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This paper presents a full three-dimensional (3D) comparison between experiment and theory for 24 MeV O8+

single ionization of the 2s ground state of lithium and the 2p excited state. Two theoretical approximations are
examined: the three-body continuum distorted-wave (3DW) and three-body continuum distorted-wave–eikonal
initial state (3DW-EIS). Normally, there is a significant difference between these two approaches and the 3DW-EIS
is in much better agreement with experiment. In this case, there is very little difference between the two approaches
and both are in very good agreement with experiment. For the excited 2p state, the 3D cross sections would exhibit
a mirror symmetry about the scattering plane if all three magnetic sublevels were excited in equal proportions.
For the present experiment, the 2p+1 (m = +1) sublevel is dominantly excited (quantization axis is the incident
beam direction) and for this case there is a magnetic dichroism which is observed both experimentally and
theoretically.
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I. INTRODUCTION

The importance of studies of atomic collisions in the
context of the few-body problem (FBP) has frequently been
pointed out [1–4]. The essence of the FBP is that the
Schrödinger equation is not analytically solvable for more than
two mutually interacting particles even when the underlying
forces are precisely known. Therefore, theory has to resort to
extensive modeling effort to obtain numerical solutions and
this tends to require very large computational resources. The
approximations used in these models have to be tested by
detailed experimental data. The most sensitive tests of theory
are offered by kinematically complete experiments, in which
the momenta of all collision fragments are determined and
from which fully differential cross sections (FDCSs) can be
extracted. A particularly suitable collision reaction to study
the FBP is ionization of the target because here the final
state involves at least three unbound particles. In contrast,
capture or excitation processes kinematically represent two-
body scattering processes and, as a result, few-body effects
tend to be less pronounced than in ionization.

Since the pioneering work of Ehrhardt et al. [5], FDCS
measurements have been performed routinely for target ion-
ization by electron impact [3,5–10] (for a review, see [10]).
These studies have led to the development of a large variety
of theoretical models ranging from perturbative approaches
based on distorted-wave methods [11,12] or methods includ-
ing final-state electron-electron interactions exactly [13–16]
to nonperturbative time-independent methods [2,17,18] to
nonperturbative time-dependent methods [19]. For atomic
hydrogen and helium targets, these studies have resulted in
major advancements of our understanding of the collision
dynamics and these problems can be considered as essentially
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“solved.” However, there are still major issues for larger atoms
and molecules.

Studying target ionization by ion impact, both experimen-
tally and theoretically, is much more challenging. Kinemat-
ically complete experiments are hampered because the large
projectile mass results in very small (for fast heavy-ion-impact
immeasurably small) scattering angles and projectile energy
losses (relative to the incident energy). Theoretically, the large
projectile mass makes a pure quantum-mechanical treatment
of the process very difficult because the description of the
projectile requires accounting for an enormous number of
angular momentum states of the scattered projectiles. As
a result, distorted-wave treatments for heavy particles are
currently not possible. With the advent of cold-target recoil-
ion momentum spectroscopy (COLTRIMS) [20,21], also
known as a reaction microscope (ReMi), kinematically com-
plete experiments for ion-impact ionization became feasible
[22–28] (for a review, see [28]). These measurements sparked
significant theoretical activities as well. Initially, these studies
were restricted to perturbative methods [29–36], but more
recently nonperturbative calculations have been reported
[37–39].

