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The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low
energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision
energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important.
Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering
matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of
electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference
configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational
frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here
vibrational excitations of the ionic core from v = 0 to v = 1 and v = 2 for all three normal modes are considered
and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is
computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all
three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.
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I. INTRODUCTION

Dissociative recombination (DR) of N2H+ is a reaction
important for the understanding of the chemistry of the
interstellar medium. The N2H+ ion has been detected in
numerous astrophysical environments [1–6] and it is used
to model the density of nitrogen, which lacks observable
vibrational or rotational transitions. N2H+ is formed by proton
transfer in collisions of N2 and H3

+ and it is destroyed by
dissociative recombination with low-energy electrons

N2H+ + e− → N2 + H, (1)

where all nitrogen is recycled. This reaction has gained
substantial attention both experimentally [7–13] and theoreti-
cally [14–18].

DR measurements of this reaction have been performed
using both the Flowing Afterglow Langmuir Probe tech-
nique [7,8,10–12] and ion-storage ring experiments [9,13].
They now agree on a relative large thermal rate coefficient of
about 2.7 × 10−7 cm3s−1 and a dominance of breakup into
N2+H [11–13].

Extensive theoretical studies of the potential-energy sur-
faces of electronic states of 2

A
′ symmetry important for the

DR reaction have been carried out by the group of Talbi
and Hickman [14–16,18]. In [14] structure calculations were
performed at linear geometries with the NN distance frozen,
using the multireference configuration-interaction (MRCI)
method with orbitals of localized character. Quasidiabatic
states were generated by analyzing the configurations of the
electronic states. Two repulsive resonant states were found,
but the potentials of these states cross the ion potential at
internuclear distances larger than outer classical turning point
of the vibrational v = 0 wave function of the ion. Therefore,
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it was concluded that the direct DR cross section through
these resonant states should be small for vibrationally relaxed
ions.

In the following publications [15,16,18], the block-
diagonalization method [19] was used to generate slices of
potential-energy surfaces of diabatic resonant states. In [15],
the NN distance was frozen at the equilibrium value of the
N2H+ ion, while the potential-energy surface of the lowest
electronic resonant state was computed as a function of the
other two Jacobi coordinates. Two-dimensional wave-packet
calculations were carried out using the MCTDH [20] (multi-
configuration time-dependent Hartree) program package. In
this study, no information about the autoionization width of
the resonant state was known. Therefore, it was assumed
that the width has a small magnitude and is constant (inde-
pendent of the nuclear coordinates). Autoionization was thus
neglected and the absolute cross section was not computed.
The calculated relative cross section shows a peak centered
around 3 eV with a negligible contribution to the cross section
at low energies [15]. This was followed by a study [16],
where also the NN dependencies of the resonant states were
examined. The potential-energy surfaces of the lowest two
resonant states of 2

A
′ symmetry were found to be repulsive

in the Franck-Condon region. These studies conclude that the
indirect mechanism might be important in N2H+ DR.

In a previous study [17], the indirect dissociative re-
combination of N2H+ was investigated using a vibrational
frame transformation of the elements of the elastic scattering
matrix computed using electron-scattering calculations with
the complex-Kohn variational method [21]. The indirect DR
cross section was calculated by assuming that the electron is
captured into bound Rydberg states when the ionic core is vi-
brationally excited from v = 0 to v = 1. The quantum defects
obtained using electron-scattering calculations were compared
with those calculated from converged bound Rydberg states
obtained with structure calculations. For the vibrational wave
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functions, harmonic-oscillator wave functions were used and
the effect of autoionization was neglected. The model assumed
linear dependence of the elements of the scattering matrix as
functions of the normal-mode coordinates.

Here, we present an independent study of the electronic
states important in the N2H+ dissociative recombination.
Electronic-structure calculations using the MRCI method
are combined with electron-scattering calculations using the
complex-Kohn variational method [21]. We thus obtain not
only potential-energy surfaces, but also autoionization widths
as well as the electron-scattering matrix. The indirect DR
cross section is again calculated using a vibrational frame
transformation of the scattering matrix elements. However,
present treatment includes both vibrational excitation from
v = 0 to v = 1 and 2 and up to quadratic dependence of
the elements of the scattering matrix is considered. The
contribution to the cross section from direct DR is computed
using wave-packet propagation on quasidiabatic resonant-state
potentials including all three degrees of freedom using the
MCTDH program package.

