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Theoretical study of mutual neutralization in He+ + H− collisions
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Total and differential cross sections for mutual neutralization in He+ and H− collisions at low to intermediate
(0.001 eV to 100 eV) are calculated ab initio and fully quantum mechanically. Atomic final-state distributions
and isotope effects are investigated. The theoretical model includes dynamics on eleven coupled states of
2�+ symmetry, where autoionization is incorporated. The potential-energy curves, autoionization widths, and
nonadiabatic couplings of electronic resonant states of HeH are computed by combining structure calculations
with electron scattering calculations. The nuclear dynamics is studied using a strict diabatic representation of the
resonant states. Effects of rotational couplings between 2�+ and 2� electronic states are investigated in the pure
precession approximation.
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I. INTRODUCTION

In mutual neutralization, oppositely charged ions collide
and, driven by nonadiabatic couplings, an electron is trans-
ferred resulting in formation of neutral fragments. An ab
initio description of the reaction is challenging since dynamics
on highly excited electronic states has to be considered and
the reaction is induced by nonadiabatic couplings between
ionic and covalent states, often occurring at large internuclear
distances. In the past there have been numerous semiclassical
studies [1–3] of the process using, e.g., the Landau-Zener
model [4,5] or similar approaches. Currently, there are just
a handful of fully quantum mechanical ab initio studies of the
MN reaction and all are limited to collisions between atomic
ions [6–14].

Here, mutual neutralization in collisions of He+ with H− is
theoretically studied, i.e.,

He+ + H− → HeH∗ → He∗ + H, (1)

where the asterisk denotes electronic excitation. The calcula-
tion is performed ab initio and fully quantum mechanically.
Potential-energy curves and nonadiabatic interactions are
computed using the configuration-interaction method. The
electronic states of the HeH complex formed in the reaction
are autoionizing states (they are electronic resonant states)
since they have potential energies larger than the energy of
the ground state of HeH+. The present model includes au-
toionization using local complex potentials. With the complex-
Kohn variational method [15], fixed nuclei electron-scattering
calculations are carried out and the autoionization widths are
computed. The adiabatic resonant states are diabatized and the
nuclear dynamics are studied using Johnson’s log-derivative
method [16,17].

The He+ + H− mutual neutralization reaction is an ideal
reaction for testing theory. The reaction forms a molecular
complex simple enough for accurate quantum chemistry and
electron-scattering calculations. However, the reaction is also
challenging to theoretically describe since it involves very
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highly excited electronic states that couple to the ionization
continuum. To accurately describe the process, a manifold of
avoided crossings occurring at internuclear distances ranging
from 7a0 to 37a0 must be considered.

Using crossed and merged beam experiments, the cross
section for mutual neutralization in collisions of 4He+ with
H− has been measured, for energies ranging from a few eV to
several keV [18–22]. Additionally, measurements on the cross
section for mutual neutralization in 4He+ +D− collisions have
been performed [2,22].

The He+ + H− mutual neutralization reaction was first
theoretically studied using the semiclassical Landau-Zener
model including ten coupled states [2]. It was found that
the cross section depends on the ionic-covalent coupling
parameters used in the model. By applying coupling ele-
ments developed by Olson et al. [2], good agreement with
measured cross section below 2 keV was obtained. In 1992,
Ermolaev [23] calculated the neutralization cross section at
higher collision energies using a one-active-electron model.
In the theoretical study by Chibisov et al. [24], all three
electrons were included. The nuclear motion was described
classically and autoionization was not considered. The total
cross section as well as the final-state distributions were
calculated for collision energies ranging between 40 to
4000 eV.

The present study presents a theoretical ab initio in-
vestigation of the mutual neutralization reaction where all
degrees of freedom are described quantum mechanically and
autoionization is incorporated. Section II describes how the
relevant potential-energy curves and autoionization widths
of the resonant states are obtained by combining electron-
scattering and structure calculations. Additionally, the nona-
diabatic couplings driving the reaction are computed. We
also formulate the coupled nuclear Schrödinger equation for
the resonant states and describe the diabatization procedure
and how the resulting coupled equation is solved using
the log-derivative method. In Sec. III, we present not only
the total neutralization cross section, but also the final-state
distributions, differential cross section as well as an analysis of
the effect of isotopic substitution. Unless otherwise mentioned,
atomic units are used.
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II. THEORY