Given the experimental and theoretical challenges in
studying ionization by ion impact, it is not surprising that our
understanding of the few-body dynamics is significantly less
complete than for electron impact. Part of the discrepancies
between experiment and theory can be associated with the
projectile coherence properties [40–43], which were not
accounted for in theoretical models until recently and which
have an insignificant effect on cross sections for electron
impact. In addition, for highly charged ions, higher-order
contributions are much stronger than for electron impact and
also contribute to larger discrepancies between experiment
and theory. Finally, the experimental resolution, which tends
to be somewhat worse than for electron impact, complicates
the comparison to theory.
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Another limitation of kinematically complete experiments
for ion impact is that only a small variety of target species are
accessible. COLTRIMS is only feasible for gaseous targets of
relatively small mass number because the momentum resolu-
tion gets worse with increasing mass. These limitations were
overcome with the recent development of MOTReMi [44].
In this device a magneto-optical trap (MOT), providing a
very cold target and thereby improving the overall momentum
resolution by about a factor of 3, is combined with a ReMi.
With this apparatus, kinematically complete experiments
for ion impact ionization of targets other than helium and
molecular hydrogen, namely, for lithium, became feasible.
Previously, double-differential ejected electron spectra were
reported [45,46], but using the new MOTReMi apparatus
FDCS were measured for the first time [47].

There are several features offered by a lithium target
which lead to qualitative differences to helium in the collision
dynamics. First of all, the radial nodal structure of the ground-
state wave function of the valence electron (2s) leads to richer
structures in the FDCS. Second, the valence shell contains
only a single electron and the inner shell is far away from
the valence shell, both spatially and energetically. As a result,
electron-electron correlation effects are expected to be much
less important than in helium. Finally, a significant fraction
of the target atoms gets excited to the 2p state in the field of
the cooling laser. Due to the magnetic field of the trap, this
excited state is Zeeman split and the energetically lowest lying
Zeeman state (m = ±1, depending on the polarization of the
magnetic field) is predominantly populated. As a result, the
target is spin polarized, which leads to asymmetries in the
FDCS for 2p ionization, also known as magnetic dichroism
(or sometimes called orientational dichroism).

It is certainly of considerable interest to understand to what
extent the few-body dynamics is affected by these features.
However, the experimental data for a lithium target were only
recently reported. As a result, theoretical studies have also
recently started to shift focus from helium to lithium [47–
52]. In this article, we present a comprehensive comparison
between experiment and theory covering a broad range of
kinematic parameters for ionization both from the ground state
and from the 2p state. Some fully differential cross sections
obtained from the same experimental run were presented
in Schultz et al. [26] and Hubele et al. [47]. In [26], the
postcollision interaction in 2s ionization of lithium was studied
for the FDCS in the scattering plane. In [47], experiment was
compared to theory for two cases in a plane perpendicular
to the incident beam direction. Here, we compare experiment
and theory for the full three-dimensional cross section for three
cases and for each case examine results in both the scattering
plane and the perpendicular plane (also sometimes called the
azimuthal plane).

II. EXPERIMENT

The experiment was performed with the magneto-optical
trap reaction microscope MOTReMi [44,53] implemented in
the ion storage ring TSR at the Max-Planck Institute for
Nuclear Physics in Heidelberg (MPI). The O8+ ions were
created and accelerated to an energy of 1.5 MeV/amu using
the MPI tandem accelerator. The ion beam was injected in the

storage ring, cooled in the TSR electron cooler, and bunched
with the TSR rf cavity with bunch durations of few ns and
a repetition rate of about 3 MHz. In the MOTReMi, the
ion beam was intersected with a laser-cooled atomic lithium
cloud. After an ionization event, electrons and lithium ions
are extracted toward two detectors in opposite directions by
the combination of an electric (0.6 V/cm) and a homogenous
magnetic (7.7 Gauss) field. Their measured time of flight and
their position on the detector are used to calculate the particles’
momenta.

As compared to conventional experiments with ground-
state atoms prepared in a gas jet, there are essentially two
complications due to the operation of the MOT and the study
of optically excited target atoms: First, the MOT requires
an inhomogeneous magnetic field for the trapping of the
atoms which renders the momentum-resolved detection of
electrons in the reaction microscope impossible. Second, the
(incoherent) optical excitation leads to a mixture of ground
(2s) and excited (2p) state target atoms. Furthermore, this
excitation can never result in an excited-state population
exceeding 50%, so that neither a pure ground state nor a
pure excited state can be achieved while the target atoms
are exposed to the cooling laser light. In this experiment the
excited-state population was around 20%.

