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A statistical-type model is developed to describe the ion production and electron emission in collisions of
(molecular) ions with atoms. The model is based on the Boltzmann population of the bound electronic energy
levels of the quasimolecule formed in the collision and the discretized continuum. The discretization of the
continuum is implemented by a free-electron gas in a box model assuming an effective square potential of the
quasimolecule. The temperature of the electron gas is calculated by taking into account a thermodynamically
adiabatic process due to the change of the effective volume of the quasimolecule as the system evolves. The
system may undergo a transition with a small probability from the discretized continuum to the states of
the complementary continuum. It is assumed that these states are decoupled from the thermodynamic time
development. The decoupled states overwhelmingly determine the yield of the asymptotically observed fragment
ions. The main motivation of this work is to describe the recently observed H− ion production in OH+ + Ar
collisions. The obtained differential cross sections for H− formation, cation production, and electron emission are
close to the experimental ones. Calculations for the atomic systems O+ + Ar and H+ + Ar are also in reasonable
agreement with the experiments indicating that the model can be applied to a wide class of collisions.
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I. INTRODUCTION

The understanding of the basic processes induced by
the collisions of ions with atoms or molecules is essential
for modeling the chemical changes in various media, e.g.,
astrophysical environments [1] and living matter [2]. The
heavy ions of the solar wind can be accelerated via an
electromagnetic-wave–particle interaction mechanism in the
magnetized plasma of the corona and reach speeds of up
to several hundred km/s, which correspond to several keV
energy [3]. Collisions in this energy range are important in
the interaction of solar wind with cometary and planetary
atmospheres and also in life sciences as they correspond to
the distal region of the Bragg peak [4]. The electron capture
processes maximize here, inducing chemical changes in living
tissues and astrophysical environments [5,6]. As a result of
the capture and ionization processes, ionized molecules are
created, which may undergo fragmentation processes due to
Coulomb explosion and form highly reactive radicals. Slow
electrons are also effectively ejected from the collisions [7].
These electrons efficiently produce single- and double-strand
breaks of DNA molecules due to the dissociative electron
attachment (DEA) process leading to cell death in radiolysis
[8]. Ordinary perturbation theories cannot handle atomic
or molecular collision in this energy range. The projectile
velocities are well below 1 (a.u.), so the perturbation is strong,
which leads to difficulties in the calculations.

Recently the production of negative ions of hydrogen was
observed in 7-keV OH+ + Ar collisions [9,10]. The H− ions
are able to form molecules in collisions with atoms due to
associative electron detachment (AED). Thus they play a
significant role in the chemistry of planetary atmospheres and
star formation as a precursor of molecular hydrogen and larger
molecules [11,12]. The observed H− ions in Ref. [9] were due
to binary collision of atomic centers detaching the H center
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from the OH+. It was unexpected that the detached center
is able to grab two electrons with significant probability in
those violent collisions to form the delicate loosely bound
two-electron system of H−. However, as it was found later,
this process is general; H− emission was observed from many
other molecular species [9,13].

As expected, effective positive hydrogen ion formation by
binary collisions was also observed [10]. The ratio of the
fractions (H−/H+) in those experiments was about 1/100
and was independent of the observation angle, and thus,
independent of the impact parameter of the collision. This
was surprising and led to the conclusion that the different
charge states were populated by some simple statistical law.
This is supported by the fact that the outgoing channels for the
hydrogen center are very limited; H+ and H− have only one
(stable) state, while the intermediate channels of the collisional
quasimolecule are quite numerous. The large number of
possible transitions between the different intermediate states
may cause the process to be stochastic, which leads to the
statistical distribution of the final states.

The decisive role of the electronic excitations in the process
was also shown. In less violent collisions, when the impact
parameter is large enough, the energy transferred to the
H center is smaller than necessary to detach it from the
molecular ion in its ground state. In such collisions, when
the scattering angles are less than ∼10°, however, large H−

and H+ yields were measured [10]. This indicates that the
molecular ions are excited by the collision and a kinetic
energy release (KER) separates the centers. By a semiclassical
model calculation, where KER of several eV was included,
the observed energy and angular distribution of the positive
and negative ions could be well described [10]. Also, the
recently observed large fraction of negative H− fragment ions
quasi-isotropically emitted from H2O target with low kinetic
energies in large-impact-parameter collisions with O+ was
reproduced by the model [13]. The main shortcoming of the
model is that it does not give an explanation for the formation
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mechanism of negative ions and the values for the relative
population of the different charge states are taken from the
experiment.

In Ref. [9], electrons with broad energy distribution in the
0.1–100 eV energy range were also observed. The emission
shows a maximum at the low-energy side and has a slowly
decreasing high-energy tail. This is a general feature of
low-energy ion-atom or ion-molecule collisions [7]. Binary
collisions between the slow projectile and the target electrons
cannot be the source of this emission since the energy of
the recoiled electrons, which are regarded as quasifree, is
0.2 eV at maximum. The observed relatively high-energy
electrons may originate from multiple scattering sequentially
on the target and projectile centers, however. This is the
so-called Fermi-shuttle effect [14]. Up to fourfold scattering
sequences for the electrons were observed experimentally
in C+ + Xe collision in the MeV energy range [15]. The
energy distribution of electrons showed wide peak structures
at energies corresponding to 2V and 4V velocities, where V

is the velocity of the projectile. The velocity of the electrons
increases by 2V at each scattering event by the projectile. In the
keV collision energy range, these structures are smeared out,
but classical trajectory calculations showed that the electrons
may undergo 6-14-fold scattering sequences [16].

In this work, a model calculation of statistical type is
presented in order to explain the emission of fragment ions and
electrons in slow molecular collisions. The main motivation
is to explain the H− emission in OH+ + Ar collisions, for
which a rigorous quantum mechanical approach appears to
be of prohibitive difficulty. The different electronic levels
of the collisional quasimolecule OHAr+ are supposed to be
populated by a statistical law during the collision. In this
approach, transition probabilities are not involved, which
greatly simplifies the calculations. The population of the
excited levels of the OHAr+ quasimolecule that dissociate
to an H− ion leads to the observed anion formation. The H−
production cross sections resulting from the model are close
to the experimental values.

The outline of this work is as follows. First, the basic
concepts of the model are introduced in Sec. II. In Sec. III, the
obtained results are presented for three collision systems in
separate subsections. The results are compared with available
experimental results. In Sec. IV, the conclusions obtained by
the model are summarized. In the Appendixes, the details of
the calculations are presented.

II. THEORETICAL MODEL

The model is presented for the OH+ + Ar system, but
it may be easily generalized to other molecular or atomic
collisions. Atomic units will be used throughout the paper
unless otherwise noted.

A semiclassical approach is adopted, in which the nuclei
follow classical trajectories. The model uses the energy levels
of the electrons, which are from ab initio quantum mechan-
ical calculations or reasonable approximations. Initially, the
collision partners are separated and they are in their ground
state. When the projectile approaches the target, the system
can be characterized by electronic eigenstates at fixed atomic
centers of the quasimolecular collision system. In the course

of the collision, nuclear motion couples the different states and
transitions may occur between them. The outgoing channels
describe excitation, capture, and ionization processes. Calcu-
lating the probability of the different outcomes as a function
of the impact parameter allows us to deduce cross sections
for the different processes. In ordinary methods to solve the
underlying problem, the expansion of the time-dependent state
vector of the system in the unperturbed electronic eigenstates
is performed. This leads to coupled equations for the resulting
time-dependent coefficients of the different channels. The
solution of this problem may be complicated due to the large
number of channels and the strong coupling between them.

The basic concept of this model is different at this point. In
the present treatment, it is assumed that the transitions between
all the electronic states except some of the highly excited ones
open up at a critical distance of approach Rcrit, and in the further
development, transitions are so frequent that the states are
statistically populated. For the validity of this approximation,
it is necessary that there is enough time for multiple transitions
during the collision process, that is, the collision is sufficiently
slow. This condition may be expressed as Rcrit/V � τ , where
V is the projectile velocity and τ is the characteristic time
for transitions between the channels, which is proportional to
the inverse of the square of the corresponding coupling matrix
element. Since the latter one is in the order of an atomic unit as
well as Rcrit for small quasimolecular collision systems, pro-
jectile velocities smaller than 1 a.u. are considered in this work.

In such slow collisions, the scattered free electrons have
enough time to undergo many collisions with the atomic
centers before they are emitted, giving way to frequent energy
exchange between them and the atomic centers. This effect
contributes to the statistical distribution of energies. The
thermodynamic equilibrium is expected to be reached within
a small fraction of time of the collision.

A schematic view of the collision with electric potential for
the electrons is shown in Fig. 1. The critical distance is taken
as the classical overbarrier capture distance [17]. At this point,
the most loosely bound electron may pass the barrier between
the nuclei classically. Quantum mechanically, this is the typical
distance, where the wave functions localized originally on the

FIG. 1. Schematic view of the OH+ + Ar collision system. The
potential energy curve for the electrons is shown. The energy levels
of electronic bound and free states are denoted by horizontal lines. At
critical distance of approach the most loosely bound electron of Ar
passes the barrier and becomes quasimolecular. The pseudolocalized
free electrons are those which occupy states with positive energy in
the continuum, but are localized to the quasimolecule. The population
of the states is depicted by the Boltzmann factor.

022707-2



THERMODYNAMIC MODEL FOR ELECTRON EMISSION AND . . . PHYSICAL REVIEW A 94, 022707 (2016)

target or the projectile expand to both of them. This opens up
transitions, since geometrical overlap of the wave functions
increases.

The critical distance according to the overbarrier model
[17] is

Rcrit = 2
√

q + 1

−Ib

, (1)

where Ib is the binding energy of the most loosely bound
electron on the neutral target, which in this case is the argon
atom, and q is the charge state of the projectile. For the studied
systems, Rcrit = 5.18 a.u. is obtained. The overbarrier model
was developed for atomic projectile ions, where the distance
of approach is measured from nucleus to nucleus. In the case
of molecular projectile, this definition is ambiguous. In the
model, the H center is taken to be the effective charge carrier,
from where this distance is measured.