The outline of this paper is as follows. In Sec. II, the
theoretical models of the indirect and direct DR mechanisms
are described. This is followed in Sec. III by a description
of the computational details of the electron scattering and
structure calculations as well as the wave-packet propagation
scheme using the MCTDH technique. The results are presented
in Sec. IV, where the potential-energy surfaces of the resonant
states are compared with previously calculated surfaces and the
computed DR cross sections are compared with measurements.
We discuss the role of the two mechanisms and the importance
of including all degrees of freedom in the study of the nuclear
dynamics. Unless otherwise stated, atomic units are used
throughout.

II. THEORETICAL APPROACH

Here we separately study the indirect and direct mecha-
nisms of N2H+ DR. As described below, the two processes are
studied using simplified models and no interference effects
between the two electron-capture mechanisms are considered.
Additionally, no electronic couplings between the resonant
states and the Rydberg manifold converging to the ionic ground
state are included.

A. Indirect mechanism

The simplified model for the indirect DR mechanism has
been previously described and applied to compute the DR cross
section for numerous polyatomic ions [17,22,23]. The model
is based on the basic assumptions that the electron capture
goes through the bound Rydberg states causing the ionic core
to be vibrationally excited. Rotation is not included and it is
assumed that as soon as the electron is captured, the system
will predissociate with zero probability for autoionization. By
averaging the cross section over autoionizing resonances, a
constant electron-capture probability is obtained. Additionally,
the harmonic-oscillator approximation is used for describing
the vibrational wave function of the ionic core. Using these
approximations, the indirect DR cross section at the collision

energy E can be estimated with the simple formula

σ = π

2E

∑
� νn

lml′m′

g�

∣∣〈χ0|S�
lml′m′ |χνn

〉∣∣2[
1 − θ

(
E − Eνn

)]
, (2)

where χνn
and χ0 are the final and initial vibrational wave

functions of the ionic core and S�
lm,l′m′ is an element of

the elastic-scattering matrix in overall symmetry � just
above the ionization threshold (in an energy region where
there are no contributions from electronic resonant states).
In the expression above, l,m,l′m′ label the incoming and out-
going angular momentum quantum numbers of the scattered
electron and g� is the multiplicity ratio for the given electronic
symmetry. The factor involving the Heaviside step function,
[1 − θ ], guarantees that the contribution to the cross section
becomes zero when the electronic energy is greater than the
corresponding vibrational threshold, Eνn

. The summations run
over the final vibrational state of the ionic core as well as all
elements of the scattering matrix. The model has previously
been applied to compute the indirect DR cross section of
N2H+ [17] for vibrational excitation from ν = 0 to ν = 1 for
the three normal modes of the ionic core. Here the model
is extended to also include excitations from ν = 0 to ν = 2.
This is done by fitting the elements of the scattering matrix
to second-order polynomials as functions of the normal-mode
coordinates and using harmonic-oscillator wave functions for
the vibrational wave functions to obtain analytical expressions
for the matrix elements 〈χ0|S�

lml′m′ |χνn
〉.

B. Direct mechanism

As described below, the potential-energy surfaces of the
quasidiabatic electronic resonant states of N2H are computed
by combining electron-scattering and structure calculations.
Autoionization widths and energy positions of the resonant
states are obtained from the electron-scattering calculations.
Here no couplings (electronic nor nonadiabatic) among the
neutral states are considered, but it is assumed that electron
capture into the resonant state may either lead to autoion-
ization or dissociation along the potential-energy surface.
The potential-energy surfaces [Vi(R)] and autoionization
widths [�i(R)] are calculated using Jacobi coordinates (see
Fig. 1), where all three degrees of freedom [R = (r,z,θ )] are
considered.