Both challenges are mastered by employing a sophisticated
switching cycle of the MOT magnetic field and the cooling
lasers. First, the MOT magnetic field is periodically switched
off for a few milliseconds. During this measurement period, the
atoms are stilled located in the trap region and emitted electrons
can easily be momentum analyzed. Second, the cooling lasers
are also switched off, but only for a duration of a couple of
hundred microseconds. In this period, all the target atoms are
in the 2s ground state (the excited 2p state has a lifetime of
only about 27 ns). Cross sections for excited-state ionization
can be obtained by subtracting the measured spectra for the
periods with the laser beams being switch on (providing the
target in a 2p-2s mixture) and switched off (providing a pure
2s target). The spectrum for the laser beams switched on has to
be weighted with consideration of the excited-state population
of 20% (see, e.g., LaForge et al. [54]).

It should be noted that there is a strong asymmetry in the
population of the magnetic sublevels of the excited 2p state
while the cooling lasers are switched on. This is due to the
homogenous magnetic field of the reaction microscope applied
to extract the collision fragments. The Zeeman splitting of the
excited 2p state along with a red detuning of the laser light from
the 2s-2p resonance results in the predominant population of
the magnetic sublevels with lower energy (in the present case
m = +1). We estimate a population of 0.86, 0.09, and 0.05 for
the magnetic substates with m = +1, 0, and −1, respectively.
A higher degree of polarization can be obtained by employing
optical pumping [53]; however, this technique was not used in
the experiment described here.

III. THEORETICAL MODELS

The two theoretical models considered here are the three-
body distorted-wave (3DW) approximation and the three-body
distorted-wave–eikonal initial-state (3DW-EIS) approxima-
tion. The details of these approaches can be found in [33,55,56]
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so only a brief overview will be given here. These two models
are very similar and the only difference is the initial-state wave
function for the incoming projectile.

To reduce the complexity of the few-body problem, we
consider the outer-shell electron as the active electron and
assume that the other electrons are frozen in their initial
states during the collision process. Consequently, the scattering
process can be treated as a three-body problem. The effects of
the passive electrons are taken into account in the calculation
of the effective potential seen by the ejected electron (the
distorting potential).

Let us consider a typical three-body collision system in
which the projectile P impinges on the initially bound target
ion (i.e., the target atom without the active electron) plus
electron (T + e) subsystem and causes the ejection of the
electron e. In the 3DW approximation, the initial state of the
scattering system is approximated as

�+
i (r,R) = ϕi(r) exp(iKi · R), (1)

where ϕi(r) is the initial bound state for the active electron
which is calculated using the usual self-consistent Hartree-
Fock method. The projectile wave function is a plane wave
with initial momentum Ki and (r,R) are the position vectors
of e and P with respect to the target nucleus. The exact final
state is approximated as

�−
f (r,R) = χ−

e (r)C−
P (Kf ,R)DPe(r,R), (2)

where χ−
e (r) is the continuum state of the ejected electron in

the field of the target ion T , C−
P (Kf ,R) is a Coulomb wave

for P in the field of T with momentum Kf , and DPe(r,R)
is a function that takes into account the Coulomb interaction
between the projectile and the ejected electron (postcollision
interaction, PCI). The ejected-electron wave function χ−

e (r),
called a distorted wave, is a numerical solution of the
Schrödinger equation

(Te + Uf − Ee)χ−
e (r) = 0, (3)

where Te is the kinetic energy operator for the electron, the
distorting potential Uf is a spherically symmetric potential for
the T -e interaction which is calculated using the Hartree-Fock
charge density for the final-state ion, and Ee is the energy of
the ejected electron. With these approximations, the 3DW T
matrix is

T 3DW
fi =

∫
dr dR�−∗

f (r,R)Vi(r,R)�+
i (r,R), (4)

where Vi(r,R) is the Coulomb P -e interaction. This
six-dimensional integral is evaluated numerically.