In the statistical distribution of energies, the electrons in
the continuum play a significant role. In order to introduce
them in this model, their energy levels have to be discretized.
It is plausible to assume that only those electrons in the
continuum interact with the system and are involved in the
statistical distribution of energies, which are localized in
the volume of the quasimolecule. The energy spectrum of
such electrons, which are referred to as pseudolocalized free
electrons (PLFEs), is discrete (see Fig. 1). A derivation of
their energy levels and their energy density is presented in
Appendix A.

Due to the stochastic energy exchange between the nuclei
and electrons, different electronic states are populated with
probabilities defined by the Boltzmann factor,

p ∼ e−E/kT , (2)

where E is the energy of the state, T is the temperature,
and k is the Boltzmann constant. Be aware that in E, the
energy of the PLFEs as well as that of the bound electronic
system is included. The resulting probabilities for populating
the excited states of the quasimolecular system and the related
statistical quantities, such as the expectation value for the
energy of the system, are given in Appendix B. As the collision
partners approach each other, the characterizing temperature
T increases due to thermodynamically adiabatic compression.
The equations governing the temperature are also given in
Appendix B.

In the way out of the collision, the partners are getting
separated and the system cools down. When the H center
approaches the critical distance again, the transitions between
the electronic states become less likely so that they practically
stop. After asymptotic separation of the centers, certain charge
states of the atomic centers may be observed depending on this
final state. These are expected to be mostly low-charge states
since the final temperature is low. Contrary, high-charge states
up to threefold are observed in the experiments. Therefore one
may conclude that some of the populated highly excited levels
are coupled out from the stochastic time development and
fixed earlier. This is also supported by the observed relatively
high fraction of anions, which are accompanied by emission
of cations. They are formed efficiently during the collision
at close approach of the collision partners, but the system
is likely to make a transition to the energetically favorable

neutral-neutral or neutral-cationic state in the way out of
the collision both in the picture of stochastic transitions and
in coupled channel calculations. For the explanation of the
observed relatively high anion production, the switching off
of the stochastic transitions with some probability during the
collision process seems to be necessary from this point of view.

In order to explain this, the role of the active PLFEs in
the stochastic transitions have to be considered. Transitions
between the different excited levels of the transient quasi-
molecule may be hampered by the large energy difference
between them. The situation is different when a PLFE is
present. The energy difference can be taken by the PLFE
since it can occupy many different energy levels in the
quasicontinuum so that the total energy of the system does
not change significantly. The PLFE, however, with a small
probability can leave the volume of the quasimolecule; that is,
the electron is ejected. Then the electromagnetic interaction
between the electron and the rest of the system becomes
negligible and the energy exchange becomes practically
impossible. The quasimolecule is left in a specific state, which
adiabatically develops further. Its energy continuously varies
with the varying internuclear distance but the jumps between
different energy levels do not happen anymore. In order to
demonstrate this some simulations are performed, which are
presented in the Supplemental Material [18]. The Schrödinger
equation is numerically solved for a particle in a box with walls
of finite heights. The width of the box slowly gets narrower
in time representing the quasimolecule in the way in of the
collision. If the initial state is a bound state containing only
one mode with a given wavelength, that mode remains the
dominant one for a time far longer than 1 atomic time unit. If
another particle being in a pseudolocalized free state is also
present in the box, the other modes appear very soon, indicating
that transitions between the different energy levels of bound
states are open.

In the present statistical model, the time development of the
system is followed in small discrete time steps. In each step, the
position of the nuclei, the force acting on them, the temperature
of the system, and the probability of populating the different
excited states and PLFEs are calculated assuming statistic
distribution of the excitation energies. It is assumed that when
a PLFE leaves the volume of the quasimolecule the state of the
remaining ionized quasimolecule is fixed as explained above;
that is, a certain state is branched out from the stochastic time
development. The probability of such events is calculated in
Appendix C. The motion of the nuclei is then calculated by
the adiabatic potential energy surface corresponding to the
fixed excited state in the further time steps. Each potential
surface is associated with a different dissociation limit of
the constituent atomic ions at far internuclear separation.
The populated charge state of the fragment ions is recorded
after the collision letting the system develop for sufficient
time. Many trajectories are simulated with different initial
conditions. Since the time developments starting from a given
initial condition are the same up to the earliest branching
point, a stochastic time development is needed to be calculated
only once letting it be active for the whole time duration.
Then selecting some branching points, further calculations are
performed that belong to the same initial condition, in order to
sample random events of branching outs.
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The population of pseudolocalized free states by the Boltz-
mann factor and the subsequent transitions to unlocalized free
states describe excitation processes to free states and ejection
of electrons at each time step. The density of pseudolocalized
free states obtained in Appendix A allows the determination of
the energy distribution of the ejected electrons. The populated
free states are expected to be s waves, since in these slow
collisions, the angular momentum of the electrons is not
expected to take high values. This again limits the validity
of the model to low velocities. The s waves are expected to
be centered on the different scattering centers, the nuclei and
free electrons. Considering this, the angular distribution of the
emitted electrons can be determined (see Appendix D).

The excitation into free states may be referred to as
evaporation of electrons, which appeared in the model of
Russek [19] for ionization in atomic collisions. The source
of the excitation energy was supposed to be a friction
mechanism due to electron-electron collisions. This energy
was statistically divided in uniform energy cells representing
the energy levels of the atoms and the continuum. With two
fitting parameters, a good agreement was obtained with the
experimentally observed charge states distribution of ions
following Ar+ + Ar collisions. In a developed version of the
model, the friction mechanism was replaced by the excitation
to discrete levels of autoionizing states which depends on the
closest approach of nuclei [20]. Later, the model was further
developed. Phase-space cells were used instead of energy
cells. Using an adjusting parameter for the transitional matrix
elements, a better agreement was found for the final charge
state distribution [21]. Other different statistical approaches
for atomic collisions were also developed [22,23].

In the present model, ab initio electronic energy levels
of diatomic molecules are used instead of energy cells. The
potential surfaces of the triatomic system are approximated by
the sum of diatomic potentials. Sometimes screened-charged
potential approximation is used if ab initio potentials are
not available. More on the used potential curves can be
found in Appendix E. In the calculations, some atomic levels
corresponding to different dissociation limits are excluded.
Since it is not likely that the angular momentum of the bound
electrons increases in slow collisions, the atomic levels with
J > 4 are excluded. Energy levels lying higher than a certain
energy limit above the ground state, high-energy-cut limit
(HECL) in the following, are also excluded in order to avoid
population of an infinite number of levels approaching the
continuum. This is justified if one considers that highly excited
(Rydberg) states are expanded in space, so that they cannot be
considered as localized to the quasimolecule. Their overlaps
with low-lying states are small; therefore the transition times
may exceed the collisional time. Since the characteristic radii
(4 a.u.) of the 2s and 2p orbitals of hydrogen (2l level in the
following) are relatively large, it is assumed that the 2l level
should be excluded. This level is just above 10-eV excitation
energy, which is, therefore, accepted as a common HECL
leading to results in good agreement with the experimental
ones. Unless otherwise noted, the 10-eV HECL is used in
the presented results in Sec. III. The autoionizing states are
skipped merely to save computation time. Since they are highly
excited, they are not effectively populated by moderate thermal
processes. Despite their low population, their contributions can

be observed in the experimental energy spectra, since they emit
electrons in narrow peaks.

No adjusting parameters as in the Russek model [19–21]
are involved in the present model. The ion-production and
electron-emission cross sections obtained for the OH+ + Ar
collisions, as well as for the atomic collision systems of H+ +
Ar and O+ + Ar are in good agreement with the experiments.
This indicates that the model can be applied to a wide class
of collisions without system-dependent adjusting parameters.
Moreover, it is possible to simulate coincidence events with
the model.

III. RESULTS AND ANALYSIS

In this section the results obtained for three collision
systems are presented and compared with experimental results
from the literature. Since the calculations are of high compu-
tation demands, only sparse sampling in angle and energy are
feasible. The theoretical results of this work are, therefore,
represented by symbols, while the experiments sometimes
are denoted by lines since the sampling was dense in the
experiments.

A. OH+ + Ar system

The calculations for OH+ + Ar collisions have been per-
formed with HECLs of 10 and 12 eV. In the former case, only
the ground state is included for the atomic hydrogen, since
energy of the 2l level (10.2 eV) is above the limit. With the
higher-cut limit, the 2l level is also included.

In Fig. 2, the results obtained for H− and H+ production
cross sections using the 10-eV HECL are shown and compared

FIG. 2. Single-differential cross sections in angle for (a) H− and
(b) H+ production in 7-keV OH+ + Ar collisions. Closed circles
correspond to this work; open circles are the experimental results
from earlier works of the author et al. [9,10]; solid lines are two-body
H scattering calculations on Ar multiplied by fitting factors indicated
in the figure, also from Refs. [9,10].
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with the experimental results from Refs. [9,10] for 7-keV
collision energy as a function of the observation angle. The
calculated values agree reasonably well with the measured
data. However, significant statistical errors occur in the
calculation as it can be seen from the nonmonotonous decrease
of the obtained H− production cross section above 60°. The
analysis shows that the error stems from the relatively spare
sampling of the random orientation of the primary OH+.

The calculation has been performed for 1000 impact
parameters all with different random orientation of the primary
projectile. For each impact parameter, one hundred branching
outs are modeled. The process has been repeated once more.
The resulting ion-production cross sections for the two runs
agree within a factor of 2 except for one data point. In Fig. 2,
the average of the two results is shown. The statistical errors are
larger than those expected from the number of the simulated
events. The fact that only the initial orientation of the projectile
was different in the two runs implies that the process is
sensitive for the initial orientation of the OH+ projectile. For
atomic ion projectiles, where no orientation is involved, the
statistical errors are significantly smaller as is obvious from
the obtained results shown in the next subsections.

