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A general single-center close-coupling approach based on a continuum-discretization procedure is developed
to calculate excitation and ionization processes in ion-atom collisions. The continuous spectrum of the target is
discretized using stationary wave packets constructed from the Coulomb wave functions, the eigenstates of the
target Hamiltonian. Such continuum discretization allows one to generate pseudostates with arbitrary energies
and distribution. These features are ideal for detailed differential ionization studies. The approach starts from
the semiclassical three-body Schrodinger equation for the scattering wave function and leads to a set of coupled
differential equations for the transition probability amplitudes. To demonstrate its utility the method is applied
to calculate collisions of antiprotons with atomic hydrogen. A comprehensive set of benchmark results from
integrated to fully differential cross sections for antiproton-impact ionization of hydrogen in the energy range
from 1 keV to 1 MeV is provided. Contrary to previous predictions, we find that at low incident energies the
singly differential cross section has a maximum away from the zero emission energy. This feature could not be
seen without a fine discretization of the low-energy part of the continuum.
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I. INTRODUCTION

Ion-atom collisions play an important role in many applica-
tions from astrophysics through to cancer therapy [1]. Accurate
solution of the ion-atom scattering problem is challenging due
to the existence of many reaction channels. At low energies
molecular-orbital close-coupling methods are used [2,3]. At
sufficiently high energies perturbative methods [4—7] are accu-
rate. In the intermediate energy region various atomic-orbital
close-coupling [8—13], the lattice-based [14—16], and Fad-
deev [17-21] methods are used. Recently we have developed
semiclassical (SC-CCC) [22,23] and quantum-mechanical
(QM-CCC) [24,25] versions of the convergent close-coupling
method. Most of the presently available close-coupling ap-
proaches are based on the expansion of the scattering wave
function in terms of electronic states of the target. An adequate
description of the electronic structure of the target is one of
the important requirements for the accurate calculations of the
collision cross sections. For instance, if we consider scattering
on atomic hydrogen, the negative energy bound states are
known exactly and suitable for calculations. However, the true
continuum wave functions, which are the exact solutions of
the Schrodinger equation for the atomic hydrogen, become
problematic in close-coupling calculations since they are not
square-integrable. Therefore, in order to account for channels
associated with ionization, alternative treatments of the target
have been developed like the concept of pseudostates. A
suitable choice of the pseudostates can effectively discretize
the target continuum making incorporating the continuum
into the close-coupling formalism. Indeed, practically all
available highly sophisticated approaches that are valid over
a wide energy range are based on expansion of the total
scattering wave function using a certain pseudostate basis.
The main difference between all these approaches is the
way how the continuum is discretized. For instance, Hall
et al. [26] used Slater orbitals, Pons [27] spherical Bessel
functions, Abdurakhmanov et al. [28], Igarashi et al. [29],
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and McGovern et al. [30] Laguerre functions, Toshima [31]
Gaussian-type orbitals, and Azuma et al. [32] and Sahoo
et al. [33] B-spline orbitals as basis functions. These basis
functions are used to diagonalize the target Hamiltonian which
defines the pseudostate wave functions and energies.

The generated discrete basis must meet certain require-
ments. In particular, the discretization of the continuum must
be sufficiently dense in order to achieve convergent cross
sections. As the basis size is increased the negative-energy
states converge to the true discrete eigenstates, while the
positive-energy states provide an increasingly dense discretiza-
tion of the continuum. The values of the pseudostate energies
depend on the specific choice of basis parameters, and in
general the energies of the highest lying pseudostates are
significantly larger than the values of lower lying pseudostates.
One common feature of all of these basis functions is that they
produce pseudostates with energies distributed only in a certain
way which cannot be changed arbitrarily. This can become an
issue if collisions requiring denser discretization at various
continuum regions are desired. Also, continuum distributions
for different angular momenta produced by the available basis
functions are always unaligned, which makes calculations of
differential ionization cross sections problematic.

In a two-part communication we develop a general close-
coupling approach to ion-atom collisions based on a wave-
packet continuum-discretization procedure. The approach
allows us to accurately calculate all processes taking place
in the collision system. The continuous spectrum of the target
is discretized using stationary wave packets constructed from
the Coulomb wave functions, the eigenstates of the target
Hamiltonian. To this end we utilize special normalized states
which we call the wave packets. The wave packets will be
constructed based on the idea of eigendifferentials developed
long ago by Weyl [34], Wigner and Griffin [35], Bethe [36],
and others to treat non-normalizable continuum states (which
do not belong to a Hilbert space) in a framework of the
standard theory of Hermitian operators in a Hilbert space. The
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idea has been used successfully in the continuum-discretized
coupled-channels approach to nuclear reactions for a few
decades [37]. Most recently the close-coupling approach
based on the wave packet expansion has been developed by
Kukulin and coworkers in the context of the integral-equation
formulation of scattering theory [38,39]. The approach was
applied to nuclear collisions and yielded promising results.
Schiwietz [40] used single-center close-coupling approach
based on time-dependent wave packets to calculate stopping
powers in ion-atom collisions. However, the time-dependent
wave packets are not very practical and lead to cumbersome
calculations. This could be one of the reasons why the
wave-packet continuum discretization method has not seen
further development in atomic physics.