In a second approach, the exact two-potential form of
the transition amplitude first derived by Gell-Mann and
Goldberger [57]

Tfi = 〈�−
f |W †

f |�+
i 〉 + 〈�−

f |Vi − W
†
f |�+

i 〉 (5)

is used, in which �+
i is the exact initial-state wave function,

�+
i is the asymptotic initial-state wave function of Eq. (1),

�−
f is an approximate final-state wave function [we use

the same one as Eq. (2)] which determines the final-state
perturbation Wf . If we approximate �+

i as �+
i , the above

exact amplitude reduces to the 3DW transition amplitude.

However, Crothers [58] and Crothers and McCann [29] showed
that a better approximation for �+

i is to use an eikonal wave
function which satisfies the correct boundary conditions. This
approximation was called the CDW-EIS (continuum distorted-
wave–eikonal initial state). In this approach, an analytical con-
tinuum wave is used for the ejected electron, whereas we use a
numerical distorted wave for the ejected electron so we call our
approximation 3DW-EIS (three-body distorted-wave–eikonal
initial state). The final-state perturbation potential is given by

Wf (r,R) = 1

�−
f (r,R)

(H − E)�−
f (r,R). (6)

Here H is the total Hamiltonian and E is the total energy of the
system. In order to obtain an analytic expression for the per-
turbation, we assume that the ejected-electron wave function
is a continuum wave with an effective charge of +1. The full
expression for the latter case can be found in Jones and Madi-
son [59]. The eikonal initial-state wave function is given by

�+
i ≈ �EIS

i (r,R)

= �+
i (r,R) exp

[
i
ZP

vi

ln

[
viR − vi · R

vi |R − r| − vi · (R − r)

]]
,

(7)

where vi is the velocity of the projectile with respect to the
target.

The fully differential cross section (FDCS) for scattering of
the projectile into solid angle d�P and ejection of the electron
into solid angle d�e is given by [33,55]

d3σ

d�P d�e dEe

= (2π )4Ne μT e μ2
i ke

Kf

Ki

|Tfi|2, (8)

in which μi is the initial reduced mass of the whole system,
μT e is the reduced mass of the subsystem (T + e) and Ne is
the number of the electrons equivalent to the active electron in
the target.

In the paper of Hubele et al. [47], experiment was compared
with a CDW-EIS calculation which is a similar calculation.
The differences between these two calculations are the
following: (1) The CDW-EIS approach uses a semiclassical
straight line approach for the projectile while our approach is
fully quantum mechanical. (2) For the active electron, we use
a Hartree-Fock bound state wave function and a numerical
distorted wave for the continuum electron. (3) Standard
CDW-EIS calculations only evaluate the first term of Eq. (5)
while we evaluate both terms.

IV. RESULTS

In this section the theoretical and experimental results are
presented and compared. The coordinate system we are using
has the z axis in the incident beam direction and the xz plane
is the scattering plane with the projectile being scattered in
the direction of the +x axis. This means that the transverse
momentum transfer direction is in the −x direction. Figure 1
compares three-dimensional images of 3DW-EIS results and
experiment for the FDCS for ionization of the 2s and 2p

states of lithium atoms by impact of bare oxygen ions with an
incident energy of 24 MeV. The projectile momentum transfer
is defined as q = Ki − Kf and along with Ki it spans the
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FIG. 1. Comparison of experimental and theoretical 3DW-EIS
results in three dimensions for 24 MeV O8+ ionization of the 2s and
2p states of lithium. For 2s, Ee = 1.5 eV and the momentum transfer
is q = 1 a.u. For 2p and Ee = 1.5 eV, the momentum transfer is
q = 0.3 a.u., and for 2p and Ee = 3 eV, the momentum transfer is
q = 0.4 a.u.

scattering plane. For 2s states, q and the ejected electron energy
Ee are q = 1 a.u. and Ee = 1.5 eV. For ionization of the 2p

states, two sets of these values are considered: (q = 0.3 a.u.,
Ee = 1.5 eV) and (q = 0.4 a.u., Ee = 3 eV).