A. Electronic-structure and scattering calculations

In Fig. 1, the potential-energy curves of the HeH+ and
HeH systems are shown. The X1�+ electronic ground state
of HeH+ has the dominant configuration (1σ )2. This state is
associated with the He + H+ fragments at large internuclear
distances. The two lowest excited electronic states of the ion
are the a3�+ and A1�+ states with dominant configurations
corresponding to triplet and singlet coupled (1σ )1(2σ )1, re-
spectively. These states have repulsive potential-energy curves
dissociating into He+ + H. The X2�+ electronic ground state
of HeH has a repulsive potential. Below the potential of the
ground state of HeH+, there are manifolds of Rydberg states
with potential-energy curves similar to the ground state of
the ion. These are displayed with thin blue dashed curves
in Fig. 1. There are also Rydberg states converging to the
excited ionic cores. These states have potential-energy curves
situated in the ionization continuum of the ground ionic state
and through electronic interactions, they will interact with the
continuum and hence they are electronic resonant states. These
states dissociate into He∗ + H and are illustrated with thin
solid black curves in Fig. 1. The ion-pair fragments He+ + H−
form a molecular state of 2�+ symmetry. At large internuclear
distances the potential of the ion-pair state is described by an
attractive Coulomb potential and it will cross many of the
covalent resonant states dissociating into He∗ + H.

The present study includes eleven electronic resonant states
of HeH of 2�+ symmetry. These are the electronic states
associated with He[(1s)1(nl)1] + H[(1s)1] limits, where n = 2
and n = 3. The n = 4 states are energetically below the
ion-pair limit, but the avoided crossing distances induced by
the ionic-covalent interactions are anticipated to be larger than
100a0 and these states are therefore neglected [7].

units of

FIG. 1. Potential-energy curves of the HeH+ and HeH systems.
The potential-energy curves of the ground and first two excited states
of HeH+ are displayed with thick red curves. The potential-energy
curves of the Rydberg states of HeH converging to the ground ionic
core are shown with thin dashed blue curves, while thin black curves
are the electronic resonant states. The dashed green curve illustrates
the quasidiabatic Coulomb potential of the ion-pair state.

The electronic-scattering and structure calculations are
carried out using the MESA program [25]. To calculate
potential-energy curves of the HeH+ and HeH systems, the
full configuration-interaction (FCI) method is used with the
aug-cc-pVQZ basis set for He [26] and the aug-cc-pVTZ basis
set for H [27]. Extra diffuse functions are added on He to
accurately describe the 3d orbitals.

The electron-scattering calculations cannot be carried out
at the full-CI level. Instead by employing the complex-Kohn
variational method [15], the same basis is used to construct
natural orbitals of the ground state of HeH at the full-CI level.
This is followed by a multireference configuration-interaction
(MRCI) calculation, where the reference configurations are
obtained by allowing for excitations of the three electrons
among ten natural orbitals. Single external excitations are
then added. By minimizing the complex-Kohn functional [15],
unknown parameters of the scattering trial wave function can
be optimized. This allows for determination of the scattering
matrix and the corresponding eigenphase sum. We then extract
fixed nuclei energy positions and autoionization widths of the
resonant state by fitting the eigenphase sum to a Breit-Wigner
form [28].

The radial first-derivative nonadiabatic coupling elements,
fij (R) = 〈�i | ∂

∂R
|�j 〉, are calculated analytically [29] using

the MESA program. These calculations cannot be performed
at the FCI level. Instead, using the same basis set, the multicon-
figuration self-consistent field (MCSCF) method is used with
an active space including all three electrons and ten orbitals.
This is followed by a MRCI calculation where the reference
configurations are generated by allowing for excitations of
the three electrons among ten orbitals. Up to double external
excitations are then included. These calculations are carried out
in no symmetry. The resonant states are identified by analyzing
the dominant configurations of the CI wave function. Since
the sign of the electronic wave function is arbitrary, there are
ambiguities in the signs of the coupling elements. The signs of
these couplings are determined by an optimization procedure
where all signs of the electronic wave functions are optimized
such that the difference between the sum of all coupling
elements with previous calculated point is minimized.

It should be noted that at small internuclear distances
(R < 5a0), the autoionization widths of the resonant states
are nonzero. This is the region where these states become
resonant states and will couple to the ionization continuum.
When the nonadiabatic coupling elements are computed, the
continuum part of the wave function of the resonant states
is not included. The resonant states are treated as bound
states and this is an approximation. To accurately compute
nonadiabatic couplings among electronic resonant states is
an interesting and challenging project beyond the goal of
the present work. Additionally, as will be seen below, the
nonadiabatic couplings among the resonant states occurring at
small internuclear distances are not significant for the mutual
neutralization reaction studied here.