On average, the calculations overestimate the H− produc-
tion cross section by about a factor of 2 and underestimate H+
production by about a factor of 1.5. With the 12-eV HECL,
the obtained angular dependences (not shown here) are similar,
but the H− production is underestimated by a factor of about
8. This is probably due to the fact that the relative statistical
weight for H− is significantly decreased with the inclusion of
the first excited state of H.

In Fig. 3, the calculated electron-emission cross sections
differential in energy and angle are shown. In the 0.2–100 eV
emission energy range, the calculated results using the 10-eV
HECL are in good agreement with the experimental ones [9]
except in some narrow energy ranges. In the case of the 12-eV
energy cut limit, the calculations resulted in values lower by a
factor of up to 3.5 between 20 and 100 eV.

In order to explain the partial deviations, it should be noted
that the experimental results measured by an electrostatic
spectrometer have rather large uncertainties below 1 eV (not
shown in Ref. [9]). There is also an instrumental effect at small
observation angles below 60°, at which angles the scattered
projectiles may enter the spectrometer. This leads to elevated
background in the spectra, particularly visible above 100 eV,
where the signal is weak.

An MNN Auger line of Ar is prominently present between
10 and 20 eV in the experimental energy spectra. This
feature cannot be reproduced with the present model since
the autoionizing states are excluded from the calculation.

The analysis of the trajectories shows that a large fraction of
the emitted electrons is due to such collisions where the oxygen
atom suffers a close-impact-parameter collision with the target
atom. The enhanced electron emission is due to the higher
temperature of the electron system reached in such collisions
as is demonstrated in Fig. 4. The temperature is expressed as
energy E = kT in units of electron volts (eV) in the following.
When both projectile centers pass the target relatively far from
it (a), the temperature increases up to 4 eV. In the case when
the H center approaches significantly closer (b), while the
oxygen is still far, the temperature moderately increases up

FIG. 3. Electron-emission cross sections differential in energy
and angle for 7-keV OH+ + Ar collisions at different observation
angles indicated in the figure. For graphical reasons the spectra are
multiplied by factors indicated next to the observation angles. Open
squares: this work with HECL of 10 eV; closed circles: this work with
HECL of 12 eV; solid thick lines: the experimental results from the
earlier work of the author et al. [9]. Symbols are connected to guide
the eye.

to 6 eV. However, when the oxygen center suffers a close
collision with the target (b), the maximum of the temperature
reaches 28 eV. According to the calculation, in the latter cases,
the ionization degree reaches 4, while in the former cases it
does not exceed 1. The high temperature favors the population
of highly excited states such as the ionic H−−O+ channels.
The impact parameter of the O center depends on the initial

FIG. 4. Temperature of the electron system as a function of the
time for 7-keV OH+ + Ar collisions at different impact parameters
bO for oxygen and bH for hydrogen as indicated in the figure. The
starting point of the time is when the H center is at a distance of
5.18 a.u. from the target center. In the vertical axis, 1 eV corresponds
to 11605 K.
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TABLE I. Total ion-production cross sections for 50-keV O+ +
Ar collisions in 10−16 cm2 units. Theory this work. Experiments: O−,
[24]; O0, [25], [26]; O2+, [25]; O3+, [25] (* extrapolated value).

Charge state Experiment Theory

O– 0.89 ± 0.22a 0.026
O0 13 ± 2b, 14.5 ± 0.9c 14.3
O2+ 0.16 ± 0.03b 0.11
O3+ 0.01b,* 0.0026

aReference [24].
bReference [25].
cReference [26].

orientation of the projectile. This is the explanation why the
population of ionic states is so sensitive to the orientations.

The analysis of the final charge states shows that in close
collision by the O center, the most likely outgoing channel
leading to H− formation is the (e−,H−,O+,Ar2+) one. In the
case when the oxygen does not suffer a close collision, H−
is also formed by the weaker but still significant channel,
the (H−,O+,Ar+) one. This outgoing channel is one of those
channels that couple out from the stochastic development at
the critical distance and do not involve electron emission. Such
channels could be identified by coincidence techniques, but no
such experiments have been performed so far. A comparison
of the theory with coincidence experiments may be a subject
of a future work.

All together, good agreement with the experiment is
obtained for this collision system in both electron and ion
emission for collision velocity of 0.13 a.u. and with HECL of
10 eV.

B. O+ + Ar system

The calculation for this system has been performed for
50-keV collision energy. This energy corresponds to a velocity
of 0.35 a.u., which is still below the upper limit of the validity
of the model. In Table I, the total experimental ion-production
cross sections are compared with the calculated ones using the
HECL of 10 eV. For single electron capture (O0 production),
they agree within the experimental uncertainties. The single
electron loss (O2+ production) cross section is underestimated
by a factor of 1.4. For double electron loss (O3+ production),
an experimental result is not available at this energy. An
estimated value is obtained from the experimental results by
extrapolation in energy. The theoretical value underestimates
this by a factor of about 4. This, however, does not exclude the
possibility of better agreement.

Significant disagreement has been found for negative-ion
production, which is underestimated by more than one order
of magnitude. The simplest outgoing channel leading to O−
formation is the O− + Ar2+ one. Ab initio potential energy
curves for this channel are not available. Instead, approximate
screened-charge potentials are used, which likely overestimate
the exact potentials of bounding orbitals. The overestimated
potential energy may explain the low population of the negative
oxygen ions in the calculation.

In Fig. 5(a), the calculated differential cross sections for
ion productions are presented as a function of the observation

FIG. 5. (a) Calculated single-differential cross sections in angle
for the different charge states of oxygen (indicated in the figure by
open symbols) in 50-keV O+ + Ar collisions with HECL of 10 eV.
Lines are to guide the eye only. (b) Charge state distribution at 30°.
Closed symbols are the results with HECL of 13 eV.

angle. It is seen that each charge state follows nearly the same
angular dependence as one may expect from the statistical
characteristics of the model. Differential experimental results
are not available in the literature.

In Fig. 5(b), the charge state distribution is shown at an
observation angle of 30°, where also the results obtained for
the HECL of 13 eV are shown. The latter results are nearly
the same as those belonging to the HECL of 10 eV except for
O0 charge state, which is significantly enhanced. The reason
behind this is that there are many levels for this charge state
between 10 and 13 eV so that their inclusion increases the
statistical weight for neutrals.

Double-differential cross sections for electron emission are
shown in Fig. 6. The results of the calculations are presented
for 10- and 13-eV HECLs, too. They nearly agree with each
other above the emission energy of 10 eV. Below this energy,
the former ones slightly exceed the latter ones. Between 20 and
100 eV, a good agreement with the experimental results [27]
is found. Note that prominent Auger lines are visible between
10 and 20 eV (Ar MNN) and between 150 and 250 eV (Ar
LMM) in the experimental spectra. These lines are absent in
the theoretical spectra, since the model does not calculate the
contribution due to the Auger process. At forward angles, the
slopes of the theoretical curves are slightly smaller than
the slopes of the experimental cross sections.

It should be noted that Ref. [27] reports on a remarkable fea-
ture that the cross sections slightly increase from 90° going to-
wards larger backward angles. The origin of this feature is still
under question. One key factor in this may be the fact that oxy-
gen is significantly lighter than argon. Therefore, the oxygen
center recoiled at small impact parameters moves backwards
with respect to its initial velocity. In the present model, en-
hanced electron emission at backward angles may be expected
due to the backscattered oxygen center, which grabs electrons
with itself. In the results of the present calculation, however, no
increasing cross sections towards large angles were obtained.

In Fig. 7, a comparison with the previously investigated
OH+ + Ar system is made for the electron emission cross
sections at an observation angle of 90°. Both theory and
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FIG. 6. Electron-emission cross sections differential in energy
and angle for 50-keV O+ + Ar collisions at different observation
angles indicated in the figure. For graphical reasons the spectra are
multiplied by factors indicated next to the observation angles. Open
squares: this work with HECL of 10 eV; closed circles: this work with
HECL of 13 eV; solid thick lines: experimental results of Stolterfoht
and Schneider [27]. Symbols are connected to guide the eye.

experiment show that for the atomic O+ projectile, the
electron-emission cross sections are significantly higher than
for the molecular projectile OH+ at emission energies between
20 and 100 eV. One may suppose that the reason behind
this is the higher collision energy. In order to check this,
a calculation has been performed for the OH+ projectile
with 53 keV, which corresponds to the same projectile

FIG. 7. Electron emission cross sections at 90° observation angle
for different systems (7- and 53-keV OH+ + Ar and 50-keV O+ +
Ar) indicated in the figure. Solid thick lines belong to experiments
[9,27]. Symbols denote calculations. They are connected to guide
the eye. Full circles connected with dashed lines are the results for
53-keV OH+ + Ar collisions. Open circles belong to 7-keV OH+ +
Ar collisions, and closed squares belong to 50-keV O+ + Ar
collisions.

FIG. 8. Temperature of the electron system as a function of the
time for 50-keV O+ + Ar collisions at different impact parameters
b for oxygen indicated in the figure. The starting point of the time is
when the O center is 5.18 a.u. from the target center at the beginning.
In the vertical axis, 1 eV corresponds to 11 605 K.

velocity as that for 50-keV O+. Despite the same veloc-
ity, the calculated cross sections are significantly lower
in the case of the molecular projectile. The results for
7- and 53-keV OH+, however, nearly match. This demonstrates
that the collision energy is not the decisive parameter for the
intensity of electron emission. The electron emission rather
depends on the type of the projectile.