The nuclear dynamics is studied using a wave-packet
propagation scheme, where the time-dependent Schrödinger
equation is numerically solved

i
∂

∂t

i(t,R) =

[
T̂ + Vi(R) − i

1

2
�i(R)

]

i(t,R). (3)

FIG. 1. Jacobi coordinates used in the wave-packet propagation
scheme. The radial coordinates are denoted by r and z and the Jacobi
angle by θ .
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Autoionization is here included using the local approxima-
tion [24,25], where it is assumed that the total energy of the
system is high enough for autoionization into a complete set of
vibrational levels. Zero angular momentum of the molecular
system is assumed (rotation is neglected) and with the Jacobi
coordinates, the nuclear kinetic-energy operator has the form

T̂ = − 1

2μr

∂2

∂r2
− 1

2μz

∂2

∂z2

−1

2

(
1

μrr2
+ 1

μzz2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ
, (4)

where μr and μz are the reduced masses associated with the r

and z coordinates.
The wave packets are initiated on the resonant states using

the initial condition [24]


i(t = 0,R) =
√

�i(R)

2π
χ0(R). (5)

Here χ0 is the vibrational wave function of the N2H+ ion.
Electron recombination with ions in their ground vibrational
level (v = 0) is considered. Wave packets are propagated
on the complex potential-energy surfaces. At large radial
distances, complex absorbing potentials are included. These
will prevent wave-packet reflection from the end of the grid
and they are used for calculating the DR cross section

σi(E) = 2π3

E
gi(|Ti,r (E)|2 + |Ti,z(E)|2). (6)

Here gi is the ratio of multiplicity of the neutral state
to the ionization continuum and |Ti,x(E)|2 is the transition
probability for dissociating in the radial coordinate x. (For
more details, see Ref [26].)

III. COMPUTATIONAL DETAILS

A. Electronic-structure calculations

In Cs symmetry, the X̃2A′ ground state of N2H
has the dominant configuration (1a′)2(2a′)2(3a′)2(4a′)2

(5a′)2(1a′′)2(6a′)2(7a′)1. The ground state of the ion corre-
sponds to the removal of an electron from the (7a′) orbital.
Other low-lying ionic states are formed when an electron is
removed from the (1a′′) orbital leading to the 1A′′ and 3A′′
states, and by the removal of an electron from the (6a′) orbital
resulting in formation of 1A′ and 3A′ electronic states. The
resonances seen in electron scattering from N2H+ are Rydberg
states converging to these excited ionic cores. They are crossed
at large internuclear separations by Rydberg states converging
to even higher excited ionic states.

For the direct DR model, the potential-energy surfaces
of the ion as well as excited states of the neutral molecule
are calculated using the MRCI method. This will provide us
with the potential energy of the electronically bound states
that are situated below the ground state of the ion. We also
use the structure calculations to interpolate the potentials of
the resonant states between the geometries where electron-
scattering calculations are performed. Although the ground
state of the ion has C∞v symmetry, as the molecule is bent
the symmetry reduces to Cs . Since our calculations include

all three dimensions, the calculations are carried out in Cs

symmetry.
In order to describe both the Rydberg series converging

to the various excited ionic states, which are the electronic
resonances, as well as describing the bound Rydberg states
converging to the ground ionic core, we first carry out a
self-consistent-field (SCF) calculation on the ground state of
the neutral molecule with a basis set consisting of (4s,1p)
primitive functions contracted to [3s,1p] for the hydrogen and
triple-zeta plus polarization basis (9s,7p,1d) contracted to
[4s,4p,1d] for the nitrogen atom. In the next step, these SCF
orbitals are used in a MRCI calculation on the ground state of
the ion, where the two lowest orbitals (1a′) and (2a′) mainly
composed of the (1s) atomic orbitals on the two nitrogen atoms
are frozen and the next eight orbitals form the active space.
A full CI is done in the active space and single and double
excitations from this set of configurations are allowed into
the remaining orbitals. Natural orbitals are obtained from this
calculation. The natural orbitals are then further expanded by
adding diffuse (1s,1p) orbitals on nitrogen and (2s,2p) on
hydrogen.

Then a MRCI calculation is carried out to determine the
potential-energy surfaces of the ground state of the ion as well
as excited states of the neutral molecule. In these calculations,
the two lowest (1a′) and (2a′) core orbitals are kept doubly
occupied and the reference configurations are constructed
by excitations of eight electrons (seven for the ion) among
the seven orbitals: (3a′), (4a′), (5a′), (6a′), (1a′′), (7a′), and
(2a′′). Single excitations out of the reference configurations
are included.