Here we use the stationary wave packets in the framework
of our single-center semiclassical convergent close coupling
(SC-CCC) approach [22,41,42]. The approach starts from
the semiclassical three-body Schrodinger equation for the
scattering wave function and leads to a set of coupled
differential equations for the transition probability amplitudes.
The previous implementation was based on the Laguerre
pseudostates. Wave-packet continuum discretization allows
one to generate pseudostates with arbitrary energies and
distribution. These features are ideal for detailed differential
ionization studies. To demonstrate its utility the wave-packet
convergent close-coupling (WP-CCC) method is applied to
calculate collisions of antiprotons with atomic hydrogen.

Within the energy range of our interest antiproton scattering
on atomic hydrogen is the simplest single-center three-
body Coulomb problem. It serves as a testing ground for
new theoretical approaches under development. The prob-
lem has been investigated using the semiclassical close-
coupling [26,27,29-33,43,44] and lattice [45—47] methods and
quantum-mechanical CCC method [28,48]. The results of the
aforementioned theories for the total ionization cross section
and other integrated cross sections (where available) are in
overall good agreement with each other, and the deviation
does not exceed 10% at any considered energy. Application to
differential ionization cross sections is less certain.

In Sec. II we give a brief outline of the formalism and
describe the procedure for generating the wave packets. Details
of the calculations are given in Sec. III, and the results are
presented in Sec. IV. Finally, in Sec. V we highlight the main
findings and draw conclusions from this work. Atomic units
are used throughout unless otherwise specified.

II. WAVE-PACKET APPROACH

We treat antiproton-hydrogen scattering within the frame-
work of the one-center semiclassical convergent-close-
coupling approach developed previously [22,42]. The ap-
proach follows from the exact three-body formalism, where the
total scattering wave function W;" satisfies the full Schrodinger
equation

(H—E)W,"=0. (1)

The total three-body Hamiltonian operator H is written as

Ve V2 o1 1 1
H=-—-f__~I__4 ——, 2)
21 2 r |R—r| R
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where u is the reduced mass of the projectile-target system,
and R and r are the positions of the incident antiproton and
the orbital electron relative to the nucleus of hydrogen. We
assume the target nucleus is located at the origin and the
projectile is moving along a classical trajectory R = b + vt,
where b is the impact parameter and v is the initial velocity of
the projectile relative to the target, defined so that b - v = 0.
Following Bransden and McDowell [49] we separate the total
scattering wave function W;" into nuclear and electronic parts
according to

v =Ry, 3)

where ¢ is the incident momentum of the projectile relative to
the target nucleus. After inserting this into Eq. (1) and using
semiclassical approximation we obtain the nonrelativistic
semiclassical time-dependent Schrodinger equation for the
electronic part of the total scattering wave function

(H + V)W(t,r,R) = zw 4)
where H, is the target Hamiltonian
H=-V;/2—1/r (5)
and
V=-1/R+1/|IR —r| (6)

is the interaction potential between the projectile and the target
constituents. The scattering wave function is expanded in terms
of certain basis functions 1, (r), suitably chosen to represent
the full set of target states, as

N
We(t,r,R) =) au(t,b)Ya(r)e ™", (7)

a=1

where N is the number of basis functions and ¢, is the
energy of the target electronic state . The latter collectively
denotes the full set of quantum numbers in that state. The
expansion coefficients a,(¢,b) at t — 400 represent the
transition amplitudes into the various target states.

Substituting this representation of the scattering wave
function into the semiclassical Schrodinger equation (4), and
using the orthogonality properties of the target wave packets,
one obtains the following set of the first-order differential
equations for the time-dependent coefficients:

.day(t,b)
;8%\5,0)

N
= I W VIvgag(tb), @)

p=1

where o = 1,2, ...,N. This system is solved subject to the
initial boundary conditions

do(—00,b) =6, (€))

which assume the atom is initially in the i = 1s state. If the
basis states are known, the matrix elements (. |V |/g) can be
evaluated numerically [28]. We now consider a few kinds of
target basis functions.

A. Target description

The description of the target plays an important role in
the accuracy and convergence rate of the close-coupling
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calculations. Since the Coulomb interaction potential between
the electron and the proton is spherically symmetric we
consider only a solution to the radial Schrodinger equation
for a fixed value of the orbital angular momentum /. For
negative and positive values of the eigenenergy ¢ the radial
Schrodinger equation has different analytical solutions. For
the case when ¢ < 0, i.e., when the electron stays bound to
the proton, the energy of the electron energy has the discrete
spectrum with values &, = —1/(2n?), where # is the principal
quantum number. For each discrete value ¢, the radial wave
function is given as

(n—1- 1)!e—r/n (2,,)/+1L2Z_H (2_1’)7 (10)
n

(n+10)! p2+ il

%z(r) =

with Liljl_ 1(Zn—’) being the associated Laguerre polynomials.
The eigenstate wave functions ¢,;(r) satisfy the following
orthonormality condition:

(@n’ll‘pnl) = / dr‘ﬂn’l(”)(ﬂnl(”) = 8un- (11)
0

When ¢ > 0, i.e., when the electron is no longer bound to
the proton, the radial Schrodinger equation has a continuum
of solutions. These continuum functions are written as

n)l[‘(l+l—i//c)|

2 I+1 e
(2er) eXp(zx QL+ 1!

1
(p/cl(r) _\/E

x e | Ry (l_ +I1+1,21+ 2,2irk>, (12)
K

where k = +/2¢ is the momentum of the ejected electron
and | F; is the Kummer confluent hypergeometric function.
These functions, known as the Coulomb wave functions, are
orthogonal for different values of ¢ and normalised according
to

(Qetl @) = /0 droei(r)ga(r) = 8(k" — k) 13)

and satisfy (@uil¢r) = 0. In the close-coupling formalism
of scattering theory description of the continuum using
@, (r) functions is not possible due to divergent continuum-
continuum transition matrix elements. This is because, ac-
cording to Eq. (13), the true continuum states do not have
a finite normalization unlike the bound-state wave functions.
For this reason, alternative treatments of the target are used.
For comparison, below we briefly describe the Laguerre
pseudostates traditionally used in the CCC method, before
proceeding to an alternative way of describing the target space
using wave packets.

1. Laguerre pseudostates

As mentioned above, the target has an infinite number of
bound and continuum states. In the scattering equations it is
not possible to couple all the channels corresponding to these
states. While one can always take a limited number of lowest
bound states, the matrix elements corresponding to continuum-
continuum transitions diverge as the continuum functions are
not square-integrable. Therefore, usually the full set of infinite
bound and continuum states of the target is replaced by a
suitably chosen finite set of square-integrable pseudostates.
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The use of pseudostates eliminates the problem of divergent
continuum-continuum V-matrix elements. Also, this allows
one to study the convergence of calculated observables in a
systematic manner by simply increasing the basis size.

As an example here we will consider a set of pseudostates
gob(r) generated using the orthogonal square-integrable La-
guerre (L) functions. Such a set can be obtained by diagonal-
izing the target Hamiltonian

(ora|Bler) = endun, (14)
where A, is the radial part of the target Hamiltonian H;:
1 32 10 aa+1 1

— —. 15
20r2  ror 2r2 r (15

The pseudostate wave functions are taken as a linear combi-
nation

N
o)=Y Bli&u(r) (16)
k=1
of the orthogonal Laguerre functions
Ak—D! 2
— A +1
Su(r) [(21 Fi+ k)!} *r)
x exp(—ir/2)Li 2 (ar). (17)

The fall-off parameter A is arbitrary and is chosen so that the
states with lowest values of n are good approximations for
the exact hydrogen eigenfunctions defined by Eq. (10). For
convenience in this work we take A = 2 for all values of /. In
principle, the convergence of the final results is independent
of the value of A. However, inappropriately chosen values of
A can considerably reduce the convergence rate.

Upon diagonalization of the target Hamiltonian 4, using
pseudostates @5 () one obtains pseudostate energies &,;. As
in the case with wave functions the energies of the lowest
states are essentially equal to the exact values of eigenenergies.
In scattering calculations, higher lying negative-energy pseu-
dostates account for the contribution of the infinite number of
eigenstates, whereas the contribution of the entire continuum
is taken into account by the limited number of positive-energy
pseudostates. Note that the full set of the Laguerre pseudostates
diagonalizing the full target Hamiltonian H, is then written
as YL(r) = o5 ()Y (F)/r, ¢ = 1,...,N, where Y, are the
spherical harmonics of the unit vector 7. The size of the basis
isN = Zf“jg(Zl + 1)N;, where [, is the maximum included
target orbital angular momentum.

Implementation of this basis yielded excellent results for
cross sections of various processes taking place in collisions
of light [50-55] and heavy [56-58] projectiles with atomic and
molecular targets.

However, in more detailed differential ionization studies
of the problem of interest, one needs more dense distribution
of states in a particular region of continuum. In such cases
the continuum discretization using Laguerre pseudostates
becomes inconvenient. Increasing the size of the basis allows
one to cover more energies. However, for given fall-off
parameter A, this generates pseudostates of energies too
high to be useful. In such a situation reducing the fall-off
parameter A may help reduce the energy of the highest
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pseudostate. However, this comes at the expense of more
pseudostates going to negative energies, thus not helping
to increase the density of positive-energy pseudostates. In
addition, the energies of continuum pseudostates for different
values of [ are not aligned. This creates extra difficulties when
differential ionization cross sections are calculated. The latter
are calculated for each / and need to be interpolated before
they are partial-wave summed [59,60]. To overcome these
difficulties, in the next section we will introduce an alternative
way of generating the pseudostates. It allows construction of
the basis states with arbitrary energies and distribution.

