light intensity is
negligible.

Different lasers have been used in order to cover a wide
range of wavelengths. For one-photon detachment between
700 and 845 nm, we used a CW Ti:sapphire laser (3900S,
Spectra Physics) pumped by an Ar+ laser (Innova 400,
Coherent). The lines from the same Ar+ laser cover the
range from 457.9 to 514.5 nm. A DPSS laser (Verdi-V10,
Coherent) provides light at a wavelength of 532 nm and
a diode laser (CNI, MDL-III-405) at 405 nm. The laser
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FIG. 1. Experimental setup. D1: circular diaphragm, D2: rectan-
gular diaphragm, RP: rotating glass plate, Q: quadrupolar deflector,
MCP: multichannel plates.

power in the interaction region ranges from 60 mW to a few
hundred mW.

Two-photon experiments require higher intensities, only
attainable with pulsed lasers, and are limited to below the one-
photon threshold (848.6 nm). We used a Q-switched Nd:YAG
laser (Precision II 9030, Continuum) providing nanosecond
pulses with an initial energy of about 500 mJ, which is reduced
to a few mJ by the combination of three methods: (i) varying
the delay between the optical pumping of the Nd:YAG rod and
the opening of the Q switch; (ii) selecting the reflection of the
beam on a bare glass plate; (iii) combining a λ/2 plate and a
polarizing beam splitter.

The pulsed Nd:YAG laser is inherently a multimode laser,
producing chaotic light which can affect the measurement of
multiphoton cross sections [19–21]. To assess the importance
of this in our experiment, we also operated the laser with
a single mode by injecting the light of a seeding laser
(temperature-controlled laser diode) into the cavity. The time
envelope of the output pulse was monitored with a fast
photodiode, and deviation from the single-mode regime due
to temperature variations of the diode clearly appeared as
intensity beatings. The fast photodiode has a rise time of 1
ns, according to the manufacturer.

The laser beam is focused onto the O− beam by an f =
40 cm lens. It then passes through a glass plate mounted on a
high-accuracy rotation stage. By tilting the plate around the x

axis, the laser beam can be vertically displaced, or “animated,”
at will. The relation between the tilt angle and the vertical
displacement follows from the Snell-Descartes law, and has
been checked against direct measurements [15]. Finally, the
light enters and leaves the interaction chamber through laser
windows with antireflection coating. It is then collected on a
power meter for the CW lasers, or a pyroelectric energy meter
for the pulsed laser. The power meter has an accuracy of 3%
and has been recalibrated by the manufacturer prior to the
measurement. The energy meter has an accuracy of 5%. We
checked that the reflectivity and absorbance of the windows
have a negligible impact on the power or energy of the laser
beam, as expected from the manufacturer’s specifications.

After the interaction region, a quadrupole deflects the
remaining negative ions into a Faraday cup, while the neutral
oxygen atoms pass straight through and are collected by
either a channel electron multiplier (CEM) for one-photon
detachment or multichannel plates (MCP) for two-photon de-
tachment. In the one-photon experiment, detection is identical
to that previously described [15]. For two-photon detachment,
the neutrals are counted during a narrow time window
(∼20 ns) delayed with respect to the laser shot by the neutrals’
time of flight (∼ 2.3 μs). The background mainly arises from
collisional detachment with the residual gas and is of the
order of 13 kHz for an ion beam current of ∼100 pA. The
detection of neutral atoms produced by photodetachment is
thus essentially background free due to the brevity of the
inspection window. The detection efficiency of the MCP, 56%,
is estimated by comparing its count rate with that of a CEM
whose efficiency is known [22].

III. ANIMATED CROSSED BEAMS

Absolute cross sections are notoriously difficult to measure
due to the necessity of accurately determining the interaction
volume. The problem is frequently overcome by assuming
reasonable shapes for the interacting beams. However, any
departure from these ideal shapes introduces discrepancies
between data. A much more efficient method consists in
scanning the profile of one of the beams with the other,
the so-called animated-crossed-beam technique (ACBT) first
proposed by Brouillard and Defrance [23,24] for electron-ion
collisions and subsequently applied to one-photon light-matter
interactions [15,25]. It is readily shown that the absolute cross
section depends only on experimental parameters that are easy
to determine accurately, with very few assumptions made
concerning the shape of the interacting beams. The method
relies on sweeping the laser beam along the y axis, i.e.,
perpendicularly to the interaction plane (see Fig. 1), and on
measuring the rate R(Y ) at which neutral atoms are produced,
where Y is the position of the center of the laser beam. The
laser power Plaser and the ion current Iion are continuously
recorded and used to normalize the corresponding value of
R(Y ). The cross section σ (1) is then given by

σ (1) � e v

η

[∫
dYR(Y )

]
�ω

Iion Plaser
, (1)

where v is the speed of the ions, η is the detection efficiency,
�ω is the photon energy, and e is the elementary charge.
Expression (1) is valid for all processes that depend linearly on
the incoming flux of particles, be it ions, photons, or electrons.
In the one-photon experiment, the laser power must therefore
be kept low enough to avoid saturation of the photodetachment
process.