B. Electron-scattering calculations

The energy positions and autoionization widths of the
electronic resonant states are determined using the complex-
Kohn variational method [21]. The trial wave function for the
neutral (N + 1 electron) system is written as


γ0 =
∑

γ

A[�γ Fγγ0 ] +
∑

μ

dγ0
μ μ. (7)

The first sum is denoted as the P -space portion of the
wave function and runs over the energetically open target
states. Here, the symbol index γ labels all quantum numbers
representing a physical scattering state (the composite system),
and the index γ0 label the initial state of the target ion.
�γ (r1, . . . ,rN ; R) represents the target wave function for
the ion, while the function Fγγ0 (rN+1) is the one-electron
wave function describing the scattered electron. A is an
antisymmetrization operator for the electronic coordinates.
To obtain consistent structure and scattering calculations,
we use the same MRCI target wave function as described
in the previous section. The second term, denoted as the
Q-space portion of the wave function, contains the func-
tions μ(r1, . . . ,rN+1; R), which are square-integrable N + 1
configuration-state functions (CSFs) that are used to describe
short-range correlations and the effects of closed channels. We
use the same natural orbitals as those applied in the structure
calculations as described above. The advantage of using
natural orbitals is that the orbital space used to generate these
states is kept manageably small. The one-electron scattering
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wave function Fγγ0 is further expanded as

Fγγ0 (r) =
∑

j

c
γ γ0
j φj

+
∑
lm

[
f

γ

l δll0δmm0δγ γ0 + T
γγ0
ll0mm0

g
γ

l

]
Ylm(r̂)/r. (8)

Here φj (r) are a set of square-integrable functions, and
since this is electron-ion scattering, f

γ

l (kγ r) and g
γ

l (kγ r)
are the incoming and outgoing Coulomb functions for a
scattered electron with channel momenta kγ . Ylm are spherical
harmonics and angular momenta up to l = 4 and |m| = 4 are
included in the calculation.

By inserting the trial wave function into the complex-Kohn
functional [21], the unknown coefficients in the trial wave
function can be optimized. Also the T matrix (T γγ0

ll0mm0
) for

elastic scattering is obtained and by fitting the eigenphase
sum of the T matrix to a Breit-Wigner form [27], the energy
positions and autoionization widths of the resonant states are
determined. These electron-scattering calculations are carried
out for a fixed geometry R = (r,z,θ ) of the target ion.

C. Quasidiabatization

As mentioned above, the ionic ground state is
dominated by the following configuration: (1a′)2(2a′)2

(3a′)2(4a′)2(5a′)2(1a′′)2(6a′)2. When structure calculations
are carried out, three types of states are obtained. These are
the Rydberg states converging to the ground ionic core, the
states trying to describe the ionization continuum, as well
as the resonant states. Both the Rydberg states as well as
the states describing the ionization continuum have the same
configuration as the ground state of the ion plus an outer
electron in a diffuse orbital. The resonant states are more
or less compact Rydberg states converging to excited ionic
cores. These resonant states all have a vacancy in either the
(1a′′) or the (6a′) orbitals. By identifying the states with these
characters, the resonant states can be “diabatized” relative to
the Rydberg states and the ionization continuum. This is done
in order to follow the resonant states when they cross the ionic
ground state and interact with the Rydberg manifold situated
below the ionic potential. This approach is also employed
to obtain more data for the potential-energy surfaces of the
resonant states above the ion and interpolate and extrapolate
between the energies of the resonant states calculated using
the electron-scattering formalism. It should be noted that this
approach will provide us with the energy of the resonant state
within the energy spread given by the autoionization width.
The resonant states are very narrow, and hence the use of
structure data to obtain resonant states is relatively accurate.
We have only diabatized the resonant states relative to the
Rydberg states by using the CI coefficients. We have not
calculated any electronic couplings between the neutral states.
In addition, we have not diabatized the resonant states among
each other. As will be shown below, there are clear indications
of avoided crossings among the resonant states.