2. Wave packets

To construct normalizable wave packets we first take the
continuous spectrum with some maximum value of energy
E..x and then divide the whole interval [0, E.x] into N,
nonoverlapping intervals [&;_ ,Ei]?ﬁl with & =0 and Ey, =
E max. We call the intervals [&£;_; ,&]fvzcl the discretization bins.
To obtain convergent cross sections, En,x and N, must be
sufficiently large. Every such energy bin corresponds to the
interval [k;_;,k;] in momentum space, where k; = +/2&;. The
width of the ith momentum bin is

W; =K;i —Kj—1. (18)
We define the wave packets corresponding to each of the bins
as the normalized integrals of the true continuum functions
[Eq. (12)] over the momentum bin region:

ot (r) = dk @i (r). (19)

1 ki
/Wi ‘//;i—]
It is easy to show that ¢;)* (r) states are orthonormal:

o0
(en"e)") = /0 drey " (r)e})"(r)

e
— L [Tar [ dkoutr / Ak pen(r)
wiw; Jo Ki-1 Kj-1

1 Ki Kj
= —/ dK/ di’8(k — k')
NWiWj S, Kj-1

§; [
= — dk
NWiW; Jy;_
= &;j, (20)

where we used Eq. (13). In a similar way it is possible to
prove the wave packets also satisfy the target diagonalization
condition

(00" |helelT) = idij (3]

where ¢; is the middle-energy point of the ith bin: g =
(&i—1 + &)/2. It needs to be emphasized here that the physical
meanings of the true Coulomb wave function ¢,;(r) and
the normalized discretization-bin wave packet with the same
energy (pi‘?’P(r) are totally different. The former corresponds to
a single state of the continuum, while the latter is constructed
from the infinite number of states within a certain region of
the continuum. This means the wave packet takes into account
the contribution of a certain continuum region, while the true
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FIG. 1. The continuum energy levels of atomic hydrogen (shaded
area), wave packet bins, and resulting energies, as well as Laguerre-
based pseudostate energies. The Laguerre pseudostate energies vary
with [ whereas the wave packet energies do not.

Coulomb wave only a single point which is located in the
middle of that region.

Now, by adding N, negative-energy eigenstates we form
a WP basis of size N, where the size of the basis is
N = 2526(21 + D)(Ny — I + N.). The number of necessary
negative-energy eigenstates and WPs representing the target
continuum is chosen to give convergent cross sections. The
full set of the WP basis states representing the target space is
then written as ¥y L (r) = o) (1) Y (F)/r,a = 1,...,N.

Figure 1 shows a part of the continuum of atomic hydrogen
(shaded area) and corresponding positive-energy wave packets
obtained from the energy bins and pseudostates generated
by diagonalizing the target Hamiltonian using the Laguerre
functions. The displayed WP basis consists of 30 positive-
energy states (the same for each [) covering the electron
continuum region from 0.05 to 400 eV. For ease of comparison
on alog scale we have taken the WP bins to grow exponentially
in energy but be the same for each /. Consequently, note that
the energy levels of the WP basis are all aligned for different
angular momentum symmetries. We also show the positive
energy levels of the Laguerre pseudostate basis with 20-/
states for each of the / =0 (s), 1 (p), and 2 (d) symmetries.
As one can see, for different / the Laguerre energy levels are
distributed differently with an uneven distribution of states and
fewer states at low energies. This distribution is defined by the
size of the basis and the fall-off parameter A. In contrast, the
density of continuum discretization with WP basis is higher
everywhere in the covered region below 400 eV. The truncated
part of continuum above this energy is negligible since the
probability of the electrons being ejected with those energies
is extremely low.

In Fig. 2 we compare the wave packets (normalized to unity)
and Laguerre pseudostates, constructed for various values of
the ejected electron momentum &, multiplied by their overlaps
with the true Coulomb wave. The corresponding true Coulomb
wave functions are also shown. Three values of the ejected
electron momentum « indicated on each of the panels of
Fig. 2 correspond to the n = 10 states from [/ = 0,1, and 2
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FIG. 2. The radial dependence of (@.|@})¢l(r) for the wave
packets (T = WP) and Laguerre pseudostates (7 = L) for various
values of the angular momentum / and the ejected electron momentum
k. Also shown are the corresponding true Coulomb wave functions.
The wave packets cover the continuum region confined with the bin
borders, ki (0.64505 for [ =0, 0.61988 for [ = 1 and 0.58191 for
[ =2) and Kk (0.78263 for I = 0, 0.75187 for I = 1 and 0.70790
forl = 2).

bases of Laguerre functions with the size 20 — [/ and X = 2,
respectively. The Laguerre pseudostates and the wave packets
nearly coincide in some inner domain below » = 15 a.u. Above
r =40 a.u. the Laguerre pseudostates exponentially decay
while the wave packets continue their oscillatory behavior.
The agreement between Laguerre pseudostate wave functions
and bin wave packets for small values of r is achieved
only when the bin boundaries kpyin = k — (k — kaqj)/2 and
Kmax = K + (kK — Kagj)/2, Where k,qj is the momentum of the
lower adjacent Laguerre pseudostate. They are indicated in the
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figure caption. The Laguerre pseudostate corresponding to «
represents the part of the continuum between ki, and Kpyax
with an underlying trapezoidal integration rule [61,62].

B. Cross sections

To be able to calculate various differential cross sections
we have to determine the scattering amplitude T¢;(q ¢,q;). To
this end we use the idea developed in Ref. [63]. The amplitude
is written in terms of the total scattering wave function W;"
as [64]

< n
Tri(qr.qi) = (P, H — E|V;]), (22)

where @ is the asymptotic wave function describing the
final state and the arrow over the total three-body Hamiltonian
operator H indicates the direction of its action. Equation (22) is
general and applicable for both excitation and breakup of the
target. It is also valid for rearrangement channels; however,
in the present work we neglect them. If the result of the
scattering is excitation of the target, then ® is given as a
product of a plane wave describing the scattered projectile and
a bound state wave function of the target in the final state.
If the collision leads to ionization of the target then @ is a
three-body Coulomb asymptotic state described by incoming
waves representing the three unbound particles in the final
state [65,66].