To confirm the nonadiabatic couplings, they have also
been computed at the full CI level using a three-point finite
difference method with a step size of 0.1a0. In our FCI
calculation, we use molecular orbitals that were optimized
for R = 40.0a0. Therefore, the atomic orbital coefficients
are R independent, and we assume all derivatives in the
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electronic wave functions originate from derivatives in the CI
coefficients. The nonadiabatic coupling elements computed
using finite difference and the analytical method are similar in
magnitude and shape.

B. Nuclear Schrödinger equation for the resonant states

Following the P- and Q-projection operator formalism
[30,31] an equation for the nuclear motions on the resonant
states can be derived. These adiabatic resonant states are still
interacting to each other by nonadiabatic interactions and by
applying a partial wave expansion of the nuclear wave function,
the radial Schrödinger equation for the dynamics on the
resonant states can be derived. For fixed angular momentum
�, the equation is given by[

− 1

2μ

d2

dR2
+ Vi + �(� + 1)

2μR2

]
ui,�

+
∑

j

[
Wij − 1

μ
fij

d

dR
− 1

2μ
gij

]
uj,� = Eui,�.

(2)

Here, the electronic states are approximate eigenstates of the
electronic Hamiltonian 〈�i |Ĥel|�j 〉 = Vi(R)δij coupled by
the nonadiabatic coupling elements fij (R) = 〈�i | ∂

∂R
|�j 〉 and

gij (R) = 〈�i | ∂2

∂R2 |�j 〉. Autoionization is included through the
complex matrix elements Wij . For electronic resonant states
with high enough energy, the “local Boomerang approxima-
tion” [32,33] is justified, where autoionization into a complete
set of vibrational eigenstates is assumed. We neglect the energy
shift of the resonant states and the Wij elements become purely
imaginary of the form [31,34]

Wij (R) = −i

√
	i(R)	j (R)

2
. (3)

The diagonal elements Wii = −i	i/2 account for the au-
toionization, while the off-diagonal elements cause indirect
electronic couplings between the resonant states through the
ionization continuum. By combining the electronic structure
with the electron-scattering calculations described above, the
potential energies of the adiabatic resonant states Vi(R),
nonadiabatic coupling elements fij (R), and autoionization
widths 	i(R) are computed.

C. Diabatization

We assume that a finite number (11 in the present study)
adiabatic electronic HeH states of 2�+ symmetry are coupled
by nonadiabatic couplings. By applying an orthogonal trans-
formation, the adiabatic states may be transformed to a “strict
diabatic” representation [35]. The transformation matrix, T,
can be obtained by integrating the equation(

1
d

dR
+ f

)
T = 0. (4)

Here f is an antisymmetric matrix containing the first-
derivative nonadiabatic coupling elements. The boundary
condition of the transformation matrix is given by the unit
matrix at large internuclear distances. We thus assume that

asymptotically, the adiabatic and diabatic states are identical
and any nonzero asymptotic nonadiabatic couplings are hence
neglected. Once the transformation matrix is computed, we
transform the adiabatic nuclear Schrödinger equation (2) to
the corresponding diabatic one
[
− 1

2μ

d2

dR2
+ �(� + 1)

2μR2

]
ũi,� +

∑
j

[Ṽij + W̃ij ]ũj,� = Eũi,�,

(5)

where Ṽ = TT VT and W̃ = TT WT.

D. Log-derivative method

Instead of directly solving the coupled nuclear Schrödinger
equation (5) in the diabatic representation, the logarithmic
derivative of the radial wave function (y� = ũ′

�ũ−1
� ) is intro-

duced and the radial Schrödinger equation is transformed to a
matrix Riccati equation. The physical boundary condition for
the logarithmic derivative at origin becomes a diagonal matrix
with very large (approximately infinite) diagonal elements. Us-
ing a numerical procedure developed by Johnson [16,17,36],
the matrix Riccati equation is integrated out to a distance (Rf )
where the potentials have reached their asymptotic form. In
the present study Rf = 50a0 is used.