There are two features which are normally seen in the FDCS
for single ionization of the target which are often described
in terms of classical mechanisms. In the first, the projectile
knocks the active atomic electron into its final state while
the residual ion remains as a spectator. The electron emission
occurs nearly in the same direction as q and the cross sections
normally have a peak near this direction which is called the
binary peak. In the second, the collision of the active electron
with the projectile is followed by a backscattering of the
electron from the target core. In this mechanism, the electron
ejection is nearly into the opposite direction of q and the peak
near this direction is called the recoil peak. Normally, it is
expected that these mechanisms will lead to a double-peak
structure both in experimental and theoretical results for the
FDCSs. From Fig. 1, we can see that the 2s results have a
binary peak (large round peak to the right) and recoil peak
(smaller winglike feature to the left). However, there is almost
no recoil peak for the two 2p cases.

As is seen, there is reasonable good agreement between the
theoretical calculations and experiment in general. The binary
peak is completely dominant for all cases. The interesting
experimental and theoretical 2s recoil wings are very similar,
while these wings are absent in the images for the 2p electrons.
Hubele et al. [47] as well as Walters and Whelan [50] have
suggested that the wings are due to the nodal structure of the
initial 2s state along with the interaction between the projectile
and target nucleus, the so called nucleus-nucleus (NN) inter-
action. On the other hand, Gulyás et al. [51] found that the
wings resulted from the NN interaction plus a binary collision.

The next set of figures show planar slices through the 3D
plots. Figure 2 compares experimental and theoretical FDCSs
for ejection of 2s and 2p electrons into the scattering plane.
The angle θb is the ejected electron observation angle measured
clockwise in the scattering plane relative to Ki and the maxi-

FIG. 2. Comparison of experimental and theoretical results for
24 MeV O8+ ionization of the 2s and 2p states of lithium as a function
of the ejected electron angle θb in the scattering plane. The projectile
momentum transfer q and ejected electron energy Ee are indicated
in each panel. The solid (red) results are 3DW-EIS and the dashed
(green) lines are the 3DW results. The experimental and theoretical
results are both normalized to unity at θb = 180◦.

mum cross sections are at 90◦ which is close to the momentum
transfer direction. For each case, the projectile momentum
transfer and ejected electron energy are the same as in Fig. 1.
The experimental and theoretical results are both normalized
to unity at the binary peak (θb = 90◦). Both experiment and
theory exhibit the same characteristic shape: a pronounced
binary peak and almost no recoil peak. This observation shows
the value of 3D plots. In Fig. 2, the slice selecting the scattering
plane reduces this extended “recoil ring” to a narrow feature of
relatively small intensity. Therefore, in the 3D plot, the recoil
structure is much easier to see because it systematically spans
a broad range of electron emission planes. In all cases, the
3DW and 3DW-EIS approaches predict nearly the same values
for the cross sections. Typically, EIS results are significantly
better than the 3DW incident plane wave results, but that is
obviously not the case here, which suggests that the initial-state
interaction between the projectile and target is apparently not
very important at least in terms of the projectile wave function.

Overall, the agreement between experiment and theory is
reasonably good. The largest difference between theory and
experiment is seen for the 2s state where theory underestimates
the left side of the binary peak and overestimates the right side
[there is also a right-side overestimation for the 2p (q = 0.3
a.u., Ee = 1.5 eV) case]. The best agreement is found for the
2p state with q = 0.4 a.u. and Ee = 3 eV, and there is a very
good agreement for the small structure appearing in the cross
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FIG. 3. Same as Fig. 2, but for the perpendicular plane. The
experimental and theoretical results are normalized the same as the
scattering plane.

sections for ionization in the angular region to the left of the
binary peak.