The electronic scattering wave function W, [see Egs. (4)
and (7)] is a part of the total scattering wave function \IJI.J’. As
already mentioned our approach is based on the expansion of
W, in terms of a set of N square-integrable pseudostates V.
With these we form a projection operator

N
N =3 [l | (23)
a=1

Inserting this relation into Eq. (22) we get
Tyi(gp.q0) ~ (©71V | H — E[IN W)
=gy NIV
= (vylv g virt e
= (Y [y} TN (g s .90, (24)

where g ; is the momentum of the scattered projectile and v
is any given state from the full set of the target eigenstates
{Ynim, ¥, }. Here ¥ is the pure incoming Coulomb wave
representing the continuum state of the ejected electron with
the momentum k. In deriving Eq. (24) we took into account
that the action of the operator /" leads to limiting of the target
subspace by replacing the full set of the H states (including
non-L? continuum) with a set of L? states. This effectively
screens the Coulomb interaction between the projectile and
target constituents even in the continuum. We also used the
relation that (¢ [W,"") = 874 (W s|¥}'F) as by construction

we take €y = e}VP for each target orbital angular momentum /.

We note that when vy = Y, amplitude T Jﬁ\i'(qf,q,-)
converges to the exact scattering amplitude T;(q r,q;) for
excitation of the final n/m state as N — oo. At the same time
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when ¢y = ¥, amplitude TJQ( (q 7.q:) converges to

Tei(@ .90 = (a9, VIV, (25)

rather than to the exact amplitude of Eq. (22) for breakup.
However, it has been demonstrated in Ref. [67] that in this case
the only difference between the exact amplitude of Eq. (22) and
much simpler approximate ionization amplitude of Eq. (25) is
aphase factor, i.e., |T(q ,q;)| = |T(qf~,qi)|. Therefore, for the
purpose of calculating cross sections it is sufficient to know
only magnitude of T;}’ (q 7.q;) for sufficiently large N.

Thus both excitation and ionization amplitudes are obtained
upon calculation of transition matrix elements T}Y 4qr.q:)
which are related to the impact-parameter space transition
probability amplitudes as [68]

1 .
Tj{'\l((qf’qi) ZE f dbe'plb[af(oo,b) —84]
:eim((ﬂf+rr/2)'/ dbblas(00,b) — 871Ju(pLb),
0

(26)

where p = q; — q ¢ and @s(t,b) = e™%ay(1,b).
When ¥y = v, we have

(V| ¥ }7) =1 27

by construction. When v = v, after partial wave expansion
of the three-dimensional Coulomb wave we easily get

(Ve v }'™) \f (=) € by (1) Yy (R), (28)

where b, (k) is defined as

o0 1
i) = /0 drga ey’ (r) = T (29)

n

and o; is the Coulomb phase shift. With this it is possible to
further simplify Eq. (24) to get

Imax [ io
(=) e Y@, (g 7.9
Tm(qf,q,)—E E it . (30
1=0 m=—1 27K /Wn

Index n in Egs. (28)—(30) corresponds to the bin with x =
Kn = \/2_511 .

The most detailed observable, the triply differential cross
section (TDCS), can be directly calculated using the ionization
amplitude defined in the Eq. (30) as

do(k.qr.q) 24f

= Tm i 31
dEdon, ~W g Ta@rat. 6D

where p is the reduced mass of the projectile-target system.
This cross section is for the electron being ejected into the
solid angle d€2, with the energy in the range E to E 4+ dE,
where E = «?/2, when the projectile is incident along the
quantization axis z (¢; || z) and further scattered into the solid
angle dQ2y.

Two types of doubly differential cross sections (DDCS) are
usually used. The first one can be obtained by integrating
the TDCS over the spherical coordinates of the scattered
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projectile:
d*o(k.q5.q:) zf 013(1(16,!1,‘,(1;)[1Q
dEdQ, dEdSQ de /

Imax

D IDY

27‘[6]le,, =0 I'=0 m=-1I'

1+811

x Yzm(k)Y;‘mm)Re[(—i)’”e““'“”

« / dbbanzm(oo,b)a:,,,,xoo,b)}, 32)
0

where we assumed

1
/ i, =
qr4i

2 [}
doy / dpipy
0 0

and used the identity

S(b—b')

/ dPJ_PJ_Jm(PJ_b)Jm(PJ_b/) = b
0

The DDCS defined this way shows the angular and energy
distributions of the ejected electrons. Another DDCS can be
formed by integrating the TDCS over the spherical coordinates
of the ejected electron (this can be done analytically) and is
written as

dza(ququi) :/ dSU(K7qqui)d
dEdQ; dEdQ.d<,

2 Imax
H-qr
=) E Ti(q 7.9 33
4712q,Kwn - Om__l| K (qf qi )| ( )

This cross section is differential in the angular variables of the
scattered projectile and the energy of the ejected electron.