A. Multiphoton extension

It is easy to see why the standard ACBT does not apply to
multiphoton processes. In such cases, the detachment rate p

is the product of the generalized n-photon detachment cross
section σ (n) with the nth power of the photon flux �:

p(x,y,z,τ ) = σ (n)�n
(
x,y,z,τ + x

v

)
, (2)
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where the coordinates (x,y,z) are as defined in Fig. 1 and the
time τ = 0 corresponds to the maximum of the laser pulse
envelope. The final detachment probability P (y,z,τ ), after the
ion has traveled through the laser spot, is given by

P (y,z,τ ) = 1 − exp

[
−1

v

∫ +∞

−∞
dx p(x,y,z,τ )

]
. (3)

As for the one-photon ACBT, we assume that the photon flux
is sufficiently low for n-photon detachment to occur in the
perturbative regime. Expanding the exponential and retaining
the first-order term gives

P (y,z,τ ) � σ (n)

v

∫ +∞

−∞
dx �n

(
x,y,z,τ + x

v

)
. (4)

For each vertical offset Y of the center of the laser beam
with respect to the center of the O− beam, the yield N (Y )
of neutrals is given by integrating the n-photon detachment
probability P over all positions (y,z) within the section S of
the ion beam and over the traversal time τ through the laser
pulse:

N (Y ) = ησ (n)

e v

∫∫
S

dy dz j (y,z)

×
∫

dτ

∫ +∞

−∞
dx �n

(
x,y − Y,z,τ + x

v

)
, (5)

where j (y,z) is the local current density of O−. By integrating
both sides of (5) over Y , we obtain an expression for the
generalized n-photon detachment cross section:

σ (n) = e v

η

[ ∫
dY N (Y )

][ ∫∫
S

dy dz j (y,z)

×
∫∫∫ +∞

−∞
dτ dY dx �n

(
x,y − Y,z,τ + x

v

)]−1

.

(6)

For one-photon processes (n = 1), the integral of � over τ ,
Y , and x reduces to the number of photons per pulse Elaser/�ω,
where Elaser is the laser pulse energy. The integral of j (y,z)
over y and z then reduces to the ion current Iion. Equation (6)
thus generalizes Eq. (1) to the case of pulsed lasers:

σ (1) = e v

η

[∫
dY N (Y )

]
�ω

IionElaser
. (7)

In the multiphoton case (n � 2), the integral of �n over τ , Y ,
and x appearing in Eq. (6) does not reduce to the number of
photons per pulse and the cross section cannot be recovered
as straightforwardly as in the standard ACBT. In the next
section, we present two alternative methods for expressing the
cross section in terms of accurately measurable quantities by
introducing a small set of reasonable assumptions.

First, the confocal parameter of the laser beam is about 2
cm, 20 times larger than the width of the ion beam along the
z axis. Therefore, the variations of the photon flux along z

are negligible in the region where photodetachment occurs.
Second, it is reasonable to assume that �(x,y,z,τ ) can be
factorized into a temporal envelope g(τ ) and a spatial profile
φ(x,y) which, as just explained, does not depend on z. Finally,
we define ρy(y) as the normalized projection of the current

density j (y,z) onto the y axis,∫
dz j (y,z) = Iion ρy(y), (8)

where Iion is the ion beam current.
With the above assumptions, Eq. (5) for the yield N (Y ) can

be written as

N (Y ) =ησ (n)

e v

(n)Iion

×
∫

dy ρy(y)
∫ ∞

−∞
dx φn(x,y − Y ), (9)

where 
(n) is the integral of the nth power of the time profile
of the laser pulse


(n) =
∫ +∞

−∞
dτ gn(τ + x/v) =

∫ +∞

−∞
dτ gn(τ ). (10)

Note that the above equations are valid for continuous ion
beams. Similar equations can be obtained in the case of pulsed
ion beams, as shown in the Appendix A.

B. Generalized two-photon cross sections

We present two alternative methods for expressing the
generalized two-photon cross section [n = 2 in Eq. (9)] in
terms of precisely measurable quantities. The generalization
of these methods to higher numbers of photons (n � 3) is
straightforward.

The first and simplest approach is to approximate the spatial
distribution of the photon flux by a Gaussian,

φ(x,y) = 1

�ω

2Elaser

πw2
0


e−2(x2+y2)/w2
0 , (11)

where w0 is the laser waist and 
 = ∫
dτ g(τ ). The choice of

a Gaussian distribution is justified by the fact that our pulsed
laser operates near the TEM00 mode. The integral of the square
of the photon flux can now be evaluated analytically and the
generalized two-photon cross section is thus given by

σ (2) = ev

ηIion

(
�ω

Elaser

)2

2


(2)
πw2

0

∫
N (Y )dY. (12)

Note that we have made no assumptions about the shape of the
ion beam.

The second method for expressing the integral of φ2, present
in Eq. (9), in terms of easily measurable quantities and without
modeling the shape of the laser beam, exploits the fact that
the transit of the ions through the laser focus amounts to a
tomography of the intensity profile, as shown in Fig. 2.

Let us first define a succession A of integral transforms,
which transforms a function f (x,y) into a function F (Y ) as
follows:

F (Y ) = A[f (x,y)] =
∫

dy ρy(y)
∫ +∞

−∞
dx f (x,y − Y ).

(13)

Equation (9) with n = 2 can then be rewritten as

N (Y ) = ησ (2)

e v

(2)Iion A[φ2(x,y)]. (14)
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FIG. 2. Idealized representation of the experiment. The detach-
ment rate, proportional to the square of the photon flux, is integrated
along the ion trajectory (dotted lines) to obtain the final detachment
probability (thick curve), as in (4). The latter is subsequently
convolved with the normalized projection ρy of the current density
onto the y axis (hatched area) to obtain the yield N (shaded area)
defined in (5).