D. Nuclear dynamics

The wave packets are propagated using the MCTDH method
described in detail in [28]. Using this program all terms in

the Hamiltonian must be given in a product form. Therefore,
calculated potential-energy surfaces of the ion and resonant
states as well as the autoionization widths have to be fitted
to a product form. The potential-energy surfaces as well
as autoionization widths are calculated on a product grid
for the (z,θ ) Jacobi coordinates when r = 2.086a0. The
autoionization widths are also generated on the product grid in
(r,z) for fixed θ = 1◦. The autoionization widths (�i) (as well
as the corresponding functions

√
�i/2π ) are assumed to have

the form

�i(r,z,θ ) = �i,1(z,θ ) + �i,2(r,z), (9)

where both �i,1 and �i,2 are fitted to the product form using the
POTFIT program included in the MCTDH program package [20].
For the potential-energy surfaces of the ion and the resonant
states, we assume the form

Vi(r,z,θ ) = Vi,1(z,θ ) + Vi,2(r), (10)

where the term Vi,1 is obtained using POTFIT from the ab initio
data, while for Vi,2 describing the dependence on the radial
coordinate r (NN distance), the surfaces are fitted to a Morse
potential. For the N2H+ equilibrium values of z and θ , the
potentials are well described by Morse potentials.

The initial vibrational wave function χ0(R) of the target
ion is computed by using energy relaxation, i.e., propagating
the wave packet on the ion potential-energy surface with
imaginary time. Here 50 fs is needed to obtain a relaxed wave
function. To obtain the initial wave packet on the resonant
states [see Eq. (5)], the vibrational wave function is then
multiplied by the electronic coupling function between the
ionization continuum and the resonant state,

√
�i(R)/2π .

The nuclear wave packet of N2H is expressed in the Jacobi
coordinates as a sum of products of “single-particle functions”
as


i(t,R) =
Nr∑
j=1

Nz∑
k=1

Nθ∑
l=1

Ajkl(t)ρj (t,r)�k(t,z)l(t,θ ). (11)

In the present study, 20 single-particle functions are used
for each Jacobi coordinate and the single-particle function is
expanded in terms of a primitive basis. Here a sine basis with
300 basis functions is applied for the two radial coordinates,
while a Legandre basis with 300 functions is used for the
angular motion. The time-independent basis functions are cho-
sen as the basis function for a discrete variable representation
(DVR). By inserting the expression for the wave function into
the time-dependent Schrödinger equation, the time-dependent
coupled MCTDH working equations for the coefficients and
the single-particle functions can be obtained [28]. The wave
packets are propagated using the constant mean-field scheme
where the single-particle functions are integrated using the
Bulirsch-Stoer extrapolation (BS) scheme of order 7 and an
error tolerance of 10−6. For the coefficients, a complex short
iterative Lanczos (SIL) algorithm of order 30 is applied, with
an error tolerance of 10−5. The wave packets are propagated
on the resonant states for 500 fs and the cross section for
DR is computed by analyzing the flux absorbed by complex
absorbing potentials (CAPs) with strength parameters 0.05
and orders 3, placed at z = 8.0a0 and r = 4.0a0. For all
resonant states, we obtain a clear dominance in N2 + H
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dissociation. That is, the cross sections are composed of mainly
flux absorbed by the CAP placed at z = 8.0a0. The total
cross section for direct DR is obtained by summarizing the
contributions from all resonant states. Here five resonant states
of 2A′ and 2A′′ symmetries are included.

IV. RESULTS

The potential-energy surfaces and autoionization widths of
quasidiabatic resonant states driving the direct DR of N2H+
will be presented. These are compared with the resonant-state
potentials calculated by the group of Talbi and Hickman
[14–16,18]. The electron-scattering calculation carried out to
study the indirect mechanism is slightly different than the
one described above. Results from these calculations, such as
channel quantum defects, have been presented previously [17]
and will not be shown here. The calculated DR cross sections
from the direct and indirect mechanisms are compared with
the measured cross section.