The more intensive electron emission at large emission
energies in the case of the atomic projectile may be caused by
the higher electron temperatures. In Fig. 8, it is shown that for
O+ + Ar collisions, indeed higher temperatures are obtained in
the calculations. For a collision with impact parameter of 1 a.u.
(b), the maximum of the temperature reaches 30 eV, while
for the OH+ + Ar system similar collisions by the oxygen
leads to only 6 eV at maximum; see Fig. 4(b). According to
the model, the higher electron temperature in the case of the
atomic projectile is caused by the higher volume compression
ratio of the quasimolecular system. In the model, the volume,
where the electrons move quasifreely, is proportional to the
internuclear distance. For atomic projectile, this can be as
small as 0.1 a.u. at the closest approach. While in the case of
the OH+ projectile, even when one of the centers approaches
the target, the other center is likely to be still relatively far from
the colliding centers. This practically does not allow the sum
of internuclear distances to decrease below a limit, which is
about twice that of the bound length of OH+. This limitation
of the compressed volume of the quasimolecular system leads
to lower adiabatic heating.

The temperature of the electron gas during the collision
process also depends on the shape potential energy curves
of the bound states. Therefore, the electronic structure of the
colliding atoms is expected to play a significant role in the
intensity of electron emission, too.

C. H+ + Ar system

Collisions for this system have been modeled with impact
energies of 1 and 5 keV for which experimental data are
available. These energies correspond to velocities of 0.2 and
0.45 a.u. respectively.
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FIG. 9. Single-differential cross sections in angle for H−

(squares) and H0 (circles) production for (a) 1-keV H+ + Ar, (b)
5-keV H+ + Ar collisions. Open symbols belong to the present
theory. Closed symbols denote the experimental values of Alarcon
and Martinez et al. [28,29].

Single-differential cross sections for H− and H0 production
in the 0◦–5◦ angular range are presented in Figs. 9(a) and
9(b) for 1- and 5-keV collision energies, respectively. The
theoretical results obtained with the 10-eV HECL are shown.

For 1-keV collision energy, the theoretical result for the
H0 production cross section is close to the experimental one
[28] in the 0°–1° angular range. At angles larger than 1°, the
cross section is somewhat overestimated. Compared to the ex-
perimental H− cross section measured by Martinez et al. [29],
the present calculation leads to an overestimation in the whole
range by about a factor of 5; see Fig. 9(a).

For 5-keV collision energy [Fig. 9(b)], a better agreement
has been found. Both the calculated H0 and H− production
cross section are close to the experimental ones. Significant
deviations appear only above 2°–3°. The bumps at 3.1° are
artifacts. This scattering angle corresponds to the closest
approach of the nuclei of about 0.7 a.u. In the fitted potential
energy curves there are some artificial crossings at this
internuclear distance, which is close to the limit of the range of
the available data. There, the potential energy curves closely
approach each other so that even a small change of the
potentials can lead to crossings. The calculation shows that
passing through such crossings leads to increased temperature
of the electronic system, causing higher populations of excited
states and enhanced electron emission.

The overestimation of H− production at 1 keV may stem
from the exclusion of 2l levels of atomic hydrogen by the

TABLE II. Total H− and H+ production cross sections in
10−16cm2 units. Theory from present work, experiments from
Refs. [28,29].

H– H0

Energy Theory Exp. Theory Exp.

1 keV 0.15 0.007 3.8 7
5 keV 0.17 0.04 20 13

HECL of 10 eV. This reduces the population of neutral states
partly in the favor of negative hydrogen ion population. The
inclusion of 2l level indeed decreases the population of H− and
moderately increases that of H0 as the calculations with HECL
of 12 eV indicates, (not shown in the figure). The decrease of
the H− cross section is, however, dramatic. It becomes about
one order of magnitude smaller than the experimental one.
This suggests that the 2l level is active, but its population is
lower than that expected at thermodynamical equilibrium. It
may be due to the low transition rates from the other levels.
It is likely that this level, though appreciably populated, does
not reach thermodynamical equilibrium during the time of the
collision. For faster collisions, its population likely becomes
negligible due to the shorter available time. This is supported
by the fact that the theory gives nearly correct cross sections
at the collision energy of 5 keV without the inclusion of the 2l

level.
In Table II, total ion-production cross sections determined

in Refs. [28,29] by integration of the measured single-
differential cross sections over the solid angle are compared
with the results of the present calculations. The total cross
sections in the present work are determined by a different
method. The ion-production probabilities multiplied by the
cross-sectional areas are integrated over the impact parameter.
The so-obtained cross sections are higher than the experimen-
tal ones for both H− and H0 at 5-keV collision energy. This is
somewhat puzzling, since the differential results are in good
agreement; see Fig. 9(b). Note that bumps at 3.1° make little
contribution to the total cross sections, so that cannot explain
the difference. The high peaks at 0°, however, make significant
contribution to the total cross sections and are significantly
higher in the calculations.

In a recent theoretical work [30], total H0 production cross
section was found to be close to the experimental values,
but the obtained H− production cross section significantly
overestimated the experimental ones. These results were
obtained by calculating the classical trajectories of the active
electrons in the quasimolecule. The electrons were treated
independently without interaction between them. In this
classical description, the ionization potential of the H− ion
was significantly overestimated. This led to the overestimation
of the H− production. In the present model the ionization
potentials of the H− ion are discrete values obtained from
the literature. This eliminates the drawbacks that emerge in
the classical trajectory calculations. The presently obtained
total H− production cross sections are somewhat closer to
the experimental ones. It should be noted, however, that the
differential cross sections may be divergent at 0°, which makes
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FIG. 10. Electron-emission cross sections differential in energy
and angle for 5-keV H+ + Ar collisions at different observation
angles indicated in the figure. For graphical reasons the spectra are
multiplied by factors indicated next to the observation angles. Open
squares: this work with HECL of 10 eV; closed circles: experiments at
Behlen Laboratory, Nebraska; solid thick lines: experiment at Pacific
Northwest Laboratory, Washington [31,32]. Symbols are connected
to guide the eye.

the accurate determination of the total cross sections difficult
both in theory and experiment.

Double-differential cross sections for electron emission
are presented in Fig. 10 for three observation angles. The
theoretical results obtained with the HECL of 10 eV are shown.
Experimental data measured in two laboratories for this system
[31,32] are also shown in the figure. The calculated cross
sections are close to the experimental ones in magnitude, but
the shapes of the curves are somewhat different. Significant
deviations can be observed only below 1 eV at 90°. Here
the experiments are less reliable, as indicated by the fact
that the experimental results also deviate from each other
below 5 eV. The present results do not seem to favor any
of the experiments; partial agreements are found for both.
Inaccuracies are expected in the calculations, too, due to the
artificial potential curve crossings that also cause the bumps
in Fig. 9(b).

IV. CONCLUSIONS

A statistical-type model is developed in order to describe
the differential ion-production and electron-emission cross
sections in collisions of molecular ions with atoms. The
internal dynamics of the quasimolecular system formed in

the collision is approximated by adiabatic heating of the
electrons and the Boltzmann distribution of the electronic
energy levels. The energy levels above the continuum are
discretized by confining the electrons to the volume of the
quasimolecule. The electrons may undergo a transition with a
small probability from the discretized continuum to the states
of the complementary continuum. It is assumed that due to this
process the rest of the quasimolecular system is coupled out
from the statistical dynamics. Population of the out-coupled
states overwhelmingly determines the yield of the observed
outgoing ions.

The theoretically challenging anion production from molec-
ular cations can be handled in the model without com-
plications. For 7-keV OH+ + Ar collisions, the calculated
anion-production cross sections are in good agreement with
the experimental data. A good performance of the model
is observed also for the cation and electron emission cross
sections. The obtained energy and angular dependences are
very similar to the experimental ones. The angular distribution
of the emitted H+ and H− ions are found to be similar to
each other both in the theory and in the experiment indicating
that the present statistical model gives a correct account and
explanation for the observed statistical behavior of final charge
states found in Ref. [10]. The good agreement in ion production
for small angles, which corresponds to large-impact-parameter
collisions, where the pure binary process is not able to break
the molecular projectile, indicates that the thermal process in
the present model describes the disintegration of the projectile
by excitations. The kinetic energy released in this process is
not only due to the excitation energy, but the pressure of the
quasifree-electron gas contributes to it, too.

For collision systems with atomic ion projectiles of O+ and
H+ colliding on Ar, a good agreement with the experiments
is found in both dependences and magnitude. This indicates
that the model can be applied for different systems. The
magnitude of the cross sections is close to the experimental
ones except for the anion formation from O+ and from
1-keV H+ projectiles. The discrepancies may partly be due
to inaccuracies in the applied pair potential curves. A more
complete ab initio potential dataset is desirable to perform
more accurate calculations.

It is supposed in the model that the transition rate between
the different energy levels is significant only up to a certain
excitation energy, and only the levels below are populated
according to the Boltzmann distribution. The results with the
energy limit (HECL) of 10 eV are in reasonable agreement
with the experiments for almost all of the investigated systems.
The only exception is the 1-keV H+ + Ar system, where the
population of the levels just above this limit is found to be
non-negligible but less than in thermodynamic equilibrium.
The calculations with higher HECLs (12–13 eV), however,
have led to poorer agreement for each system. A better rule of
thumb for the transition rates based on ab initio calculations
and more sophisticated selection of the effectively populated
states may improve the quality of the calculations.

It is shown that the temperature of the electron gas is higher
for atomic ion–atom than for molecular ion–atom collisions
due to the larger adiabatic compression in the case of atomic
collisions. This leads to more intensive electron emission in

022707-9
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accordance with the experiment. Also it has been found that
close collisions of O+ on Ar result in more intensive electron
emission than similar collisions with H+ projectiles.

In the future the model may be applied for larger collision
systems of interest such as O++H2O [13]. Also, anion and
cation production from carbon and metal clusters colliding
on atoms has attracted considerable attention recently [33–
36]. The experimental results were interpreted in terms of
statistical and thermodynamic models of fragment emission
from the hot excited clusters after the collisions. One of the
challenging tasks in those models is the determination of
the excitation energy of the clusters after the collisions. The
present model may be used to calculate the excitation energies
of small clusters induced by atomic collisions as well as the
fragmentation during the collision.
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APPENDIX A: DENSITY OF STATES OF
THE FREE ELECTRONS

Treating the continuum electronic states is a fundamental
problem in quantum mechanical calculations. For feasible
calculations, the discretization of the continuum is necessary.
Several methods were developed for this purpose using the
so-called pseudostates. These are orthogonal states, which are
constructed from a finite set of basis functions [37] or obtained
by the integration of eigenfunctions over disjoint intervals of
the continuous positive energy spectrum [38,39]. The latter
method may implement limitation on the wave function in
space according to the Heisenberg uncertainty relation. The
choice of the pseudostates is, however, not unique, which leads
to uncertainties in the calculations.