The singly differential cross section (SDCS) in the energy
of the ejected electron can be calculated by integrating Eq. (33)
over Q. Integration of Eq. (33) over Q2 gives us

dG(K qf ql Imax

= Z Z Ot (34)

KW
" 1=0 m=—1I

where 0,,,, is the cross section for excitation of the pseudostate
in channels f = {nlm}. The latter is calculated as

Dimax
Onlm = 271/ dbb Py (b), (35)
0

where b« is the upper limit for the impact parameter. It will
be specified in the next section. The transition probability is
calculated as

Pnlm(b) =

Alternatively, the SDCS in the momentum of the ejected
electron can be defined as

|anlm(+ooab) - 6nlm,1s|2~ (36)

Imax [

do—(’((’i# = ! Z Z Onlm- 37

w
=0 m=—1I
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The SDCS in the electron ejection angle, do/d<2,, can be
obtained from integration of do /d E / dQ2, over dE:

No+Ne  Imax

2 1+511

T[q’ n=Ny+1 =0 I'=0 m=-I'

X Yin (&)Y, (@)Re [(—i)”e“f’l“ﬂ)

x / Abbéiy (00, b)anlm(oo,b)]. (38)
0

Finally, the total integrated ionization cross section is written
as

Nb+N d Nb+N ]max
Con= Y. w 0(’”“‘1’ =3 § Ooim. (39)
ion — - 5 nlm -
n=Np+1 n=Np+1 =0 m=—I

III. DETAILS OF CALCULATIONS

In the previous section we derived expressions to calculate
various differential cross sections. Before proceeding further
we give some details of our calculations. To ensure the
convergence of calculations several parameters associated with
the target and the projectile need to be investigated. Parameters
defining the target structure are the maximum allowed orbital
quantum number /y,,x, the number of bound (negative-energy)
eigenstates Ny, — /, the maximum energy E . of the electron
continuum covered by wave-packet bins, and the number
of bins within this interval N.. Convergence of the final
results is studied by systematically increasing each of these
parameters while fixing the others at sufficiently large values.
This procedure is continued until the parameter-dependent
variation of the results is reduced to a level less than one
percent. At intermediate and high energies this is achieved
with lnax = 10, Ny = 10 — [, Efax = 400 eV, and N, = 30. It
is this basis depicted in Fig. 1. However, at lower projectile
energies we had to increase the number of wave packets and
reduce Ep.x. To be specific, at 2 keV we had N, = 90 and
Emax = 40 eV. With these parameters the total number of
target states N in the present calculations was from 4015 at
high energies to 11 275 at low energies. The total number
of basis states also defines the size of the set of the coupled
differential equation (8). To ensure that the employed basis was
sufficiently large we were also guided by the analytical first
Born (FBA) results obtained in the full wave treatment [69].
Before performing full calculations we obtained excellent
agreement with the first Born results when coupling between
discretized channels was switched off.

The number of quadrature points for integration within each
bin was taken to provide an adequate accuracy and chosen
depending on the width of the bin. Typically, at least 40 points
were used for the smallest bins and increased for larger bins
as required.

It is noteworthy to comment on the structure treatment
implemented in our previous QM-CCC calculations [28,48].
The QM-CCC calculations utilized the orthogonal Laguerre
basis (16) with parameters N; = 20 — [, [ = 5 and A = 2.
The state energies of this target basis are displayed in Fig. 1 for
orbital angular-momentum quantum numbers / = 0, 1, and 2.
While both the present bin-based WP-CCC and the previous
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Laguerre-based QM-CCC approaches allow one to study the
convergence of the results by increasing the number of the
target states, the present formulation has the advantage of
being able to explicitly choose a specific positive energy,
and for this to be the same for each /. This is helpful in
differential ionization studies where the outgoing electron
energy is specified. Furthermore, the bin-based formulation
has considerably greater flexibility in the way the energies can
be distributed.

The convergence of calculations with varying parameters
associated with the projectile has been carefully studied. The
set of coupled differential equation (8) was solved by varying
the z component (z = vt) of the projectile position from —200
to +200 a.u. at all energies. The upper limit for the impact
parameter b,y is proportionally increased from 10 a.u. at
1 keV and to 40 a.u. at 1 MeV [70]. The radial grid required
for calculations of the matrix elements was 500 a.u. at the
highest energy and 2000 a.u. at the lowest energy.

Finally, during the calculations we always make sure that
we obtain exactly the same total ionization cross section both
by summing over the partial cross sections for excitation of the
positive-energy states [Eq. (39)] and by integrating the fully
differential cross section d3c /dE/d2./d2 » [Eq. B1)] over
all variables.

IV. RESULTS AND DISCUSSION

In this section we present our numerical results for triply,
doubly, and singly differential ionization cross sections, as
well as the total ionization cross section. Collision geometries
and projectile energies are chosen in such a way that allows
the most comprehensive comparison with our quantum-
mechanical CCC results published in Refs. [28,48] and other
semiclassical theories [6,29,30,44]. In addition we present
results for differential cross sections and kinematic regimes
which have not been previously considered.