By combining the asymptotic value of logarithmic deriva-
tive with the correct regular and irregular solutions of the
asymptotic states, the reactance matrix can be calculated [10].
The elements of the scattering matrix [Sij,�(E)] are obtained
as a Cayley transformation between the open partitions of
the reactance matrix. Finally, the cross section for mutual
neutralization can be computed from the scattering matrix
elements

σij (E) = π

k2
j

∞∑
�=0

(2� + 1)|Sij,� − δij |2, (6)

where kj =
√

2μ(E − Eth
j ) is the asymptotic wave number

of the incoming channel and Eth
j is the asymptotic energy of

state j . The summation of partial waves is terminated when
the ratios of partial cross section to accumulated total cross
section are less than 10−4 for 25 terms in succession. The total
neutralization cross section is obtained by summarizing the
contributions from all covalent states.

By calculating the scattering amplitude

fij (θ,E) = 1

2i
√

kikj

∞∑
�=0

(2� + 1)(Sij,� − δij )P�(cosθ ), (7)

where P� are the Legendre polynomials, the differential cross
section is obtained from

dσij

d�
= ki

kj

|fij (θ,E)|2. (8)

The formalism outlined above are usually applied to study
nuclear dynamics on electronically bound states. However,
the method can also be used to calculate cross section when
autoionization is added to the model using local complex
potentials [11,37,38].
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III. RESULTS AND DISCUSSION

We start by presenting the potential-energy curves, autoion-
ization widths, and nonadiabatic coupling elements important
for the description of the He+ + H− mutual neutralization
reaction. This is followed by an analysis of the total neu-
tralization cross section, where we investigate the role of the
autoionization widths and rotational couplings. The reaction
is studied for collisions of various hydrogen and helium
isotopes. Finally, the final-state distributions and differential
cross sections are presented.

A. Molecular data of the resonant states

Potential-energy curves of electronic resonant HeH states
are computed using the FCI method described above. At the
same level of theory, the lowest three electronic states of
the cation are also computed. As can be seen in Fig. 2, the
potential-energy curves of the resonant states have energies
larger than the ground-state energy of the ion. In the figure,
we show potential-energy curves of 11 resonant states of
2�+ symmetry and 6 2� resonant states. We also obtain the
resonance positions from the electron-scattering calculations
carried out with the MRCI method. These scattering calcu-
lations are carried out for internuclear distances smaller than
5.0a0. As can be seen in Fig. 2, the energy positions obtained
using the FCI structure and MRCI scattering calculations agree
well.

From the electron-scattering calculations not only the
energy positions of the resonant states are obtained, but also
the corresponding autoionization widths displayed in Fig. 3
for resonant states of 2�+ symmetry. The two lowest resonant
states have the largest widths. All widths become negligible at
internuclear distances larger than 5.0a0.

FIG. 2. Potential-energy curves of the 2�+ (thin solid black lines)
and 2�. (thin dashed red lines) electronic resonant states of HeH are
displayed together with the three lowest potential-energy curves of
HeH+ (thick black lines). The curves show the potential energies
obtained with FCI structure calculations, while the (filled or open)
symbols mark the corresponding energies obtained using electron
scattering calculations at the MRCI level for resonant states of 2�+

and 2� symmetries.
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FIG. 3. Autoionization widths of the 2�+ electronic resonant
states of HeH obtained using electron-scattering calculations at fixed
internuclear distances.

Figure 4 shows the potential-energy curves of the electronic
resonant states of 2�+ symmetry. At large internuclear
distances there are avoided crossings occurring due to the
interactions between the ion-pair and covalent states. For
distances larger than 20a0, there are sharp avoided crossings
among the ion-pair state and the covalent states associated with
He[(1s)1(nl)1] + H limits, where n = 3, as shown in Fig. 5(a).
As will be seen, nonadiabatic first-derivative coupling ele-
ments fij (R) among theses states are the interactions driving
the He+ + H− mutual neutralization reaction. These couplings
are displayed in Fig. 5(b). The nonadiabatic coupling elements
are large in the vicinity of the avoided crossings and they
have approximately Lorentzian profiles. The large coupling
at 26a0 is not originating from an interaction between ionic
and covalent states, but is due to an avoided crossing between
states 9 and 10.