The FDCSs for single ionization of lithium are displayed
in Fig. 3 for the electrons emitted into the plane perpendicular
to the incident beam direction, which we will call the
perpendicular plane (it has also been called the azimuthal
plane). The kinematic parameters for which the FDCSs are
displayed and the normalization of the data are the same as
for the previous figures. We use standard spherical coordinates
with the azimuthal angle ϕb being measured relative to the x

axis. As a result, the binary peak in the −x direction occurs for
ϕb = 180◦. In the original paper of Hubele et al. [47], ϕb was
measured relative to the positive y axis and the binary peak
occurs for ϕb = 90◦. Again the overall agreement between
experiment and theory is reasonably good with only small
differences between experiment and theory for most of the
scattering angles. The triple peak structure for the 2s state
with a deep minimum results from the two symmetric wings
seen in the 3D view of Fig. 1. The largest difference between
experiment and theory is seen for ionization of the 2s state
where the magnitude of the side wings is underestimated by
theory. For the 2s case, the experimental data exhibit mirror
symmetry with respect to 180◦ (scattering plane).

For the 2p case, there is only a single, much broader peak
than in the 2s case and the mirror symmetry is broken. Both
experiment and theory have peak maxima shifted to angles
larger than 180◦ and the peak maxima are larger than unity in
our normalization (i.e., the cross section for the momentum
transfer in the scattering plane is not the maximum cross

FIG. 4. Comparison of experimental and theoretical m = ±1
results for 24 MeV O8+ ionization of the 2p states of lithium
as a function of θb in the scattering plane. The solid (red) lines
are 3DW-EIS m = +1 results and the dashed (green) lines are the
3DW-EIS m = −1 results.

section). Again the agreement is best for the 2p case with
q = 0.4 a.u. and Ee = 3 eV. The breaking of the mirror
symmetry with respect to the scattering plane is due to the
polarization of the initial target state which is called magnetic
dichroism [47,60]. It is seen that both the 3DW and 3DW-EIS
theories give a good description of dichroism for ionization
from the initial 2p states.

There would be no dichroism if both the 2p+1 and 2p−1

substates contributed equally to the ionization cross section.
For the present experiment, the relative contributions of the
cross sections were 86% 2p+1, 9% 2p0, and 5% 2p−1

(the quantization axis is the direction of the beam axis). In
Fig. 4, the individual 2p+1 and 2p−1 substate theoretical
3DW-EIS cross sections are compared with experiment for
the same previous values of q and Ee. The normalized results
are obtained using the 3DW-EIS approach for ionization
in the perpendicular plane and shown as a function of the
ejected electron angle. As has been discussed by Walters and
Whelan [50], the FDCS for m = +1 is the mirror image of that
for m = −1 relative to the scattering plane (i.e., θb = 180◦).
The m = 0 substate cross sections are symmetric about the
scattering plane, but the dominant contribution of the 2p+1

substate yields a cross section that is not symmetric with
respect to the scattering plane, and the resulting theoretical
2p ionization cross sections show the magnetic dichroism in
accordance with the experimental findings.

There have been three previously published theoretical
calculations for two of the perpendicular plane cases. There
were CDW-EIS results shown in the original Hubele et al. [47]
paper; later Gulyás et al. [51] used the CDW-EIS method to
make a detailed study of the 2s wings using three different
models for the effective nuclear-nuclear (NN) interaction,
and Walters and Whelan [50] reported a coupled pseudostate
(CP) calculation. Figure 5 shows a comparison of the present
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FIG. 5. Comparison of 3DW-EIS results with previous theoretical
calculations. The solid (red) lines are 3DW-EIS results, dashed-dot
(black) curves are the results of Hubele et al. [47], the long-dash,
two short-dash (blue) curve are the results of Gulyás et al. [51], and
dashed (green) curve are the results of Walters and Whelan [50].

results with the previous calculations. The Gulyás et al. [51]
results are the ones that used the polarization approximation
of Eq. (6) in that paper which gave the best agreement with
experiment for the doubly differential cross sections. It is seen
that the results are all pretty similar. For 2s ionization, the best
overall agreement with experiment is probably the CP results
of Walters and Whelan [50] although the Gulyás et al. [51]
results are also very good. For ionization of the 2p state, the
3DW-EIS results are probably in the best overall agreement
with experiment. The other theoretical approaches predict the
magnitude of the 2s side peaks much better than the 3DW-EIS
while the 3DW-EIS does a little better job of predicting the
width of the central 2s peak and the 2p peak.