A. Triply differential cross sections

In Fig. 3 we show our results for the triply differential
cross section in the collision plane. The present WP-CCC
results are compared with our previous QM-CCC results, the
Born approximation, the continuum-distorted-wave eikonal-
initial-state (CDW-EIS) calculations of Voitkiv and Ullrich [6],
and coupled-pseudostate (CP) calculations of McGovern
et al. [30]. Here we fix the direction of scattered antiprotons
and show the value of the momentum transfer p, while the
electron ejection angle 6, runs from —180° to 180° relative to
the direction of the incident antiproton. Since the coplanar
geometry is considered the azimuthal coordinates of the
ejected electron ¢ and the antiproton ¢ ; are set to 0. The arrow
indicates the direction of momentum transfer. We note that
the results of other approaches are transformed to the collision
geometry and coordinate frame that we have currently adopted.
The ejected electron energy is fixed at 5 eV. The flexibility
of the presently developed WP basis in distributing positive
energy states arbitrarily allowed us to have a state with the
energy exactly equal to 5 eV for all /. This was not possible
in the QM-CCC calculations where we had to calculate the
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FIG. 3. Triply differential cross sections for antiproton-impact
ionization of the ground state of atomic hydrogen at various scattering
angles and energies of the ejected electron for specified projectile
energies E,. Results of the QM-CCC, CDW-EIS, and semiclassical
CP approaches are due to Refs. [48], [6], and [30], respectively. The
arrows indicate the direction of the momentum transfer.

TDCS at 5 eV by interpolating the TDCS at other available
energies.

As one can see from the figure, for every indicated antipro-
ton energy and momentum transfer our current WP-CCC and
previous QM-CCC results are generally in good agreement.
As discussed earlier, slight disagreement at E, = 30 and
214.84 keV (corresponds to projectile speed of 3 a.u.) is
due to insufficient density of positive-energy pseudostates
around 5 eV in the Laguerre basis (see Fig. 1) utilized
in our previous QM-CCC calculations. At 500 keV both
WP-CCC and QM-CCC are in good agreement with the
coupled-pseudostate calculations of McGovern et al. [30],
and the CDW-EIS calculations of Voitkiv and Ullrich [6].
Here even the Born approximation is reasonably accurate. At
every projectile energy all presented theories predict the binary
and recoil peaks at the same electron ejection angle which
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FIG. 4. Triply differential cross sections for antiproton-impact
ionization of the ground state of atomic hydrogen at specified
projectile energies E,. The ejected electron energy is 5 eV, and the
antiproton is scattered to 0°.

qualitatively describes the phenomenon of suppressed electron
ejection in the direction of the scattered antiprotons (essentially
zero degrees). Due to the repulsive Coulomb force between the
antiproton and electron the binary peak is shifted to the right
from the momentum transfer direction. Note that the Born
approximation is always symmetric around the momentum
transfer direction.

It is interesting to observe how drastically the TDCS at a
particular scattering angle changes as a function of the incident
energy. An example is given in Fig. 4 for the TDCS at 0°
scattering angle of the projectile at low and high incident
energies. As one can see, at high projectile energies the electron
ejection peaks in both forward and backward directions.
However, as the incident energy falls the forward ejection
is completely suppressed. Again, this is due to the repulsive
Coulomb interaction between ejected electron and antiproton.

Figure 5 presents the TDCS at various scattering angles
of the projectile and ejected-electron energies for 75 keV
antiproton impact. Though the variation of the projectile angle
is rather small, in steps of 0.1 mrad, the effect on the TDCS is
rather large at all considered electron ejection energies, which
were chosen to correspond to energy losses of 30, 40, 50, and
53 eV according to the experimental setup for proton scattering
DDCS Laforge et al. [T1].

B. Doubly differential cross sections

The DDCS in energy of the ejected electron and scattered
angle of the projectile, d*0 /dE /dSQ2 7, are shown in Fig. 6 at the
same electron energies as for Fig. 5. The corresponding proton-
impact DDCS of [71] are rather different from the antiproton-
impact ones shown and are not presented. At the intermediate
energy of 75 keV the proton-impact electron capture cross
section is very large, and so it is not surprising that the DDCS
would be very different for antiproton impact. We look forward
to calculating proton-impact TDCS and DDCS utilizing the
two-center bin-based CCC formalism for heavy projectiles.

The DDCS in energy and angle of the ejected electron,
d’*c/dE /d., are presented in Fig. 7 for the ejected electron
energy of E. =5 eV and various energies of the incident
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FIG. 5. 75 keV antiproton-impact ionization of the ground state
of hydrogen TDCS at the specified scattering angles of the projectile
and ejected-electron energies E.. The arrows indicate the momentum
transfer direction.

antiproton as a function of the electron ejection angle 6. The
QM-CCC results and the results of the coupled-pseudostate
approach of McGovern et al. [30] are also presented for
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FIG. 6. The d*c/dE /dS2; at specified ejected-electron energies
for 75 keV antiproton impact.

comparison. Since this cross section is formed as a result
of integration of the TDCS over the scattering angle of the
projectile, the DDCS results displayed in Fig. 7 retain some
features of the corresponding TDCS shown in Fig. 3. As
expected, the electron emission is negligible at small ejection
angles. The pronounced peaks at around 80° and the shallow
peaks at 180° are the integral results of the binary and recoil
peaks of the TDCS, respectively. Small differences between
the WP-CCC and QM-CCC results can again be attributed to
the lack of Laguerre pseudostates with energies close to 5 eV
in the QM-CCC calculations.