In the present model, a similar but more intuitive method is
followed, which gives the condition for appropriate selection
of pseudostates. The method is confining the wave function of
the free states corresponding to certain energy eigenvalues to
the size of the quasimolecule. The selection of the eigenvalues
is performed such that the resulting system of wave functions
could be orthonormalized. This allows only discrete energy
eigenvalues. The confining is performed by truncating the
wave functions outside the volume of the quasimolecule.
The resulting states are referred to as pseudolocalized states
and the electrons in those states as PLFEs (see Figs. 1 and
11). This method is justified by the following reasons: The
quasimolecule acts as an effective potential valley for the
electrons trying to confine them as a box. On the other hand,
the electron emission is expected to proceed in two steps.
Initially, the pseudolocalized states are populated, which have
large overlap with the bound states.

FIG. 11. The model square potential with depth of Veff for the
quasimolecule and the type of free electronic wave functions. (a)
General wave function with a definite kinetic energy. Its amplitude
is smaller inside the well due to matching the derivatives at the
boundaries. (b) Pseudolocalized wave function.

Transitions directly to other free states, which spread in the
whole space, are unlikely because of the lack of significant
overlap with the bound states. The wave functions of the states
complementary to the pseudolocalized states are truncated
inside the quasimolecule. These are referred to as unlocalized
free states in the following. This way the Hilbert space of free
electrons is divided to an active and a nonactive part, which
simplifies the description of the ionization processes.

The calculation of the exact energy levels of the PLFEs is
complicated. Since they are expected to be spaced densely,
they may be approximated by a quasicontinuous distribution.
The model requires only a good approximation for the density
of states. It is supposed that the electrons move freely along the
lines connecting the nuclear centers in an effective potential.
The potential of a quasimolecule is modeled by a square
potential (see Fig. 11). The width of the effective potential well
L is taken to be the sum of the distance of the atomic centers
plus 1 a.u. taking into account approximately the width of the
potential of the atoms, L = ROH + 1 + RArH + 1 + RArO + 1.
The effective depth of the potential is denoted by Veff . As
shown, one can consider the following types of wave functions
for free electrons in such potential shape. In the general
case, the wave functions with definite positive kinetic energies
expand to the whole space and have a sinusoidal shape with a
different wavelength inside and outside the box; see Fig. 11(a).
Due to the continuity of the derivative, the amplitude within
the well may be smaller than outside. These states have
small geometrical overlap with the bound states; therefore
the probability of transitions between them is small. As a
consequence, they are not directly populated by the thermal
energy exchange. Wave functions of the other type are such
that the part outside the box is cut down; see Fig. 11(b).
These may be realized by appropriate superposition of the
wave functions of the former type. The corresponding states,
the pseudolocalized states, after normalization, have large
overlaps with the bound states, so that frequent transitions
are expected to occur between them. They contain many
components of different wavelengths, but the expectation value
of their energy is determined by the wavelength inside the box.

The wave-function solution for a square well (a particle in
a box) can be written as

�(r) = sin[r
√

2(ε + Veff)], (A1)
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where r is the distance from the center, ε is the energy of
the electron, and Veff is the effective potential depth. The
orthogonality criterion determines the allowed wavelengths,
for which

2π√
2(ε + Veff)

= L

N
(A2)

is valid, where N is an integer, which gives the number of
energy levels up to the energy ε. Those energy levels, however,
are not necessarily positive, so the corresponding states do not
belong to the continuum. In order to have wave functions in
the continuum of type (b) a common phase factor is applied to
the wave functions given by (A1)

�̃(r) = exp(−i
√

Veffr) sin[r
√

2(ε + Veff)]. (A3)

Due to the phase factor, the expectation values of the
energies of the corresponding states are shifted,

ε̃ = ε + Veff . (A4)

The shifted energies start from zero value. The orthonor-
mality of the system is conserved since the phase factor has
the absolute value of unity. The density of free states is
given by

g(ε̃) = (Na + n − 1)
dN

dε̃
= (2 + n)L

2π
√

2ε̃
, (A5)

where it is taken into account that the electrons are scattered on
the Na = 3 atomic centers and on the other n-1 free electrons.
With each scattering center, a series of states defined by (A2)
is associated.

APPENDIX B: STATISTICAL QUANTITIES

The method for calculating the different quantities of inter-
est such as population of energy levels, the ionization degree,
and the mean internal energy for the quasimolecule, etc.,
during the thermodynamically stochastic time development
is given here.

The system at ionization level n is divided into two
components, subsystems 1 and 2 respectively: n free electrons
being in pseudolocalized states, and the atomic centers with
the bound electrons. The free electrons are labeled by j. Each
of them has energy εj . The subsystem 2 has an energy of En,i ,
where n denotes the degree of ionization and i corresponds to
the level of excitation. The energy of the total system is

E = En,i +
n∑

j=1

εj . (B1)

The probability of population of an excited state indexed
by n and i is given by the Boltzmann factor summed
over all possible energy of the PLFEs. Since they follow a
quasicontinuous distribution, integration is used instead of a
sum:

pn,i ∼ 1

n!

∫
· · ·

∫
g(ε1) · · · g(εn)e− En,i+

∑n
j=1 εj

kT dε1 · · · dεn,

(B2)

where g(εj ) is the density of states given by (A5). The division
by n! is applied because all possible permutations of εj ’s

establish the same state since electrons are indistinguishable. It
is necessary for the validity of (B2) that the energies of the free
electrons should be independent. This is a plausible condition,
since except for binary collisions free electrons weakly interact
with each other. The effects of Pauli’s exclusion principle are
neglected here, since the occupancy of the pseudostates is
expected to be much smaller than unity. Simplification and
normalization of expression (B2) leads to

pn,i = 1

Ztotn!
e− En,i

kT Zn, (B3)

with the state sum for the electrons

Z =
∫ ∞

0
g(ε)e− ε

kT dε, (B4)

and with the total state sum

Ztot =
∑

n

∑
i

1

n!
e− En,i

kT Zn, (B5)

which acts as a normalizing factor.
It should be noted, if instead of the pseudolocalized states,

all free states were taken into account, then g(ε) and thereby Z,
too, would be divergent. This shows that for a realistic theory,
discretization of the free states is necessary.

Using (A5) an analytic expression for Z,

Z = L(2 + n)

2
√

2π

√
kT (B6)

is obtained from (B4).
The probability that n free electron is populated, or in other

words, the probability of n-fold ionization is

pn =
∑

i

pn,i . (B7)

These probabilities sum up to unity,∑
n

pn = 1, (B8)

as follows from Eqs. (B3) and (B5).
The expectation value of the ionization degree is

n̄ =
∑

n

npn. (B9)

The mean energy of a free electron is

ε̄ =
∫ ∞

0 εg(ε)eε/kT dε

Z
= kT

2
. (B10)

This is the usual expression in the equipartition theorem for
the average kinetic energy per degree of freedom. It should be
noted that in the model the motion of the electrons is restricted
along the lines connecting the nuclei. Therefore the electrons
have one degree of freedom.

The internal energy of the system is the mean value of the
energy,

U =
∑

n

∑
i

pn,i(En,i + nε̄). (B11)

En,i depends on the internuclear separation as well as pn,i ,
which also depends on the temperature.
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In order to determine the change of the temperature as a
function of time the motion of the nuclei is followed in small
time steps defined later. First, the change of the temperature
of the free electrons (subsystem 1) is determined when the
internuclear separation coordinate R1 is changed to R2 by a
small step while switching off the interaction with the rest of
the system. R is a general coordinate including all the internu-
clear separation distances R = (ROH,RArH,RArO). According
to thermodynamics, the free-electron gas adiabatically heats
up as the volume V1, where the electron can freely move, is
decreased to V2. The initial temperature T1 increases to

T ′ = T1

(
V1

V2

)2/f

, (B12)

where f is the degree of freedom of the electrons, which is
equal to 1, since the motion of the electrons is essentially
one dimensional in the quasimolecule. The volumes V1,2 are
supposed to be proportional to L1,2, which corresponds to
the picture that the electrons can move freely along the lines
connecting the nuclear centers. The volume ratio therefore
can be expressed with the internuclear distances. The mean
energy of the electrons increases due to the increase of the
temperature. The energy of the rest of the system also changes
due to the changes in the potential energies. The populations of
the energy levels of subsystem 2 are kept fixed as a first-order
approximation. The total internal energy after the small change
of the coordinates of the nuclei therefore becomes

U2 =
∑

n

∑
i

pn,i(R1,T1)[En,i(R2) + nε̄(T ′)]. (B13)

This formula does not correspond to a thermal distribution
in equilibrium (see the different temperatures in it). Switching
the energy exchange on while the nuclei are kept fixed, this
internal energy is redistributed according to a new temper-
ature T2,∑

n

∑
i

pn,i(R2,T2)[En,i(R2) + nε̄(T2)] = U2. (B14)

This equation determines the new temperature. Since the
equation is transcendent, T2 has to be determined numerically
at each step of the simulation.