It is reasonable to assume that φ is symmetric under rotation
around the light propagation axis z as our laser operates near
the TEM00 mode. The integral over the line of sight x can
then be interpreted as the Abel transform of the detachment
probability p = σ (2)φ2 [26]. The standard definition of the
transform appears immediately when rewriting the integral in
cylindrical coordinates

N (Y ) = 2η

e v

(2)Iion

∫
dyρy(y)

∫ +∞

y−Y

dr
rp(r)√

r2 − (y − Y )2
.

(15)

The path integral of an atom traveling in a straight line through
the laser spot corresponds to the Abel transform P (y − Y ) of
the detachment rate p(r) at a vertical position y − Y . The
convolution with the normalized current density ρy(y) in the
second integral subsequently “blurs” the transform P (y − Y ),
similar to the point-spread function of an imaging device [27].
It is possible to recover p(r) from the measured yield N (Y ) by
numerically inverting the two integral transforms using one of
the techniques from the extensive range available [28].

The comparison of ρy with a point-spread function high-
lights the importance of the respective sizes of the ion and laser
beams. If the laser beam is much narrower than the ion beam,
the blurring effect becomes too strong to recover the final
detachment probability. The radius of the ion beam along the
vertical direction must be kept of the order of or smaller than
the waist of the laser beam. To do so, an aperture 100 μm in
height was used to define the ion beam, matching the ∼120 μm
diameter of the laser spot.

Although an analytical formula can be obtained for invert-
ing A, it is in practice cumbersome and involves derivatives of
the measured signal. A more efficient method for performing
the Abel inversion consists in expanding the measured yield
in a basis of functions ψm spanning the “detection” space

N (Y ) =
mmax∑
m=1

cmψm(Y ), (16)

and the detachment rate in a basis of functions ϕm spanning
the “detachment” space

p(r) = A

mmax∑
m=1

cmϕm(r), (17)

where A is a constant. The two basis sets are related through

ψm(Y ) = 2
∫

dy ρy(y)
∫ +∞

y−Y

dr
rϕm(r)√

r2 − (y − Y )2
. (18)

Comparing Eqs. (18) and (15) gives

A = e v

η
(2)Iion
. (19)

Since the pulsed laser used for this study operates near
the TEM00 mode, a basis of Gaussian functions with varying
widths is appropriate:

ϕm(r) = e−r2/[a+(m−1)b]2
. (20)

The parameters a and b and the number mmax of functions
define the interval spanned by the widths of the functions and
their density. They are chosen so that the estimated width of
the laser beam lies close to the center of this interval and that
the upper and lower limits lie sufficiently far away.

The functions ψm are then computed from ϕm using (18).
The Abel transform of a Gaussian function is another Gaussian
function [26]. If ρy is analytical and well behaved, the
convolution by ρy can be derived analytically, otherwise it
must be performed numerically. This is, for example, the case
when ρy is provided as a set of experimental data. The ion beam
in the experiment is well collimated so that we can assume that
ρy is a uniform distribution. Therefore, the basis functions ψm

can be expressed as the difference of two error functions

ψm(Y ) = πw2
m

2L

[
erf

(
Y + L/2

wm

)
− erf

(
Y − L/2

wm

)]
, (21)

with wm = a + (m − 1)b and where L is the width of the ion
beam along the y axis. Since in practice N is measured for a
discrete set of vertical displacements (Y1, . . . ,Yk), expansion
(16) is written as

N = C�, (22)

where N is the row vector of data, C is the row vector of
unknown coefficients (c1, . . . ,cmmax ), and � is the matrix with
elements �ij = ψi(Yj ). The problem of finding the coefficients
C in (22) is in general underdetermined as the number mmax

of basis functions is larger than the number k of data. An
approximate solution to (22) is found by using the non-negative
least-square (NNLS) algorithm [29,30]. The NNLS result was
further checked using a Tikhonov regularization [31], whose
free, smoothing parameter q was chosen at the maximum
curvature of the L curve [32]. After the coefficients C have
been found, the expansions of both N (Y ) and p(r) are known.

Integrating the photon flux over polar coordinates and over
the pulse duration, we obtain

2π


∫
dr r φ(r) = Elaser

�ω
. (23)

Substituting φ(r) =
√

p(r)/σ (2) in (23), squaring both mem-
bers and rearranging, we finally obtain the expression of
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FIG. 3. Number of neutrals per laser pulse (triangles) as a
function of the vertical displacement Y of the laser beam. The data
are an average over 31 vertical scans. It has been normalized for the
laser pulse energy and the ion beam current, and was subsequently
symmetrized. The full line is the result obtained from the basis
expansion.

the generalized two-photon cross section in terms of known
quantities:

σ (2) = e v

η Iion

(
�ω

Elaser

)2

2


(2)

× 4π2

[∫
dr r

√∑
cmϕm(r)

]2

. (24)

The measured signal N (Y ) is included in this expression
through the coefficients cm. All other factors can be measured
precisely, and only reasonable assumptions concerning the ion
and laser beams are necessary.