C. Singly differential cross sections

In Fig. 8 we show our results for the SDCS in the ejection
angle of the electron, do/d€2., in comparison with our other
available calculations. Except for the lowest energy consid-
ered, the cross section is lowest in the forward direction and has
a maximum around 60° and a minimum around 120°. The rel-
atively large cross section in the backward direction at all con-
sidered energies indicates the propensity for the electron to be

1.4 | [QM-CCC ‘ ]
McGovern 2 keV

1o Llwp-ccc —

ERR

ad o8t

o

8]

3 06f

©

o

o

0.4 ]
200 keV;
0.2 7

0 60 120 180
electron ejection angle, 6, (deg)

FIG. 7. The d*0/dE/dQ2, for antiproton-impact ionization of
hydrogen at 30, 200, and 500 keV for an ejected electron of 5 eV.
Results of the QM-CCC approach and the coupled pseudostates
approach of McGovern et al. [30] are also presented for comparison.
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FIG. 8. The singly differential cross section in the electron
ejection angle at incident energies of antiproton 2-200 keV. Results
of semiclassical CC approaches are due to Igarashi et al. [29] and
McGovern et al. [44].

ejected in the opposite direction to the antiproton. The agree-
ment between the present WP-CCC results and the semiclassi-
cal approaches of Igarashi et al. [29] and McGovern et al. [44]
is somewhat variable, but improves with increasing energy.
The SDCS in the energy of the ejected electron is presented
in Fig. 9. Previously, the QM-CCC results [48] and the
coupled-pseudostate calculations [30] predicted cross sections
to monotonically decrease with the increasing electron ejected
energy at all considered projectile energies. However, the
present WP-CCC results exhibit a qualitatively different
behavior at low electron ejection energies, with the SDCS
rising rapidly towards a maximum. This is most prevalent at
the lowest impact energies presented. We checked this result
in a model problem which retained only s-states of hydrogen,
using both the WP-CCC and QM-CCC approaches, and such
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FIG. 10. Total ionization cross section for antiproton-hydrogen
scattering. Present calculations (WP-CCC) are compared with exper-
imental data by Knudsen et al. [72], quantum mechanical convergent-
close-coupling (QM-CCC) results [28], and various semiclassical
calculations of McGovern et al. [30], Igarashi et al. [29], and Sahoo
et al. [33].

behavior was also evident there. Absence of the low-energy
peaks in our previous QM-CCC results is attributed to the fact
that in these calculations the discretization of the low-energy
part of the continuum was insufficient to reveal the fine details.
This is seen in Fig. 1 where below 2 eV the Laguerre basis has
just two states. We suppose the same conclusion is applicable
to the coupled-pseudostate results of McGovern et al. [30] as
well. As mentioned in Sec. III, at low incident energies we
used 90 bins for ejected electron energy range from 0 to 40 eV.
The resulting wave-packet basis had 19 states below 2 eV. The
present Born calculations are given just as a check that the WP
basis is behaving as expected if coupling is turned off.

D. Total ionization cross section

Finally, in Fig. 10 we show our results for the total
ionization cross section in comparison with the experimental
data of Knudsen et al. [72], the quantum-mechanical CCC
results and other semiclassical calculations [29,30,33] for
the incident energies ranging from 1 keV to 1 MeV. The
calculated WP-CCC cross sections are in excellent agreement
with both the experiment and the QM-CCC results. There is
insignificant variation between the WP-CCC and QM-CCC
results at the energy range from 2 to 10 keV, which is a couple
of percent at most. As discussed earlier, this is due to the
deficiency of the basis used in the QM-CCC calculations since
the continuum discretization using Laguerre pseudostates is
significantly sparser than the discretization density resulting
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from the present wave packets. Overall, the present results for
TICS are in good agreement with other semiclassical close-
coupling calculations [29,30,33].

V. CONCLUSIONS AND FUTURE OUTLOOK

A continuum-discretization approach to ion-atom collisions
based on stationary wave packets has been developed. The
normalized wave packets constructed from the radial Coulomb
wave functions have been used to discretize the continuous
spectrum of the target. The generated orthonormal wave-
packet basis is used in the target-based one-center expansion
of the total scattering wave function. This converts the
semiclassical three-body Schrodinger equation into a set of
coupled-channel differential equations. One of the favorable
features of the developed method is the ability of generating
target states with arbitrary energies and distribution. This, in
addition to improving the accuracy of the calculations, also
has a particular advantage in calculating differential ionization
cross sections where the energies of the pseudostates with
different orbital quantum number are aligned naturally. The
density of the continuum discretization can be as high as
necessary.

The utility of the new method is demonstrated on the
example of antiproton collisions with atomic hydrogen. The in-
tegrated, fully differential, as well as various doubly and singly
differential cross sections for antiproton-impact ionization of
hydrogen have been calculated, and a comprehensive set of
highly accurate benchmark results have been presented. Data
for other channels not considered here, and arbitrary kinematic
regimes can be provided upon request.

Extension of the developed wave-packet continuum-
discretization approach to the two-center rearrangement prob-
lems including electron capture will be reported in the second
part of the work. The ability of the approach of generating
target states with arbitrary energies and distribution allows one
to investigate the issues associated with the nonorthogonality
of the two-center expansion basis and double-counting of the
continuum.

The developed wave-packet convergent close-coupling
method is not limited to hydrogen-like targets. It can be
extended to more complicated atomic and molecular targets.
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