A. Quasidiabatic resonant states

By carrying out electron-scattering calculations and com-
bining these with the structure calculations, we can extract
potential-energy surfaces of the resonant states of N2H. We
calculated five resonant states in each of the 2A′ and 2A′′
symmetries. These are the resonant states with energies below
the first excited state of the ion. As described above, the
resonant states are diabatized relative to the Rydberg states
converging to the ground ionic core. However, the resonant
states are not diabatized relative to each other. In Fig. 2, we
display a comparison between the resonance curves derived
from this diabatization procedure and those obtained from the
scattering calculation.

The potential-energy surfaces of the five lowest quasidia-
batic resonant states of 2A′ and 2A′′ symmetries are calculated
for z ∈ [2.0a0,10.0a0], θ ∈ [1◦,89◦] for r = 2.086a0. Since
the molecule is symmetric under reflections in θ = 0◦ and
θ = 90◦ (see Fig. 1), the potential-energy surfaces are thus
computed for all values of θ . Additionally, the r dependencies
of the potentials for z = 3.0a0 and θ = 1◦ are determined.
One-dimensional slices of the potential-energy surfaces of the
ground state of the ion and the five lowest resonant states of
2A′ and 2A′′ symmetries are displayed in Fig. 3. In (a) and
(b), some of the asymptotic limits of the lowest resonant states
are displayed when the NH bond is broken. These limits are
identified by analyzing the configurations of the electronic
states and the calculated energies. In agreement with what was
found by the group of Talbi [18], the lowest resonant state of
2A′ is quasidiabatically dissociating into N2(3�u

+
) + H. The

next 2A′ and 2A′′ are both associated with the N2(3�g) + H
limit.

The potential-energy surfaces of the resonant states exhibit
outer local minimum both when the angle is varied [as can
be seen in Figs. 3(c) and 3(d)] and as functions of the NN
bond length [as displayed in (e) and (f)]. The minimum in the
angular degree arises due to interaction between the resonant
states and the Rydberg manifold. The minimum found when
the NN bond length is varied is due to the large NN bond
dissociation energy and similar minimum is also found for

2 2.5 3 3.5 4 4.5 5 5.5 6
z (bohr)

-10

-8

-6

-4

-2

0

2

4

6

8

10

En
er

gy
 (e

V
)

2 2.5 3 3.5 4 4.5 5 5.5 6
z (bohr)

-10

-8

-6

-4

-2

0

2

4

6

8

10

En
er

gy
 (e

V
)

FIG. 2. Potentials of N2H, top, 2A′, bottom, 2A′′ symmetries are
displayed as functions of the z coordinate, while the NN distance
r = 2.086a0 and the angle θ = 179.0◦ are frozen. Heavy line shows
the potential of N2H+ ground state, while the dashed lines (blue
online) show the potentials of N2H obtained from the structure
calculations. The potential-energy surfaces of the resonant states
abstracted using the diabatization described in the text are shown
with solid lines (red online). These are compared to the results of the
scattering calculations shown as solid squares (red online).

bound adiabatic states. At low collision energies, the NN bond
will not break during the dissociation dynamics.

The electron-scattering calculations will provide us not only
with the energy positions of the resonant states, but also with
the autoionization widths. In Fig. 4, the one-dimensional cuts
of the autoionization widths of the five resonant states of
2A′ and 2A′′ symmetries are displayed. The symbols show
the values obtained from the electron-scattering calculations,
while lines are splined curves connecting the points. As soon
as the potential of the resonant state crosses the ion potential,
the autoionization width is put to zero.

As mentioned, there have been previous calculations
by the group of Talbi and Hickman [14–16,18] on the
potential-energy surfaces of N2H involved in dissociative
recombination. In [16] the calculations were done using
the block-diagonalization technique in linear geometry and
overall 2A1 symmetry. Adiabatic and diabatic potential-energy
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FIG. 3. Resonant-state potential-energy surfaces of N2H are displayed with thin (red online) lines, while the ground-state potential of the
N2H+ ion is shown with heavy black line. In (a) and (b) the potentials are displayed as functions of the z coordinate, while r = 2.086a0 and
θ = 1◦, for resonant states of 2A′ and 2A′′ symmetries, respectively. In (c) and (d), the potentials of 2A′ and 2A′′ resonant states are displayed
as functions of the angle θ when the two radial coordinates are fixed at r = 2.086a0 and z = 3.0a0. Finally, (e) and (f) show the r dependencies
of the potentials when z = 3.0a0 and θ = 1◦.

surfaces were shown as functions of the the N-H bond length
with an N-N distance of 2.1a0. In order to compare to
their results, additional calculations in linear geometry are
carried out to compute potentials of resonant states of 2A1

symmetry, using this N-N bond distance. Since the calculations
are done at different levels, all curves are referenced to

the ion at equilibrium geometry. The results are shown in
Fig. 5.