There has been a fairly extensive discussion about what
causes the 2s wings. As mentioned above, Hubele et al. [47]
and Walters and Whelan [50] have attributed the wings to the
NN interaction and the double nodal structure of the 2s wave
function. On the other hand, Gulyás et al. [51] have attributed
the wings to a combination of the NN interaction and a binary
interaction. In the CDW-EIS approach, the NN interaction
is included through an overall phase factor containing the
NN interaction. The 3DW-EIS also has the NN interaction
in the eikonal phase of Eq. (7) where the screened nucleus is
approximated as a particle of charge +1. Since we are treating
the projectile as a wave function, the eikonal phase is part of
the integral and cannot be taken out as an overall phase factor.
In the present results, it is clear that the NN interaction in the
eikonal phase is not responsible for the side wings since we
get them using a plane wave which has no NN contributions.
We can put in an approximate NN interaction by adding a
nuclear potential (Vnuc) to the initial-state interaction Vi (the
perturbation) in Eq. (4),

Vi = VPe + Vnuc, (9)

where VPe is the P -e interaction potential. We would note
that Vnuc only depends on the projectile coordinate, and a
single-particle potential which only depends on the projectile
coordinates would not contribute to a Born-type calculation
due to the orthogonality of the bound and continuum wave
functions for the ejected electron. The 3DW-EIS approach
does not have this orthogonality due to the ejected electron
coordinates in the final-state Coulomb interaction between the
ejected electron and projectile. The simplest approximation
for Vnuc would be to treat the nucleus plus two electrons as a
single proton as is done in the eikonal phase. We will call this
approximation Vion. A better approximation would be to use
a screened potential which has an effective charge of 3 at the
origin and an asymptotic charge of unity. We have used the
effective potential of Green, Sellin, and Zachor [61–63] known
as the GSZ potential. The explicit form of this potential is given
by

VGSZ(R) = ZP (ZT − n)[1 − �(R)]

R
, (10)

where n + 1 is the number of electrons in the atom or ion and

�(R) = 1

1 − η

β
[1 − exp(βR)]

, (11)

with η and β as two adjustable parameters and ZP and ZT the
number of protons in the projectile and target core. For lithium,
η = 1.75 and β = 2.165. Figure 6 compares 3DW-EIS results
with no NN interaction in the perturbation to calculations
using Vion and Vnuc. It is seen that adding the NN interaction
to the perturbation significantly increases the magnitude of
the side wing peak. The Vion results are very similar to those
of Hubele et al. [47]. It is also seen that the width of the
central peak becomes more narrow, which is also similar to
the other theoretical calculations and in worse agreement with
experiment. It is interesting that the presumably better screened
nuclear treatment is in the worst agreement with experiment.
The large sensitivity to the screening is also surprising since it
would appear that it should be a small effect. For example, the

FIG. 6. Comparison of 3DW-EIS results using different approxi-
mations for the NN interaction. The solid curve (red) has no NN

in the perturbation, dashed (green) uses the bare ion potential,
and the long-dash, two short-dash (black) uses the GSZ screening
approximation.
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FIG. 7. Comparison of different types of 3DW-EIS calculations.
The solid curve (red) is the normal, the dashed (green) uses a Coulomb
wave for the ejected electron, and the long-dash, two short-dash
(black) is a 1s bound state wave function instead of a 2s.

effective charge is 3.00 at the origin, 1.28 at R = 1 a.u., 1.03
at R = 2 a.u., and 1.00 at R = 3 a.u., so it deviates from unity
only in a very small region of space.