C. Experimental realization

In practice, the laser beam is vertically scanned across the
ion beam by tilting a glass plate. At each angle, the laser pulse
energy, the ion current, and the yield of neutrals are recorded
during 150 laser shots. The scan is repeated several times in
order to obtain good statistics.

In Fig. 3, we show an example of the measured detachment
yield, normalized for the laser pulse energy and the ion
current, and the corresponding expansion on a basis set
of 300 Gaussian functions with widths corresponding to
laser waists from 30 to 200 μm. We intentionally chose an
oversized basis to test the robustness of the method. The
NNLS algorithm and the Tikhonov regularization method
give the same expansion coefficients to within 2%. They are
nonzero only for two functions with widths corresponding
to laser waists of 60 and 60.7 μm, in excellent agreement
with an independent measurement of the waist. Indeed, by
passing a razor blade at the focal point and measuring the
transmitted energy as in [15], we estimated the radius of the
laser spot to be 60 μm. Using (12), the value obtained for
the cross section is σ (2) = 1.49 × 10−49 cm4s, while (24) gives
σ (2) = 1.50 × 10−49 cm4s.

TABLE I. Experimental uncertainties arising from systematic
effects.

One-photon Two-photon

Vertical displacement Y [15] 2% 2%
Ion velocity v [15] 1% 1%
Power/energy meter Plaser/Elaser 3% 5%
Detection efficiency η 4% 5%
Photodiode rise time 2%
Slit height L 7% to 15%

The uncertainties arising from systematic effects are listed
in Table I. The finite response time of the fast photodiode
yields an uncertainty in the ratio 
2/
(2), which is estimated
to lie below 2%. The energy meter has a 3% calibration
accuracy according to the manufacturer, and a comparison
with another energy meter gives a 5% uncertainty. The latter
thus provides a conservative estimate for the pulse energy error.
The uncertainty in the coefficients of the expansion is lower
than 3%. The 3% uncertainty in the height L of the slit, which
enters the determination of the basis functions �m in Eq. (21),
results in an uncertainty from 7% to 15% in the cross section
depending on the quality of the measurement. The total error
is then computed following the NIST guidelines [33], and is a
simple quadrature sum of the different uncertainties.

IV. THEORY

Cross sections for one- and two-photon detachment of O−
were calculated using the R-matrix Floquet theory, which
provides an ab initio, nonperturbative description of atomic
processes such as multiphoton ionization and laser-assisted
electron-atom scattering [16,17,34]. We consider an atomic
system comprising N + 1 electrons in the presence of a
homogeneous, linearly polarized laser field of frequency ω,
represented in the dipole approximation by the vector potential
A0ε̂ cos ωt . Since the vector potential is periodic, the wave
function describing this system can be expanded in a Floquet-
Fourier series

�(XN+1,t) = e−iEt

∞∑
n=−∞

e−inωt�n(XN+1), (25)

where XN+1 is the set of space and spin coordinates of all
N + 1 electrons. Substituting (25) into the full time-dependent
Schrödinger equation results in an infinite set of time-
independent coupled equations for the Floquet components
�n(XN+1) which, following the usual R-matrix procedure,
are solved in different regions of configuration space using
locally adapted bases, gauges, and reference frames.

The R-matrix inner region is bounded by a sphere of
radius a chosen to encompass the charge distribution of the
N -electron states �i(XN ) of the residual atom to be taken
into account. The Floquet components �n(XN+1) are then
expanded in a discrete basis of fully antisymmetrized wave
functions built from �i(XN ) and a set of continuum orbitals
uj (r) for the photoelectron, which satisfy a fixed logarithmic
boundary condition at r = a. A set of (N + 1)-electron bound
configurations vanishing at r = a is also included to account

023407-5
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for short-range correlation and, more critically in the context
of photoionization, to describe the initial bound state of the
system. In the inner region, the atom-field interaction is de-
scribed in the length gauge which is the most appropriate since
the radial coordinate of each electron remains smaller than a.
Diagonalizing the full (N + 1)-electron Floquet Hamiltonian
yields a set of eigenvalues and eigenvectors that are used to
build the R-matrix, defined as the inverse of the matrix of
logarithmic derivatives of the reaction channel wave functions,
evaluated at the boundary of the inner region.

The outer region of configuration space corresponds to
one electron moving beyond the inner region boundary while
the other N electrons remain within. The interaction of the
field with the bound electrons is still described in the length
gauge but its interaction with the ejected electron is now
represented in the velocity gauge, which is more appropriate
at large distances. Exchange between the ejected and bound
electrons is negligible in the outer region so that the equations
to be solved reduce to an infinite set of coupled second-order
differential equations. These are solved using a close-coupling
approach combined with log-derivative propagation up to a
sufficiently large distance, where the propagated solutions are
matched with a set of asymptotic solutions. These are defined
using an asymptotic expansion satisfying Siegert boundary
conditions in the acceleration frame. This matching is only
possible at particular complex quasienergies E = ε − i�/2,
where ε is the Stark-shifted energy of a dressed state and
� is its total ionization rate. The quasienergies are found by
an iterative search in the complex energy plane. Following
lowest-order perturbation theory, the generalized cross section
for ionization by n photons is related to the total ionization
rate by

σ (n) =
(

8πωα

I

)n

�, (26)

where I is the laser field intensity and α is the fine-structure
constant. All quantities in (26) are expressed in atomic units.