In Fig. 6, the coupling elements between all neighboring
states are displayed for internuclear distances ranging from
0.5 to 6a0 in (a) and from 6 to 15a0 in (b). For internuclear
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FIG. 4. Potential-energy curves of 2�+ electronic resonant states
of HeH.
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FIG. 5. In (a), the avoided crossings between adiabatic potential-
energy curves of 2�+ symmetry originating from the interactions
between the ion-pair state and covalent states associated with the
He[(1s)1(3l)2] + H limits are displayed. In (b) the corresponding
nonadiabatic coupling elements (between neighboring states) are
shown.

distances smaller than 5a0, there are large nonadiabatic cou-
pling elements due to avoided crossings among the resonant
states that are Rydberg states converging to different excited
ionic cores. This is the region where autoionization widths
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FIG. 6. Nonadiabatic first derivative coupling elements between
neighboring HeH electronic resonant states of 2�+ symmetry at (a)
small and (b) intermediate internuclear distances.

are nonzero. The resonant states are therefore interacting
with the ionization continuum. The approach to compute the
nonadiabatic coupling elements using standard structure cal-
culations and identifying the resonant states by analyzing the
configurations of the wave function is approximate. However,
as will be shown, for the mutual neutralization reaction the
exact magnitudes of the nonadiabatic coupling elements at
small internuclear distances (<5a0) are not significant. The
avoided crossing due to interactions between the ion-pair state
and the n = 2 covalent states occurring around 6–15a0 are not
as sharp and hence the corresponding coupling elements [see
Fig. 6(b)] are smaller than the n = 3 coupling elements.

The nonadiabatic coupling elements are computed both
analytically at the MRCI level as well as using the finite
difference method using the FCI wave functions. At large
internuclear distances, the two methods provide identical
coupling elements, while at small distances they are similar
in form and magnitude.

B. Total cross section and isotope effects

The total mutual neutralization cross section is calculated
for collision energies ranging between 1 meV and 300 eV.
In Fig. 7, the 4He+ +H− and 4He+ +D− cross sections
are compared with measured ones [18,21,22] and previous
theoretical predictions [23,24]. At large energies, the cross
sections connect smoothly to the measured and previous
calculated ones. However, at lower energies the calculated
cross section is larger than the one measured using a merged-
beam apparatus by Peart and Hayton [21]. The measured cross
section does not display the same low-energy E−1 behavior
as observed from the calculation and which is predicted by
Wigner’s threshold law [39].

The role of autoionization can be investigated by turning
on and off the imaginary term Wij as described by Eqs. (2)
and (3). In Fig. 8, the total mutual neutralization cross
section in collisions of 4He+ and H− is displayed both when
autoionization is included and when it is not considered. As
can be seen, the effect of autoionization is negligible. This is
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FIG. 7. Calculated cross section of mutual neutralization in
collisions of 4He+ +H− and 4He+ +D− are compared with previous
measurements [18,21,22] and theoretical predictions [23,24].
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FIG. 8. Calculated cross section of mutual neutralization in
collisions of 4He+ +H− with and without inclusion of autoionization.

due to the fact that the autoionization widths are nonzero only
at small internuclear distances (R � 5a0). At low energies,
the centrifugal barrier which is added to the potentials, will
prevent the system from reaching these small distances.

The cross sections for mutual neutralization have been cal-
culated for collisions of different isotopes of the hydrogen and
helium ions. For the different isotopologues, we assume the
adiabatic potential-energy curves and nonadiabatic coupling
elements are the same, but the reduced mass of the molecular
system is changed. In Fig. 9, we compare the calculated
cross sections for collisions of 3He+ or 4He+ with H− or
D−. The cross sections for the heavier isotopologues have a
smaller magnitude than the lighter ones. At large collision
energies (E > 200 eV), the orders of the cross sections
are reversed. A similar isotope effect was found in mutual
neutralization in collisions of H+ with H− [14]. When the
charge-transfer reaction is driven by nonadiabatic couplings
occurring at large internuclear distances, the isotope effect will
be relatively small. This is the case for both the He+ + H−
and the H+ + H− mutual neutralization reactions. However,
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FIG. 9. Calculated cross section of mutual neutralization in
collisions of different isotopes of hydrogen and helium ions.

when the reaction is driven by couplings occurring at smaller
internuclear distances, the isotope effect can be significant.
This was observed in collisions of H+ (or D+) with F− [11]. A
similar conclusion is obtained from studies of charge transfer
in collisions of He2+ with H. At low collision energies, where
the reaction is driven by rotational couplings acting at small
distances, the isotope effect can be strong [40].