The force FX that acts on the atomic center X and governs
its motion while the stochastic energy exchange is active can
be determined from the internal energy U . The latter quantity
can be regarded as the average potential energy of the system;
therefore,

FX = − dU

dRX

, (B15)

where RX is the location vector of the atomic center X. Tree-
component vectors are underlined throughout the text. Note
that U contains the energy resulting from nucleus-nucleus
interactions, too, since En,i is the total energy of the bound
subsystem. After some math using the expression (B13) for
U2, which gives the internal energy U as a function of varying
nuclear coordinates R2,

FX = −
∑

n

∑
i

pn,i

[
dEn,i

dR2
+ n

dε̄(T ′)
dR2

∣∣∣∣R1=R,
R2=R

]
dR

dRX

,

(B16)

FIG. 12. Trajectories of the atomic centers. The positions of the
centers are shown by dots at different time steps of the calculation: for
H (red and orange), for O (blue and cyan), and for Ar (dark gray and
gray). The closed symbols (first colors) correspond to the stochastic
development, while open symbols (the second colors) correspond to
the development after branching out with fixed charge states Q =
(0,+1,+1) for (H, O, Ar) centers, respectively.

is obtained. The first term in the brackets gives the average
of the forces corresponding to the potential energy surfaces
of the different states. The second term can be identified as
a force due to the pressure of the free-electron gas. Since the
population of the energy levels is statistical, some statistical
deviations from the resulting trajectories of the atomic centers
are expected. However, it is expected that the rapid change of
the populations averages out the statistical fluctuations.

The trajectories of the atomic centers while the stochastic
energy exchange with the electrons is active are calculated by
a finite step method of the Newtonian equations,

M
d2RX

dt2
= FX. (B17)

Adaptive time steps by the practical formula

�t = 1

5
√∑

X

|ṘX|2 + 2500
√∑

X

|R̈X|2
(B18)

are used. The time steps are finer where the velocity or the
acceleration of the centers is larger. They vary between 0.01
and 2 a.u. Further refining of the time steps did not change
the trajectories significantly, indicating that the accuracy of
the calculation with the present time-step determination is
sufficient. At each step, the coordinates and their derivatives,
the temperature, the ionization degree, and the population of
charge states are calculated and recorded. Initially the charge
carrier H center is placed at Rcrit distance from the Ar center
with different impact parameters b ranging from zero to Rcrit.
The position of the O center is at 1.95 a.u. distance (which
is the relaxed bond length) from the H center with random
orientation. Typical trajectories are show in Fig. 12.
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The initial temperature of the system is determined by
the initial energy of the system if it is in an excited state.
It should be noted that the ground state corresponds to zero
temperature, which is not allowed if one is concerned with a
thermodynamically adiabatic process. Therefore, if the system
is in the ground state by the ansatz, the internal energy is taken
to be that of the lowest excited state assuming that this is the
most likely state to be populated when the transitions open up at
nuclear separation Rcrit. This initial energy is then thermalized
so that the expectation value of the internal energy should be
equal to it. The initial temperature is numerically determined
by the equation

Einit = U (T ,R). (B19)

In Fig. 12, example trajectories corresponding to the
stochastic development of the system and also corresponding
to the time development after branching out are presented. At
branching out, one of the excitation levels of the quasimolecule
is fixed with some probability. It is impossible to perform
calculations for all the possible branching out, but with
a sufficient number of samplings, a good account for the
development of the most likely outgoing channels can be
achieved. With a calculated probability given by the next
Appendix, a time step is selected when the branching out
occurs and also a fixed excitation level is selected by the
probability (B3). The subsequent motion of the centers is
calculated according to the force given by the corresponding
potential energy surface of the selected excitation level,

FX,n,i = −dEn,i

dR

dR

dRX

. (B20)

This process of simulated branching outs is repeated several
times in order to collect enough data for good statistics of the
production of the most likely outgoing atomic centers. The O
and H centers are taken as separate atoms or ions if the dis-
tance between them is larger than 9 a.u. at the end of the
calculation (200 atomic time units after the branching out).
The single-differential cross section (SDCS) with respect to
observation angle θ of the regarded ionized atomic centers at
a given charge state is calculated as

dσ

d	
(θ ) =

∑
j

bj�bNj (θ,�θ )

Mj sin(θ )�θ
, (B21)

where Mj is the number of simulated branching outs for an
impact parameter bj , and Nj (θ,�θ ) is the number of events
in which the regarded ion is emitted with an angle falling
into the binning interval ±�θ/2 around the observation angle
θ . Sometimes a nonuniform binning is used in order to have
sufficient statistics at each angle.

APPENDIX C: PROBABILITY OF BRANCHING OUT

As the model conjectures, the fixing of a certain state of
the quasimolecule happens when at least one electron escapes
from it. This process may be identified as a transition to an
unlocalized free state. It is not feasible to calculate by strict
quantum mechanics the probability of such transitions, but a
good approximation can be obtained classically. It is assumed
that initially, the free electrons are evenly distributed within the

size of the quasimolecule, which is modeled now by a sphere
for simplicity with radius of r = (L/3) (see Appendix A).
The thermally distributed free electrons have a velocity distri-
bution of

f (v) = g[ε(v)]e− ε(v)
kT

4πvZ
. (C1)

Here spherical symmetry is assumed, since only s waves
are expected to be populated. Furthermore, the velocities
of the atomic centers, which may shift the centers of these
distributions, are neglected here, since they are much less than
1 a.u. compared to the velocities of free electrons, typically of
several atomic units. The number of electrons which escape
from the confining sphere during a small time interval �t is
calculated by elementary considerations.

The number of electrons leaving the quasimolecule in one
direction with velocity v ± dv/2 is

dNe = dv
3n̄�t

4πr3

∫ 2π

0

∫ π/2

0
vf (v) cos(θ )r2 sin(θ )dθdϕ

= vf (v)dv
3n̄�t

4r
. (C2)

The expectation value of the total number of escaping
electrons may be expressed by the following integral:

Ne =
∫ 2π

0

∫ π/2

0

∫ ∞

0

dNe

dv
v2 sin(θ )dvdθdϕ, (C3)

which is integration of the differential quantity dNe over all
velocities in every direction. The result is

Ne = 3n̄
√

kT �t

2
√

2πr
. (C4)

The probability of branching out at time step l under the
conditions that no branching occurred before is equal to the
expectation value of the number of escaping electrons. Note
that Ne is also a differential quantity since it corresponds to a
small time interval �t , so that it is expected to be much smaller
than 1. The probability Pl

′ that branching out does not occur
before time step l is

Pl
′ =

l−1∏
j=1

[1 − Ne(j )], (C5)

and the probability of branching out Pl to occur at time step l

is

Pl = Ne(l)Pl
′. (C6)

The final step m has to be treated separately. At the final
step, the stochastic time development stops anyway, because
the charge carrier of the projectile reaches the critical distance
so that all transitions are closed. Therefore, all the states are
fixed at the final step even if no electron escapes from the
quasimolecule. The probability for this to happen is Pm = Pm

′.
After a time step is selected, when branching out occurs,

the question still remains which state is fixed. In order to
calculate the corresponding probabilities, besides population
probabilities (B3), it has to be taken into account how many
PLFEs are associated with the states. This is given by the
ionization degree n. The probability of branching out linearly
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scales with it; therefore, for a given state, the fixing probability
is

p′
n,i = npn,i∑

n,i npn,i

. (C7)

At the final time step, the formula (B3) is applied for the
fixing probability of a given state since it is no more connected
with electron emission.

APPENDIX D: ANGULAR DISTRIBUTION OF THE
EMITTED ELECTRONS

According to the experiments, the angular distribution
of the electrons is enhanced in the forward direction. In
the framework of the model, this is due to the motion of
the atomic centers on which the velocity distribution of the

scattered electrons is centered. It is assumed that on each
scattering center there is a free-electron population with equal
probability. The scatterings result in zero angular momentum
electrons (s waves) in most of the cases, since the velocity
of the scattering centers is well below an atomic unit and
the effective impact parameter of the electrons is limited
to a few atomic units. This gives a net angular mo-
mentum for electrons close to zero with respect to the
scattering center. The wave functions of these states far
from the scattering center inside the box behave as those of a
free particle. In the case of electron-electron collision, consid-
ering the equal masses, the position of the scattering center is
taken to be the center of their mass. The energy distribution of
the free electrons is determined by the Boltzmann factor. At
a given moment of the collision when n PLFEs are present,
their velocity distribution in the laboratory frame is given as
follows:

Fn(v) = n

n − 1 + Na

[∑
X

f (v − vX) + (n − 1)
∫

Fn(u1)

n

Fn(u2)

n
f

(
v − u1 + u2

2

)
du1du2

]
. (D1)

This is a self-consistency equation for the velocity distri-
bution of n electrons Fn(v). The velocity distribution of the
single electrons f is defined in Eq. (C1); vX and u1,2 are
the velocities of the scattering atomic centers and electrons,
respectively. The sum that appears first in the parentheses in
(D1) describes the electrons scattered on the atomic centers.
The single electron velocity distributions are shifted by the
velocities vX of the atomic centers X and summed. The
following term describes electron-electron scattering in which
the energy exchange with the rest of the system is involved.
Before the scattering, the electrons have u1 and u2 velocities.
After the scattering event one of the electrons will have velocity
of v with a distribution of f centered on the center of mass
of the electrons. This distribution is integrated over all the
possible velocity combinations of colliding electrons weighted
by their velocity distribution and multiplied by the number
of the scattering electrons n–1. In order to get normalized
n-electron distribution, the whole expression is multiplied by
the total number of the free electrons n, and divided by the total
number of the scattering centers. The number of the scattering
centers is the number of the atomic centers Na plus the number
of the scattering electrons n–1.