It is important to note that the linearly polarized laser field
introduces a preferred direction in space and hence breaks its
spherical symmetry. As a result, the total angular momentum
L of the full (N + 1)-electron system is no longer a good
quantum number, but its projection ML on the polarization
axis still is. The generalized cross sections must therefore be
calculated for each possible value of ML and then averaged in
order to compare with experiment. In the case studied here, the
initial state of O− has a 2Po symmetry and hence ML = 0, ±
1. The generalized cross section for two-photon detachment,
assuming a statistical distribution of alignments, is then given
by

σ (2) = 1
3

(
σ

(2)
ML=0 + 2σ

(2)
|ML|=1

)
. (27)

The first step in our R-matrix Floquet calculations is to
define a set of wave functions representing the states of
the residual oxygen atom. These are based on configuration
interaction (CI) expansions, built from a basis of atomic
orbitals. The (N + 1)-electron R-matrix basis functions, used
to describe the initial bound state of O− as well as the final
arrangement channels, are then formed by coupling these
atomic states to a set of continuum orbitals representing the

photoelectron. The atomic orbitals are also used to define the
(N + 1)-electron bound configurations. The main difficulty
is obtaining a reasonable balance in the two CI expansions:
increasing the number of residual atomic states included in the
calculation, as well as improving their description by increas-
ing the number of configurations in their CI expansion, greatly
increases the size of the basis used to represent the negative
ion state without necessarily improving its electron affinity.
This is illustrated for example in the extensive calculations
for the photodetachment of O− by Zatsarinny and Bartschat
[11], where increasing the number of atomic states included
in the CI expansion for the initial O− state first improves but
then deteriorates the calculated electron affinity compared to
its measured value. Furthermore, since oxygen is an open-shell
atom, polarization of the atomic states is expected to play an
important role in the photodetachment process. An accurate
value for the ground-state static polarizability, for example, in
principle requires a large number of atomic bound states as well
as a good representation of the continuum which accounts for
approximately 75% of the total value. Zatsarinny and Bartschat
[11], for example, used a basis expansion involving 108 target
states and pseudostates to obtain a polarizability of 4.07 a3

0,
compared to the experimental value of (5.2 ± 0.4) a3

0 [35].
In the current experiment, the laser intensity is relatively

weak, so that there is little probability of the system absorbing
more than two photons. We also consider low photon energies,
such that in both the one- and two-photon cases only the
O(1s22s22p4 3P) ground state can be populated. It therefore
seems excessive in this case to use a large CI expansion includ-
ing many target states and pseudostates in order to accurately
treat polarization effects. Instead, we use a CI expansion that
is voluntarily restricted in order to keep the photoionization
calculations simple, yet reproducing with reasonable precision
the electron affinity of the O−(1s22s22p5 2Po) initial state as
well as the polarizability of the O(1s22s22p4 3P) ground state.
We include the three physical 3P, 1D, and 1S states of oxygen
associated with the 1s22s22p4 ground configuration, built
using the 1s, 2s, and 2p Hartree-Fock orbitals [37]. We also
add the 1s22p6 configuration to the 1S term as this accounts
for nearly 4% of the configuration interaction in this state.
In order to represent the ground-state polarizability, we add

three long-range polarized pseudostates 3So, 3Po, and 3Do built
using pseudo-orbitals 3̄s, 3̄p and 3̄d. These pseudo-orbitals
are expressed as linear combinations of Slater orbitals whose
parameters are determined using a perturbative-variational
approach to maximize the ground-state polarizability rather
than energies, as implemented in the computer package CIVPOL

[38,39]. All configurations involving a single excitation
from the n = 2 shells are included in the CI expansion for
these pseudostates. The polarizability of the O(1s22s22p4 3P)
ground state thus obtained is 5.08 a3

0, well within the error
bars on the experimental value of (5.2 ± 0.4) a3

0 [35]. The
energies of all six states included in our calculations are given
in Table II.

The set of basis functions for the (N + 1)-electron system
includes all configurations built from each of these six atomic
states coupled to a continuum orbital un�, with � � 5 and
n � 20, together with all (N + 1)-electron bound terms gen-
erated from one-electron excitations of the two configurations
1s22s22p5 and 1s22s2p6. The boundary of the R-matrix inner
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TABLE II. Energies in atomic units of the six states and
pseudostates of oxygen used in this work. The observed values are
taken from the NIST Atomic Spectra Database [36].

Absolute Relative Observed

3P −74.809 370 0.0 0.0
1D −74.728 719 0.080 651 0.071 944
1S −74.662 385 0.146 986 0.153 615
3So −74.226 311 0.583 060
3Do −74.052 693 0.756 677
3Po −73.994 430 0.814 940

region was taken to be 20 a0. The electron affinity for the
O−(1s22s22p5 2Po) state was determined using the standard
suite of R-matrix computer programs to be 0.05 380 a.u.,
while the value obtained in the R-matrix Floquet calculations
described below is 0.053 799 a.u., in relatively good agreement
with the experimental values of 0.053 694 95(7) a.u. and
0.053 695 00(10) a.u. obtained, respectively, by photodetach-
ment microscopy [40] and photodetachment threshold spec-
troscopy [41]. The experimental value is in fact the electron
affinity between the fine-structure ground states of the negative
ion and neutral atom. By computing the weighted average
of the fine-structure components in the ground multiplets as
derived from experiment [40] and the NIST Atomic Spectra
Database [36], we find an electron affinity of 0.053 78 a.u.,
close to the value obtained in the calculations.