As described in Sec. III A, there are very large nonadiabatic
couplings among the resonant states at small internuclear
distances. This is the region where autoionization widths are
nonzero and our approach to compute the coupling elements
using structure methods is approximate. We investigate the
effects of these nonadiabatic couplings at small distances by
running calculations on the mutual neutralization reaction
when all coupling elements smoothly are turned to zero for
distances smaller than 5.0a0. At low energies, the calculated
total cross section will then decrease by a few percent (1%–5%
for E < 10 eV), while at energies larger than 100 eV, the
reduction increases to 18%. Thus the nonadiabatic couplings
at small internuclear distances have no significant effect on the
mutual neutralization cross section.

Previous quantum mechanical studies on mutual neutral-
ization reactions have neglected rotational couplings [6–13].
However, in the review on recombination processes written
in 1982, Bardsley pointed out that rotational couplings could
be important in mutual neutralization reactions and should
be considered [41]. The rotational couplings originate from
correlation between the rotational motion of the nuclei and the
electronic motions and it will give rise to different diagonal and
off-diagonal terms that should be added to the Hamiltonian.
The L-uncoupling terms will induce interactions between the
resonant states of 2�+ and 2� symmetry that approximately
have the form [42]

−
√

�(� + 1)

2μR2

〈
�i

�

∣∣L+
∣∣�j

�

〉
. (9)

Due to the factor R−2, these rotational couplings are localized
at small internuclear distances. However, the factor

√
�(� + 1)
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FIG. 10. Calculated cross sections of mutual neutralization in
3He+ +H− and 4He+ +D− collisions with (dotted-dashed lines) and
without (solid lines) the inclusion of rotational couplings between
+�+ and 2� resonant states.
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FIG. 11. Calculated final-state distributions in mutual neutraliza-
tion in (a) 4He+ +H− and (b) 4He+ +D− collisions with (dashed
lines) and without (solid lines) inclusion of rotational couplings.

will make the rotational couplings large when high angular
momenta quantum numbers contribute. This is the case in
the mutual neutralization reaction presently studied. The
rotational couplings are not calculated ab initio, but are here
approximated using a pure precession approximation. The
dominant configurations of the adiabatic states have been
identified and for the 2�+ and 2� states associated with the
same asymptotic limit they only differ by the highest occupied
molecular orbital and we have

〈
�i

�

∣∣L+
∣∣�j

�

〉 ≈ 〈(npπ )1|l+|(npσ )1〉 ≈
√

2. (10)

For 2�+ and 2� states not associated with the same asymptotic
limits, the rotational couplings are approximated with zero.
In the diabatization procedure, the rotational couplings are
transformed with a transformation matrix of block-diagonal
form

T̃ =
(

T 0
0 1

)
, (11)

where T is the orthogonal transformation matrix for the 2�+
resonant states computed by numerically solving Eq. (4) above

and 1 is a 6 × 6 unit matrix. No nonadiabatic interactions
among the 2� states are considered.

The total mutual neutralization cross sections are calculated
for collisions of all isotopes of hydrogen and helium ions,
with and without the inclusion of the rotational couplings
as displayed in Fig. 10 with dotted-dashed and solid lines,
respectively. The cross sections are shown for the 3He+ +H−
and 4He+ +D− collisions, which are the isotopologues where
the rotational couplings have the largest and smallest effects.
As can be seen, the rotational couplings will at large collision
energies (E > 10 eV) increase the neutralization cross section.
The effect is largest for the system where the most partial waves
contribute.

C. Final-state distributions

From the scattering matrix elements, not only the total cross
section can be computed, but also the final-state distributions.
Figure 11 shows calculated branching ratios for collisions of
4He+ +H− in (a) and 4He+ +D− in (b) both with (dashed
lines) and without (solid lines) the inclusion of rotational
couplings.

The dominant channels are all associated with the
He[(1s)1(3l)1] + H limits and these are the covalent states with
avoided crossings due to interactions with the ion-pair state at
internuclear distances ranging from 20 to 40a0 as displayed in
Fig. 4. Most important is the state associated with the 1s3s 3S
limit, which has the lowest potential-energy curve of the n = 3
states shown in Fig. 5(a). Note that although the isotope effect
in the total cross section is very small, there is some isotope
dependence in the final-state distributions.