In order to solve Eq. (D1) for Fn(v), a Fourier transforma-
tion is used that transforms (D1) into the algebraic expression

F̃n(ω) = n

n − 1 + Na

{
f̃ (ω)

∑
X

e
i2πω·vX

+ (n − 1)

n2
f̃ (ω)[F̃n(ω/2)]

2
}
. (D2)

An analytic solution cannot be found for this equation,
since the argument of F̃n is divided by 2 on the right-hand
side. However, good approximation can be obtained by an
iterative method. In first-order approximation, the second term

is neglected,

F̃n,1(ω) = n

n − 1 + Na

[
f̃ (ω)

∑
X

e
i2πω·vX

]
. (D3)

In higher orders, the lower-order approximation is substi-
tuted in the right-hand side, which gradually gives a better
approximation,

F̃n,i(ω) = n

n − 1 + Na

{
f̃ (ω)

∑
X

e
i2πω·vX

+ (n − 1)

n2
f̃ (ω)[F̃n,i−1(ω/2)]

2
}
. (D4)

In the calculation, the fifth-order approximation is used. The
obtained algebraic expression is too complicated to perform
inverse-Fourier transformation on it analytically. Therefore an
approximate solution for Fn(v) is obtained by numeric inverse-
Fourier transformation.

Fn(v) ∼= F−1[F̃n,5(ω)]. (D5)

In order to get the overall velocity distribution of the
electrons at a given moment of the collision, the results
obtained in this way are weighted by the ionization probability
and summed over all ionization degrees,

F (v) =
∑

n

pnFn(v). (D6)

The distribution of the observable electrons, which have
escaped from the quasimolecule, is calculated by taking into
account the escape probabilities. Electrons of higher velocities
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can escape with higher probability from the quasimolecule.
The velocity distribution of the observable electrons is
obtained similar to Eq. (C2),

dNe

dv
= 3�t

4πr3

∫ 2π

0

∫ π/2

0
vF (v) cos(θ )r2 sin(θ )dθdϕ

= vF (v)
3�t

4r
, (D7)

except that here instead of f (v) the velocity distribution that
takes into account the effect of the moving scattering centers
F (v) is used. The cumulative velocity distribution of the
observed electrons associated with a trajectory is given by
the sum of partial contributions of each time step taking into
account the probability of the branching outs as follows:

Ftraj(v) =
m−1∑

l

[
Pl

′ dNe

dv
(l) + Pl

∑
n

npn

n̄

n − 1

n
Fn(v,l)

]

+Pm
′F (v,m). (D8)

The second term in the sum represents a contribution from
multiple ionization processes where more PLFEs are involved
above the electron, which escapes within a selected time
step causing the branching out. The corresponding states of
excess PLFEs are expected to be fixed by the branching out
as well as the bound molecular states. The PLFEs are finally
released as the collision partners separate. This term represents
a small contribution, since multiple ionization processes are
not dominant, but with its inclusion, a better agreement with
the experiments has been found.

Absolute cross sections for the distribution of emitted
electrons are obtained by performing the calculation for
different impact parameters. The cylindrical symmetry of the
system is used for sparing computation time. The distribution
of electrons associated with one impact parameter is rotated
around the Z axis with finite steps of 10° and averaged.
This may cause deviations from the calculations performed
ideally with random initial position and orientation for the
projectile. Since the used set of the impact parameters and
rotations is dense enough, those effects are expected to be
small. The double-differential cross sections (DDCS) with
respect to energy and angle are calculated as

dσ

d	dE
=

v
∑

j 2πbjFtraj(v)
j
�b

4π
, (D9)

where Ftraj(v)
j

are the rotationally averaged velocity distribu-
tions for the different trajectories.

APPENDIX E: ENERGY LEVELS OF THE
QUASIMOLECULE

The energy levels of the triatomic system En,i at ionization
level n depend on all three internuclear distances. Strict
quantum mechanical calculations for the three-dimensional
potential energy surfaces would lead to high computational
demand. Instead the sum of pairwise potentials of the binary
subsystems (OH, ArO, ArH) is used as an approximation.

At asymptotic internuclear separation the energy of the
quasimolecule is the sum of atomic energy levels, which are
taken from the NIST database [40].

The labeling of En,i is abbreviated. To fully characterize
the energy levels the index n is extended to a set of indices
(nh, no, na) denoting the ionization degree of the H, O, and Ar
atoms, respectively. Whenever sum over n is performed in the
statistical quantities in Appendix B, it denotes the sum over
all three indices taking into account the n = nh + no + na–q

relation. Likewise, the level index i should be extended
to (ih, io, ia) denoting the excitation level of the H, O,
and Ar respectively. The energy level of the system is
expressed as the sum of atomic energy levels and pairwise
potentials,

Enh,no,na,ih,io,ia = EH
nh,ih + EO

no,io + EAr
na,ia

+P OH
no,io,nh,ih(ROH) + P ArO

na,ia,no,io(RArO)

+P ArH
na,ia,nh,ih(RArH), (E1)

where EH
nh,ih is the energy of atomic H at ionization degree

nh and at excitation level ih, and P OH
no,io,nh,ih(ROH) is the

potential energy of OH as a function of the internuclear
distance ROH with dissociation limit of O at ionization degree
no and at excitation level io and H at ionization degree
nh and at excitation level ih. The meaning of other terms
is straightforward from the indices. The pairwise potentials
are taken from the literature if available and are leveled
such that they asymptotically approach zero. Where data are
not available screened-charge Coulombic potentials of the
form

P OH
no,io,nh,ih(ROH) = qH

nh(ROH)qO
no(ROH)

ROH
(E2)

are used as an approximation. In this approximation the shape
of the potential curve does not depend on the excitation levels
of the atoms or ions. The screenings of the charge distributions
are taken to be exponential,

qH
nh(R) = −1 + e−R/3.9 + e−R, if nh = −1,

= nh + (1 − nh)e−R, otherwise,

qO
no(R) = −1 + e−R/2.6 + 8e−R, if no = −1,

= no + (8 − no)e−R(no+1), otherwise,

qAr
na (R) = na + (18 − na)e−R(na+1). (E3)

The effective radii of the screenings are set to be inversely
proportional to the ionization degree plus 1. In the case
of negative charge states the negative-ionic radii from the
literature are taken as the effective radii. In the statistical
quantities the degeneracy of the Enh,no,na,ih,io,ia levels are
taken into account by weighting the corresponding Boltzmann
factors with

G = (
2J H

nh,ih + 1
)(

2J O
no,io + 1

)(
2J Ar

na,ia + 1
)
, (E4)

where J denotes the total angular momentum of the atomic
ions at the dissociation limit. Above ionization degree of
1 of both partners, both screening radii are small and the
ions can be considered as pointlike charges. Therefore, at
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TABLE III. List of diatomic potential data and their usage in the calculations with fitting functions [41–56].

Binary Mol. Data R range Label of Used potentials

subsystem Dissociation limit term source (a.u.) fit function for each limit Comment

X2� Ref. [41] 0.13–10 fOH1

O(2s22p4;3P2) + H (1s;2S) a4− 1.5–6.7 fOH2 {2×fOH1, 2×fOH2, fOH3}
12− 1.55–7 fOH3

O(2s22p4;3P0,1) + H (1s;2S) 14� Refs. [42,43] 1.73 -7 fOH4 {fOH4}
A2+ 1.21–7 fOH5

O(2s22p4;1D) + H(1s;2S) 22� Ref. [44] 1.56–9.57 fOH5a {fOH5, 4×fOH5a}
2�

OH O(2s22p4;1S) + H (1s;2S) B2+ Ref. [44] 1.56–9.5 fOH5c {fOH5c}
O(2s22p3(4S◦)3s;3S◦) +
H (1s;2S)

2 {fOH6, 2×fOH7}

4

O(2s22p3(4S◦)3s;5S◦) +
H (1s;2S)

4 {2×fOH6, 3×fOH7}

6

O+ + H− Ref. [41] 2.3–10 fOH17 {fOH17} Used for other
excited levels, too

O−(2P ) + H+ 32� Ref. [44] 1.54–9.4 fOH18a {2×fOH18a, fOH18b}
C2+ 1.54–9.4 fOH18b

O+(2s22p3;4S◦) + H(1s;2S) X3− Ref. [41] 0.13–10 fOH6 {3×fOH6, 5×fOH7}
5− Ref. [45] 1.1–20 fOH7

O(2s22p4;3P0) + H+ A3� Ref. [46] 1.3–8 fOH8 {fOH8}
O(2s22p4;3P2) + H+ A3� Ref. [46] 1.3–8 fOH8

O(2s22p4;3P1) + H+ 3− Ref. [45] 1.14–20 fOH9 {fOH9} Onvlee associates
with O+(4S) + H(2S)

O(2s22p4;1D) + H+ a1� 1.3–8 fOH10 {2×fOH10, fOH11, 2×fOH12}
b1 Ref. [46] 1.3–8 fOH11

c1� 1.3–8 fOH12

O(2s22p4;1S) + H+ 21+ 1–20 fOH20 {fOH20}
O(2s22p3(4S◦)3s;3S◦) + H+ 3 {fOH6}

OH+ O(2s22p3(4S◦)3s;5S◦) + H+ 5− {fOH7}
23� Ref. [45] 1.12–20 fOH21 {8×fOH21, 6×fOH22, fOH23,

3×fOH24, 2×fOH25}
21� 1.12–20 fOH21
3� 1.06–20 fOH22

O+(2s22p3;2D◦) + H (1s;2S) 1− 1.12–20 fOH23

33− Ref. [45] 1.08–20 fOH24

21� 1.16–20 fOH25

31� 1.16–20 fOH26

31+ 1.32–20 fOH27 {2×fOH26, fOH27, 3×fOH28,
6×fOH29}

O+(2s22p3; 2P ◦) + H (1s;2S)
3+ 1.12–20 fOH28

33� 1.16–20 fOH29

OH2+ 4− 2.3–12 fOH30 {fOH30,2×fOH31}
4� Ref. [47] 2.14–12 fOH31

O2+(3P ) + H (2S)

4− 1.85–12 fOH32 {fOH32,2×fOH33} Used for other
excited levels, too

4� 1.59–12 fOH33
O+(2s2p4;4P ) + H+

OH− O−(2P ) + H(1s;2S) 1+ 0.97–12.45 fOH13 {fOH13, 6×fOH14, 3×fOH15}
3� Ref. [48] 0.97–12.45 fOH14
3 2.28–12.45 fOH15
1�

O−(2P ) + H(2p;2P1/2) 1� Ref. [48] 0.97–12 fOH16 {fOH16}
all other

O + H− Ref. [41] 0.2–10 fOH19 {fOH19} Used for other
excited levels, too

ArO Ar + O Ref. [41] 0.21–12 fArO1 {fArO1} Used for other
excited levels, too
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TABLE III. (Continued.)