We have performed several R-matrix Floquet calculations,
retaining 1 emission and up to 4 absorption components in
the Floquet-Fourier series (25), for various intensities ranging
from 105 W cm−2 up to 2 × 108 W cm−2, in order to verify
the convergence and stability of the cross sections. In the case
of one-photon detachment, we have also performed a standard
R-matrix calculation in which the photodetachment process is
treated perturbatively in the outer region: the cross section is
then related to the dipole matrix element between the initial
bound and final continuum state, expressed in either length or
velocity form (see, for example, [18] and references therein).

V. RESULTS AND DISCUSSION

A. One-photon detachment

The present results for one-photon detachment are shown
in Figs. 4 and 5, along with previous calculations and
measurements. Figure 4 compares the R-matrix Floquet results
with those of the current and four previous experiments [3–6]
which were in mutual agreement to within their error bars.
Just above threshold, the present measurement is in agreement
with that by Lee et al. [5]. For photon energies above 2.2
eV, however, it is about 20% larger than the other three
experiments, increasing with energy, while the experimental
data of [3,4,6] present a plateau with a slightly negative slope.

The measurements by Smith and by Branscomb et al. were
performed in a crossed-beam configuration. The light from a
carbon arc lamp was sent through quasimonochromatic filters
onto a beam of O− and the cross section was inferred by
carefully measuring the photoelectron current [1]. This might
have been underestimated, however, since the pronounced dip

FIG. 4. Experimental cross sections for the one-photon detach-
ment of O−: open circles, absolute measurement [3]; full circles,
relative measurements [4], normalized to the values from [3]; crosses,
relative measurement [5] normalized to the D− cross section; full tri-
angles, absolute measurement [6]; full squares, present measurement.
The solid line is the present R-matrix Floquet calculation. The error
bars are the combined statistical and systematic uncertainties.

in the asymmetry parameter β indicates a major change in the
angular distribution of the emitted photoelectrons (see Fig. 6),
possibly causing an incomplete collection of the electrons as
their energy increases, thereby resulting in a too small cross
section.

The recent experiment of Hlavenka et al. [6] yields values
for the cross section matching those of earlier work. It is
based on negative ion depletion in a multipole trap and thus
avoids the possible loss of photoelectrons just mentioned. As in
this work, the measurement relies on scanning the laser beam
across the ion trap in order to avoid having to determine the

FIG. 5. Theoretical cross sections for the one-photon detachment
of O−: solid line, present R-matrix Floquet calculation; dashed and
broken lines, present standard R-matrix calculation in, respectively,
the length and velocity forms; dashed-dotted and chain lines, B-
spline R-matrix (BSR) results in length and velocity forms [11]; full
triangles, perturbation theory using a one-electron model potential
[13]. The full squares are the present experiment.
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FIG. 6. Asymmetry parameter for the one-photon detachment
of O−(1s22s22p5 2Po). The solid and dashed lines are the results
obtained from the standard R-matrix calculation using, respectively,
the length and velocity forms of the dipole matrix. The full squares
[53], full triangles [51], full circles [52], and the cross [50] are
experimental values and the dotted line is the formula from Ref. [52].

interaction volume, but the assumptions made concerning the
ion density are more stringent. The quoted uncertainty seems
rather low, considering the typical accuracy of power meters
and the deflection technique employed to scan the trapping
volume.

For the sake of completeness, one must mention the early
absolute measurements by Branscomb and Smith [1] and later
by Branscomb et al. [2], performed with a similar experimental
setup. These early values were omitted from a subsequent
publication by the same authors [4] and are thus not reproduced
here. Their magnitudes are lower than those of the present
experiment, while their shape is very similar. Several studies
[42,43] also measured in great detail the photodetachment
signal close to threshold and, by fitting the signal with the
Wigner threshold law [44] or using the modified effective range
theory of O’Malley et al. [45], provided accurate values for
the electron affinity of O− and the spin-orbit splittings between
the various fine-structure components of the ground state of
the anion and the neutral atom.

Figure 5 compares our experimental results with those of
various calculations. There is good agreement between the
R-matrix cross sections in length form and those from the
R-matrix Floquet method which uses the most appropriate
gauge in each region of configuration space. The R-matrix
cross sections in velocity form are about 25% smaller. The
length and velocity results from a more extensive calculation
by Zatsarinny and Bartschat [11], based on the B-spline
R-matrix (BSR) method and employing a large number of
accurate target states, are in much better mutual agreement, but
are approximately 20% larger than those of the R-matrix length
and R-matrix Floquet calculations. The early calculation by
Robinson and Geltman [13], who used a one-electron model
potential adjusted to reproduce the electron affinity, yields
results in reasonable agreement with the cross sections from
the R-matrix Floquet and R-matrix (length form) calculations.
We note that there are a number of other theoretical studies,

including semiempirical calculations, whose results are con-
siderably different in both magnitude and shape from those in
Figs. 4 and 5 [46–49].