D. Differential cross section

The differential cross section is calculated from the scat-
tering amplitude as described by Eq. (8). In Fig. 12, the
total differential cross section (summed over all channels)
is displayed for selected collision energies for collisions of
4He+ with H−. As can be seen, the differential cross section is
peaked at small scattering angles (forward direction), with
fast oscillations that at a given scattering angle become
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FIG. 12. Differential cross section for mutual neutralization in
collisions of 4He+ and H− at selected collision energies.
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FIG. 13. Differential cross section for mutual neutralization in
collisions of 4He+ +H− and 4He+ +D− at 0.1 collision energy.

slower. Similar shapes of differential cross sections have been
observed in mutual neutralization reactions between other
heteronuclear atomic ions such as Li+ + H− [8] and Li+ + F−
[13]. It has been discussed [8,43] that this transition between
slow and fast oscillations reflects the Coulomb scattering
angle where the transition takes place at the distance of
closest approach and when the collision energy increases, the
transition angle decreases.

The differential cross sections are computed for collisions
of the different isotopes of the helium and hydrogen ions.
They all show similar behavior of differential cross sections,
although the exact positions of the oscillations may vary.
As an example, the differential cross sections for mutual

neutralization in collisions of 4He+ +H− and 4He+ +D− at
0.1 eV collision energy are displayed in Fig. 13.

IV. CONCLUSION

Mutual neutralization in collisions of He+ and H− is studied
ab initio, where the nuclear motion is described quantum me-
chanically. The reaction involves electronic resonant states of
HeH of 2�+ symmetry that have been computed by combining
electron-scattering calculations with structure calculations at
the FCI and MRCI level of theory. Nonadiabatic couplings
are computed analytically. Total and differential cross sections
are calculated as well as final-state distributions. The reaction
is studied for collisions of various isotopes of hydrogen
and helium ions. The total cross section is in agreement
with measurements and previous theoretical studies at higher
energies, but is larger than the cross section measured using a
merged beam apparatus [21] at relatively low energies. At low
collision energies, the autoionization and the rotational cou-
plings between the 2�+ and 2� states, estimated using a pure
precession approximation, are found to have a small effect on
the outcome of the reaction. The mutual neutralization reaction
will be dominated by formation of He[1s3s 3S] + H followed
by He[1s3p 3

P ] + H with ratios of approximately 50% and
30%, respectively, at low collision energies. The calculated
differential cross section is peaked in the forward direction.
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Fussen, K. Olamba, and S. Szücs, J. Phys. B: At. Mol. Phys. 30,
991 (1997).