Binary Mol. Data R range Label of Used potentials

subsystem Dissociation limit term source (a.u.) fit function for each limit Comment

Ar+ + O− Ref. [41] 1.7–10 fArO3 {fArO3} Used for other
excited levels, too

ArO+ Ar+(2P ) + O(3P ) 12� Ref. [41] 0.3–10 fArO2
2+ 2.83–18.89 fArO10
2� 2.83–18.89 fArO11 {4×fArO2, fArO10,

2×fArO11,2×ArO12,
4×ArO13, 4×ArO14,
6×ArO15, 4×ArO16}

2− 3.02–18.89 fArO12

14� Ref. [49] 3.02–18.89 fArO13

24� 3.02–18.89 fArO14
4+ 3.02–18.89 fArO15
4� 3.02–18.89 fArO16

Ar + O+ 4− 2.83–18.89 fArO9 {fArO9}
Ar+(2P ) + O+(4S) X3− 1.5–4.6 fArO4 {fArO4, 2×fArO5}

ArO2+ 3� Ref. [50] 1.5–4.6 fArO5

Ar+(2P ) + O+(2D) 1� 1.5–4.6 fArO6 {fArO7, 2×fArO6, 2fArO8}
1+ 1.5–4.6 fArO7
1� 1.5–4.6 fArO8

Ar+ + H− Ref. [51] 2.8–11 fArH16 {fArH16}
ArH Ar(1S) + H(1s2S) X2+ Ref. [41] 0.1–10 fArH2 {fArH2}

Ar+H(excited states) Ref. [52] {fArH1} All similar to the
Ar(1S) + H+ curve

Ar(1S) + H+ X1 0.5–12 fArH1 {fArH1}
Ar+(3s23p5;2P ◦

3/2) + H (1s;2S) b3� 0.4–12 fArH7 {3×fArH7,fArH8} Used for other excited
levels of H, too

B1� 0.5–12 fArH8

Ar+(3s23p5;2P ◦
1/2) + H(1s;2S) a3 0.4–12 fArH9 {3×fArH9,fArH10}

ArH+ A1 Ref. [53] 0.5–12 fArH10

Ar(3P ) + H+ c3 0.4–12 fArH11 {3×fArH11, 6×fArH12,
2×fArH13,fArH14}

Used for other
excited levels, too

d3� 0.4–12 fArH12

Ar(1P ) + H+ D1� 0.5–12 fArH13

C1 0.5–12 fArH14

Ar2+(3P ) + H−(1S) ? Ref. [54] 0.5-51 fArH6 {fArH6, fArH6a}
? 0.5–51 fArH6a

Ar+(3s23p5;2P ◦
1/2) + H+ 2 2–18.8 fArH3 {fArH3}

ArH2+ Ar + (3s23p5;2P ◦
3/2) + H+ 2� Ref. [55] 1.87–18.87 fArH4 {fArH4}

Ar3+ + H− {fArH6}
Ar2+ + H {fArH10}

ArH− H− + Ar Ref. [56] 2.6–16 fArH15 {fArH15}

high ionization degrees, the energies obtained from screened
Coulombic potentials are expected to be close to the real
ones. For low ionization degrees, where molecular features
are pronounced in the potential energy curves, the use of ab
initio potentials is essential for accurate results.

The potential energy curves taken from the literature are
fitted by approximating functions. Table III gives a list of
the data sources and fitting functions with descriptions of their
usage. In a general case, different potential energy curves exist
for a given dissociation limit of a diatomic system. These
are labeled by the molecular terms. A molecular term can be
degenerated. In this case, replicas of that term are introduced
in the calculation to take into account its multiplicity.

The Boltzmann factors associated with a given atomic
dissociation limit are averaged over all the combination of

the diatomic molecular terms and weighted by the factor (E4)
in the calculated probabilities. Arbitrary combinations of the
three diatomic molecular terms may overestimate the number
of possible states, but (E4) gives the correct weights. In the
case when the model is applied to collisions between atomic
ions and atoms, such overestimation does not occur.

The fitting functions for the potential curves have the form
of

f XY
nx,ix,ny,iy(R) = P XY

nx,ix,ny,iy(R) + A[(1 − e−aR+ln 2)
2 − 1]

+B[(1 − e−bR+ln 2)
2 − 1], (E5)

which consist of a screened potential given by Eq. (E3) in order
to ensure the correct asymptotic behavior, and of several Morse
potentials, in most cases two, in order to achieve good fit at
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molecular distances with A, a, B, and b as fitting parameters.
The available data do not always cover the internuclear
distance range that occurs in the calculations. Since the fitting
functions contain the screened potentials, more or less correct
behavior is expected in the noncovered range, too.

In Fig. 13, some of the resulting fit functions for the
overall three-center system [Ar+(ground state)+OH] are
shown compared with the data from the literature as a function
of the OH distance. When the Ar+ center is asymptotically
far in panel (a), the fit functions reproduce the two-body OH
potential energy curves from the literature. In this case, the
separate Ar+ ion only implies a shift in the total energy of
the system. In panel (b), the case is presented when the Ar+
center is at a molecular distance of 2.5 a.u. from the H center.
The potential curves are significantly changed. Some of the
ionic states (red curves in electronic version) get closer to
the levels corresponding to atomic dissociation limits (black
curves in electronic version), and even cross them at large
internuclear distances of 3 a.u. As the energies of the levels
of the ionic states are getting lower relative to the other
levels, the population of the ionic states increases according to
the Boltzmann factor. This effect enhances the positive- and
negative-ion emission in a triatomic collision system. It is to
be also noted that the diatomic potential energy curves splits
due to the vicinity of the third center in Fig. 13(b).

FIG. 13. Energy levels of the Ar+(2P ) + OH system as a function
the OH distance. Dissociation limits for the OH radical and molecular
terms are indicated in the figure. Lines are the resulting fit functions
(see text). Black lines: atomic dissociation limit (O+H), red lines:
ionic dissociation limits (O− + H+), and blue lines: (O+ + H−).
Circles: data from the literature; see Table III. Asymptotic levels
are fitted to the sum of atomic energy levels from the NIST database
[40]. The (Ar, H, O) centers form a right triangle. The Ar-H distance
r is 100 a.u. and 2.5 a.u. in (a,b), respectively. In (b), one can observe
the splitting of the primary OH curves due to the nearness of the Ar
center.
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[17] A. Bárány, G. Astner, H. Cederquist, H. Danared, S. Huldt,
P. Hvelplund, A. Johnson, H. Knudsen, L. Liljeby, and K.-G.
Rensfelt, Absolute cross sections for multi-electron processes in
low energy Arq+−Ar collisions: Comparison with theory, Nucl.
Instrum. Methods Phys. Res., Sect. B 9, 397 (1985).

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.94.022707 for numerical solution of the
Schrödinger equation of a particle in a box of time dependent
width.

[19] A. Russek and M. Tom Thomas, Ionization produced by atomic
collisions at keV energies, Phys. Rev. 109, 2015 (1957).

[20] A. Russek, Ionization produced by high energy atomic colli-
sions, Phys. Rev. 132, 246 (1963).

[21] A. Russek and J. Meli, Ionization phenomena in high-energy
atomic collisions, Physica 46, 222 (1970).

[22] E. Everhart and Q. C. Kessel, Statistical model for the Ar+-on-Ar
collision, Phys. Rev. 146, 27 (1966).

[23] M. H. Mittleman and L. Wilets, Statistical treatment of ioniza-
tion in atomic collisions, Phys. Rev. 154, 12 (1966).

[24] Ia. M. Fogel’, R. V. Mitin, and A. G. Koval’, Investigation of
two-electron capture in collisions between positive carbon or
oxygen ions and gas molecules, Zh. Eksp. Teor. Fiz. 31, 397
(1956) [Sov. Phys.-JETP 4, 359 (1957)].

[25] H. H. Lo and W. L. Fite, Electron-capture and loss cross sections
for fast, heavy particles passing through gases, Atomic Data and
Nuclear Data Tables 1, 305 (1969).

[26] J. H. Ormrod and W. L. Michel, Charge equilibrium fractions
and charge-exchange cross sections for fast ions in nitrogen and
argon, Can. J. Phys. 49, 606 (1971).

[27] N. Stolterfoht and D. Schneider, Double differential cross
sections for electron emission from Ar by 50- to 500-keV N+

and O+ impact, IEEE Trans. Nucl. Sci. 26, 1130 (1979).
[28] F. B. Alarcon, H. Martinez, and F. Castillo, Electron transfer

in p-Ar collisions at keV energies, AIP Conf. Proc. 1099, 184
(2009).

[29] H. Martinez, F. B. Alarcon, and A. Amaya-Tapia, Double capture
cross sections in p-Ar collisions, Phys. Rev. A 78, 062715
(2008).

[30] F. Frémont, Electron capture and single ionization in H+ +
Ar collisions: Classical calculations, J. Phys. B 49, 065206
(2016).

[31] T. L. Criswell, L. H. Toburen, and M. E. Rudd, Energy and
angular distribution of electrons ejected from argon by 5-keV to
1.5-MeV protons, Phys. Rev. A 16, 508 (1977).

[32] M. E. Rudd, L. H. Toburen, and N. Stolterfoht, Differential cross
sections for ejection of electrons from argon by protons, At. Data
Nucl. Data Tables 23, 405 (1979).

[33] S. Dı́az-Tendero, P.-A. Hervieux, M. Alcamı́, and F. Martı́n,
Statistical fragmentation of small neutral carbon clusters, Phys.
Rev. A 71, 033202 (2005).

[34] M. Chabot, G. Martinet, F. Mezdari, S. Diaz-Tendero, K.
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