All theoretical results presented here are 20% to 35%
larger than the previous experimental data [3–6]. Zatsarinny
and Bartschat argued for a systematic error of about 35%
in the experimental cross sections of Smith and Branscomb
et al. [3,4]. Similar values, within experimental error bars,
were also obtained by two other independent measurements
[5,6]. Moreover, the shapes of the curves of the measured and
calculated cross section do not match. Above 2.2 eV, the ex-
perimental data are nearly constant with photon energy while
the theoretical values increase monotonically. The present
measurement is in agreement with the present calculation and
that by Robinson and Geltman [13], as both lie within the
experimental uncertainty. It is, however, about 15% lower than
the calculation by Zatsarinny and Bartschat [11]. The shape
of the experimental cross section deviates from the R-matrix
Floquet and R-matrix calculations by a steeper rise just above
threshold and a more gentle slope at higher energy.

In Fig. 6, we compare the asymmetry parameter β obtained
from our standard R-matrix calculation with experimental data
[50–53] and the formula of Hanstorp et al. [52]. The length and
velocity forms of the R-matrix calculation are very similar for
photoelectron energies from threshold to just below 1.6 eV,
and are in very good agreement with the measured values.
Differences between the length and velocity forms become
more apparent at higher photoelectron energies. These results
thus demonstrate that our restricted CI description is capable
of reproducing reasonably well the one-photon detachment
process, despite the fact that we use essentially only Hartree-
Fock wave functions for the three physical atomic states. This
gives us further confidence in the model when turning to the
two-photon detachment process.

B. Two-photon detachment

Our results for the two-photon detachment of
O−(1s22s22p5 2Po) are shown in Fig. 7. The dotted-dashed,
broken, and full curves correspond, respectively, to the
R-matrix Floquet results for ML = 0, | ML |= 1 and their
statistically averaged sum (27). The parameters of the
R-matrix Floquet calculations are the same as for one-photon
detachment. We have verified that the generalized cross
sections remain stable with increasing laser intensity up to
1010 W cm−2. The averaged sum displays a maximum for
a photon energy in the region of 0.95 eV, corresponding to
a photoelectron energy of about 0.234 eV, coming mainly
from the | ML |= 1 contribution which is dominant over
most of the energies considered here. The results of the
perturbation theory calculation by Robinson and Geltman
[13] also display a similar maximum albeit some 10% larger
than in the R-matrix Floquet case. The results of Gribakin
and Kuchiev [14,54] are about twice those of the R-matrix
Floquet calculation. They were obtained from an analytical
formula for the n-photon detachment cross sections (n � 2)
of negative ions, derived from an adiabatic-theory approach.
This expression should give better results when more photons
are absorbed. At the photon energy of 1.165 eV, corresponding
to a Nd:YAG laser, the R-matrix Floquet calculations yield a
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FIG. 7. Generalized cross section for two-photon detachment
of O−(1s22s22p5 2Po). The dotted-dashed and broken lines are
the present R-matrix Floquet results for ML = 0 and ML = 1,
respectively, while the solid line is their statistical average (27). The
full triangles are the results from perturbation theory based on a
one-electron model potential [13]. The thin solid line is the result
obtained from the adiabatic-theory approach [14]. The full circle is
the experimental value of [12] while the full square is our absolute
experimental result. The error bars are the combined statistical and
systematic uncertainties.

generalized cross section of 1.55 × 10−49 cm4 s, some 20%
smaller than that obtained using perturbation theory [13]
and thus much larger than the older experimental value [12].
Our new measurement gives a generalized cross section of
(1.50 ± 0.16) × 10−49 cm4 s, almost four times larger than
the previous experiment and thus in very good agreement with
the results of our R-matrix Floquet calculations and those
obtained by Robinson and Geltman [13].

Let us now consider the influence of the photon statistics
on the experimental generalized cross section. It is well
established that temporal fluctuations of the intensity due to
mode beating enhance the efficiency of n-photon ionization
and detachment [19–21]. In the limit of an infinite number of
modes, the enhancement factor reaches n!. Pulsed, high-power
lasers exhibit in general a large number of modes and previous
studies of two-photon detachment have taken the photon
statistics into account by dividing the value of the cross
section extracted from the data by two [12]. Our Nd:YAG
laser also operates in the multimode regime, but can be seeded
to force single-mode operation. It is possible to characterize
the distribution of the modes by measuring the temporal profile
of the laser pulses. Figure 8(a) shows such profiles measured
with a 25-GHz photodiode connected to a 3-GHz oscilloscope,
with the full line corresponding to the unseeded case and the
dashed line to the seeded one. Figure 8(b) shows the norm of
the Fourier transform of the difference between the temporal
envelope of a single pulse and the mean temporal envelope,
averaged over 500 pulses. In the seeded case, the temporal
envelope is smooth, as expected for single-mode operation,
and, in the Fourier spectrum, the single peak centered at the
origin is reminiscent of the Fourier transform of the envelope.
In the multimode case (full line), intensity modulations due

FIG. 8. (a) Temporal profile of the pulses from the seeded
(dashed) and unseeded (full) Nd:YAG laser, and (b) norm of the
Fourier transform of the difference between the temporal profile of a
single pulse and the mean temporal profile, averaged over 500 pulses.
The temporal profile of the seeded laser has been shifted in time for
clarity. The vertical dashed lines indicate integer multiples of the free
spectral range of the laser cavity.

to mode beating appear on the temporal profile and, in the
Fourier spectrum, eight additional peaks are observed at
integer multiples of the 237-MHz frequency, which matches
the free spectral range of the cavity. The laser pulse therefore
consists of at least nine modes.