022709-8

http://dx.doi.org/10.1088/0370-1298/68/3/306
http://dx.doi.org/10.1088/0370-1298/68/3/306
http://dx.doi.org/10.1088/0370-1298/68/3/306
http://dx.doi.org/10.1088/0370-1298/68/3/306
http://dx.doi.org/10.1063/1.1674506
http://dx.doi.org/10.1063/1.1674506
http://dx.doi.org/10.1063/1.1674506
http://dx.doi.org/10.1063/1.1674506
http://dx.doi.org/10.1088/0953-4075/47/22/225206
http://dx.doi.org/10.1088/0953-4075/47/22/225206
http://dx.doi.org/10.1088/0953-4075/47/22/225206
http://dx.doi.org/10.1088/0953-4075/47/22/225206
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1063/1.444544
http://dx.doi.org/10.1063/1.444544
http://dx.doi.org/10.1063/1.444544
http://dx.doi.org/10.1063/1.444544
http://dx.doi.org/10.1088/0022-3700/19/1/006
http://dx.doi.org/10.1088/0022-3700/19/1/006
http://dx.doi.org/10.1088/0022-3700/19/1/006
http://dx.doi.org/10.1088/0022-3700/19/1/006
http://dx.doi.org/10.1088/0953-4075/32/1/008
http://dx.doi.org/10.1088/0953-4075/32/1/008
http://dx.doi.org/10.1088/0953-4075/32/1/008
http://dx.doi.org/10.1088/0953-4075/32/1/008
http://dx.doi.org/10.1088/0953-4075/32/23/303
http://dx.doi.org/10.1088/0953-4075/32/23/303
http://dx.doi.org/10.1088/0953-4075/32/23/303
http://dx.doi.org/10.1088/0953-4075/32/23/303
http://dx.doi.org/10.1103/PhysRevA.79.012713
http://dx.doi.org/10.1103/PhysRevA.79.012713
http://dx.doi.org/10.1103/PhysRevA.79.012713
http://dx.doi.org/10.1103/PhysRevA.79.012713
http://dx.doi.org/10.1103/PhysRevA.84.012703
http://dx.doi.org/10.1103/PhysRevA.84.012703
http://dx.doi.org/10.1103/PhysRevA.84.012703
http://dx.doi.org/10.1103/PhysRevA.84.012703
http://dx.doi.org/10.1103/PhysRevA.85.032704
http://dx.doi.org/10.1103/PhysRevA.85.032704
http://dx.doi.org/10.1103/PhysRevA.85.032704
http://dx.doi.org/10.1103/PhysRevA.85.032704
http://dx.doi.org/10.1016/j.chemphys.2015.08.006
http://dx.doi.org/10.1016/j.chemphys.2015.08.006
http://dx.doi.org/10.1016/j.chemphys.2015.08.006
http://dx.doi.org/10.1016/j.chemphys.2015.08.006
http://dx.doi.org/10.1103/PhysRevA.93.032701
http://dx.doi.org/10.1103/PhysRevA.93.032701
http://dx.doi.org/10.1103/PhysRevA.93.032701
http://dx.doi.org/10.1103/PhysRevA.93.032701
http://dx.doi.org/10.1016/0021-9991(73)90049-1
http://dx.doi.org/10.1016/0021-9991(73)90049-1
http://dx.doi.org/10.1016/0021-9991(73)90049-1
http://dx.doi.org/10.1016/0021-9991(73)90049-1
http://dx.doi.org/10.1103/PhysRevA.32.1241
http://dx.doi.org/10.1103/PhysRevA.32.1241
http://dx.doi.org/10.1103/PhysRevA.32.1241
http://dx.doi.org/10.1103/PhysRevA.32.1241
http://dx.doi.org/10.1088/0022-3700/3/8/012
http://dx.doi.org/10.1088/0022-3700/3/8/012
http://dx.doi.org/10.1088/0022-3700/3/8/012
http://dx.doi.org/10.1088/0022-3700/3/8/012
http://dx.doi.org/10.1088/0022-3700/9/12/008
http://dx.doi.org/10.1088/0022-3700/9/12/008
http://dx.doi.org/10.1088/0022-3700/9/12/008
http://dx.doi.org/10.1088/0022-3700/9/12/008
http://dx.doi.org/10.1088/0022-3700/18/13/007
http://dx.doi.org/10.1088/0022-3700/18/13/007
http://dx.doi.org/10.1088/0022-3700/18/13/007
http://dx.doi.org/10.1088/0022-3700/18/13/007
http://dx.doi.org/10.1088/0953-4075/27/12/013
http://dx.doi.org/10.1088/0953-4075/27/12/013
http://dx.doi.org/10.1088/0953-4075/27/12/013
http://dx.doi.org/10.1088/0953-4075/27/12/013
http://dx.doi.org/10.1088/0953-4075/29/13/017
http://dx.doi.org/10.1088/0953-4075/29/13/017
http://dx.doi.org/10.1088/0953-4075/29/13/017
http://dx.doi.org/10.1088/0953-4075/29/13/017
http://dx.doi.org/10.1088/0953-4075/25/14/008
http://dx.doi.org/10.1088/0953-4075/25/14/008
http://dx.doi.org/10.1088/0953-4075/25/14/008
http://dx.doi.org/10.1088/0953-4075/25/14/008
http://dx.doi.org/10.1088/0953-4075/30/4/019
http://dx.doi.org/10.1088/0953-4075/30/4/019
http://dx.doi.org/10.1088/0953-4075/30/4/019
http://dx.doi.org/10.1088/0953-4075/30/4/019


THEORETICAL STUDY OF MUTUAL NEUTRALIZATION IN . . . PHYSICAL REVIEW A 94, 022709 (2016)

[25] P. Saxe, B. H. Lengsfield, R. Martin, and M. Page, MESA
(Molecular Electronic Structure Applications) University of
California, 1990.

[26] D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975
(1994).

[27] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
[28] S. Geltman, Topics in Atomic Collision Theory (Academic Press,

New York, 1997), p. 31.
[29] B. H. Lengsfield and D. R. Yarkony, in State-Selected and

State-To-State Ion-Molecule Reaction Dynamics, edited by M.
Baer and C.-Y. Ng, Advances in Chemical Physics Vol. 82
(John Wiley & Sons, Inc., Hoboken, NJ, 1992), Part 2, Chap. 1,
pp. 1–71.

[30] T. F. O’Malley, Phys. Rev. 150, 14 (1966).
[31] A. U. Hazi, J. Phys. B: At. Mol. Phys. 16, L29 (1983).
[32] A. E. Orel, Phys. Rev. A 62, 020701 (2000).
[33] C. W. McCurdy and J. L. Turner, J. Chem. Phys. 78, 6773

(1983).
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