We also investigated the source of the wings we get without
having a NN term in the perturbation. Typically, CDW-EIS
calculations use Coulomb waves for the ejected electron so
we tried that. In Fig. 7, 3DW-EIS results calculated using a
distorted wave for the ejected electron are compared with a
completely equivalent calculation using Coulomb waves. It
is seen that the side wings are greatly reduced. This calls
attention to the importance of the more realistic description
of the ejected electron using a screened potential. To check
the effect of the double nodal wave function, we performed
a completely equivalent 3DW-EIS calculation except we used
a 1s wave function instead of 2s and those results are also
shown in Fig. 7. It is seen that the wings are completely gone.
Consequently, our results support the conclusions of Hubele
et al. [47] and Walters and Whelan [50] attributing the wings
to the NN interaction and the double nodal structure of the 2s

wave function. However, we find that the NN interaction is
important in the perturbation and not in the eikonal phase and
we also find an additional enhancement to the wings from using
a screened potential for the calculation of the ejected-electron
wave function.

V. CONCLUSIONS

We have presented a full 3D comparison between exper-
iment and theory for 24 MeV O8+ single ionization of the
2s ground state of lithium and the 2p excited state. Two
theoretical approximations were examined: the three-body
continuum distorted wave (3DW) and 3-body continuum
distorted wave–eikonal initial state (3DW-EIS). The difference
between these two calculations is that the 3DW-EIS uses
an eikonal approximation for the incident projectile wave

function and the 3DW uses a plane wave. In the 3D images
for ionization of the 2s state, a prominent binary peak was
seen and a recoil peak which had an interesting wing-type
structure. In the 3D images for ionization of the 2p state,
a prominent binary peak was seen and essentially no recoil
peak. Normally, there is a significant difference between the
3DW and 3DW-EIS results and 3DW-EIS is in much better
agreement with experiment. In this case, there is very little
difference between the two approaches and both are in very
good agreement with experiment. For ionization of the 2s state,
the 3D images have a mirror symmetry about the scattering
plane while for ionization of the 2p state, this symmetry is
broken. The 2p state would have mirror symmetry if the 2p−1

and 2p+1 substates were excited in equal proportions. For the
present experiment, the 2p+1 sublevel is dominantly excited
(quantization axis is the incident beam direction) and for this
case there is a magnetic dichroism which is observed both
experimentally and theoretically.

There were three previous theoretical calculations: two
CDW-EIS calculations by Hubele et al. [47] and Gulyás
et al. [51] and a CP calculation of Walters and Whelan [50]
for the perpendicular plane only; and we compared with these
results as well. We found that the Walters and Whelan and
Gulyas et al. results gave the best agreement with experiment
for the 2s state while the 3DW-EIS results were in the best
overall agreement for the 2p state. The 3DW-EIS predicted
the central width a little better for both the 2s and 2p states.

There has been considerable discussion about the source of
the 2s wings. Hubele et al. [47] and Walters and Whelan [50]
have attributed the wings to the NN interaction and the double
nodal structure of the 2s wave function. Gulyás et al. [51] have
attributed the wings to a combination of the NN interaction
and a binary interaction. All three of those calculations use the
semiclassical straight line approximation for the projectile.
We use a full quantum-mechanical wave treatment for the
projectile and we get wings even if the NN interaction is
neglected for the incident projectile wave function. However,
the wings were greatly enhanced if we added a NN interaction
to the initial-state perturbation. We found that the wings go
away if we neglect NN in the perturbation, use a Coulomb
wave for the ejected electron, and use a 1s wave function
for the ejected electron. Consequently, while our results
support the wings resulting from the NN interaction and the
double nodal structure of the 2s wave function, we find an
additional enhancement from using a screened potential for
the calculation of the ejected-electron wave function.
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(2000).

[21] J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. Ph. H.
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