The generalized cross section extracted from the data
is (1.59 ± 0.27) × 10−49 cm4 s in the multimode case and
(1.50 ± 0.16) × 10−49 cm4 s in the single-mode case, there-
fore, surprisingly, no effect of photon statistics is observed
within the error bars. The possible reasons for such an
absence are twofold. First, the number of modes is low, hence,
deviations due to photon statistics may be lower than n!. As an
example, the experiment of Lecompte et al. [20] considered
the 11-photon ionization of xenon for an increasing number
of modes and approximately reached the n! factor when
more than 100 modes were present in the cavity. Second, in
the present crossed-beam configuration, the traversal time of
the anions through the diameter of the square of the spatial
intensity profile is about 273 ps while the intensity modulations
due to mode beating have a period higher than ∼1 ns. As
the ions travel through the laser spot, the pulse envelope is
essentially constant, and photon statistics do not influence the
two-photon detachment process.

VI. CONCLUSIONS

We have reported on the joint theoretical and exper-
imental determination of photodetachment cross sections
of the oxygen anion. The one-photon cross section was
measured using the animated-crossed-beam technique and is
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significantly larger than those from previous experiments. This
has important implications since the O− photodetachment
cross section has often been used to normalize relative cross
sections for other negative ions. The theoretical calculations
based on R-matrix Floquet and standard R-matrix theory
used relatively simple representations of the atomic and ionic
states. Despite their apparent simplicity, these wave functions
reproduce very well the electron affinity of oxygen and the
polarizability of its ground state. The results obtained are
in much better agreement with the present experiment than
another more extensive calculations [11] with better thresholds
but less accurate values for the affinity and polarizability.

The generalized two-photon detachment cross section
was determined using R-matrix Floquet theory with the
same atomic wave functions. The absolute measurement was
performed with an extension of the animated crossed-beam
technique, based on the deconvolution and Abel inversion
of the detachment signal through a basis expansion. The
experimental result, at the Nd:YAG wavelength (1604 nm),
is in good agreement with the R-matrix Floquet calculation,
thus resolving another long-standing discrepancy.

Extending the range of wavelengths studied, both for
one- and two-photon processes, is a perspective for future
work. Of particular interest is the opening of the O(1D)
one-photon detachment threshold for photon energies above
3.43 eV. The photodetachment of other negative ions can
also be considered. Although extensive calculations exist for
one-photon detachment, theoretical data are much scarcer for
multiphoton detachment of, for example, C−. Experimental
data are also limited, often to just the Nd:YAG and Ar+ laser
wavelengths. The basis expansion method is readily applicable
to higher-order processes, e.g.,, the three-photon detachment
of F−. Finally, the animated-crossed-beam technique is not
restricted to photodetachment, but can also be applied to pho-
toionization and photodissociation. These will be considered
in future work.
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APPENDIX: PULSED ION BEAMS

In the main part of the paper, we considered the case of
a continuous ion beam. However, pulsed ion beams are also
frequent, e.g., when using a pulsed supersonic expansion or

when buffer-gas cooling is applied prior to the interaction with
the laser beam. This appendix shows how the ACBT equations
can be modified in order to account for such situations.

The two pulsed beams yield two time coordinates for the
ions: (i) the coordinate t , relative to the beginning of the ion
burst; (ii) the coordinate τ , relative to the center of the laser
pulse envelope. The delay T between the beginning of the ion
burst (t = 0) and the center of the laser pulse envelope (τ = 0)
is an experimental parameter and in principle can be adjusted
at will. The coordinates t and τ are related through τ = t − T .

The yield N (Y,T ) of neutrals now depends on the delay T

and Eq. (5) must be modified accordingly:

N (Y,T ) = ησ (n)

e v

∫
dt

∫∫
S

dy dz j (y,z,t)

×
∫ +∞

−∞
dx �n

(
x,y − Y,z,t − T + x

v

)
. (A1)

By integrating both sides of (A1) over Y and T , we obtain an
expression similar to (6):

σ (n) = e v

η

[∫∫
dY dT N(Y,T )

][ ∫
dt

∫∫
S

dy dz j (y,z,t)

×
∫∫∫ +∞

−∞
dT dY dx �n

(
x,y−Y,z,t−T + x

v

)]−1

.

(A2)

For one-photon processes (n = 1), the integral of the photon
flux � over T , Y , and x reduces to the number of photons per
pulse Elaser/�ω. The integral of the current density j over t ,
y, and z is the number of ions per pulse multiplied by the
elementary charge eNion. Therefore, Eq. (A2) becomes

σ (1) = v

η

[∫∫
dT dY N(Y,T )

]
�ω

NionElaser
. (A3)

For multiphoton processes (n � 2), and under the same
assumptions as in Sec. III A, an equation analogous to (10)
can be obtained from (A2):∫

dT N(Y,T ) = ησ (n)

v

(n)Nion

∫
dy ρy(y)

×
∫ ∞

−∞
dx φn(x,y − Y ). (A4)

Procedures identical to those of Sec. III B can then be used to
obtain an expression for the generalized n-photon detachment
cross section in terms of precisely measurable quantities. The
ACBT can therefore accommodate the use of pulsed ion beams
at the expense of an additional scan of the delay between the
ion and laser pulses.
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