The bottom figure shows a comparison of the current
calculations with the adiabatic results of the group of Talbi
and Hickman [16]. The calculated potential of the ionic ground
state has an almost identical form as the one obtained by Talbi;
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Autoionization widths of the five lowest resonant states of 2A′ and 2A′′ symmetries displayed in (a) and (b) as functions of the z

coordinate, while r = 2.086a0 and θ = 1◦. In (c) and (d), the widths are shown as functions of the angle θ when the two radial coordinates are
fixed at r = 2.086a0 and z = 3.0a0. Finally, (e) and (f) show the r dependencies of the widths when z = 3.0a0 and θ = 1◦.

and in the figure, the ion potential from present calculation is
displayed with the heavy solid line. Our calculations, below
the ion, in the Frank-Condon region agree well with those by
Talbi. The current calculations include more Rydberg states,
since the basis set included more diffuse basis function. At

larger internuclear separation the Talbi results are lower in
energy, due to the larger calculation. Above the ion, the
previous calculations show more states, but these include both
resonance states and unphysical states having the character of
a Rydberg lying above the parent ion. In the upper figure, the
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FIG. 5. Comparison to previous calculations, potentials of N2H,
top, diabatic, bottom, adiabatic displayed as functions of the z

coordinate, while the NN distance r = 2.1a0 and the angle θ = 0◦

are frozen. The solid lines (green) are the results of the group of Talbi
and Hickman [16]. The dashed lines are the resonant states from the
current calculations, blue are Rydbergs, and red are resonant states.
The ion curve is shown as a heavy solid line.

diabatic results of Talbi are shown. To produce these curves,
Talbi et al. employed a procedure to remove these unphysical
states. However, this procedure also eliminates Rydberg states
converging to higher states of the ion, which lie below their
parent and which are resonance states. It should also be noted
that the fourth state in the previous calculations has a lower
asymptote than our calculation. Since this correlates with the
lower resonant state, this would result in a modified energy
threshold for the dissociative recombination cross section. This
will be further discussed in the following section where the
calculated cross section is discussed.

B. DR cross section

The contribution to the DR cross section from direct
electron capture into resonant states followed by dissociation
is calculated using wave-packet propagation methods. No
electronic couplings among neutral states are included. It is
assumed that electron capture into the resonant states may
either lead to autoionization or a direct dissociation.

FIG. 6. Direct DR cross section through the lowest resonant state
of 2A′ symmetry calculated using wave-packet propagation including
one (solid black line), two (dashed red line), and three (dotted green
line) degrees of freedom.

In Fig. 6, the direct DR cross section through the lowest
resonant state of 2A′ symmetry is shown when the wave
packet is propagated including one-, two-, and three degrees
of freedom. In the one-dimensional (1D) calculation, only the
Jacobi z coordinate is included, while r = 2.086a0 and θ = 1◦
are frozen. The 2D calculation includes z and θ , keeping
r = 2.086a0 fixed. The 1D calculation provides a threshold
energy for dissociation of about 2.2 eV. The calculated DR
cross section is significantly lower than those obtained when
two or three degrees of freedom are considered. The 2D
calculation produces a cross section with a peak around 0.7 eV.
This is the due to the fact that this energy is needed to capture
into the resonant state. When the coordinate r is included, the
electron can now be captured into the resonant states at lower
collision energies. Calculated 3D cross section shows a E−1

dependence at low collision energies.
The direct DR cross section is calculated for the five lowest

resonant states of 2A′ and 2A′′ symmetries. The resulting cross
sections are displayed in Fig. 7. The two lowest resonant
states of each symmetry contribute to the DR cross section
at low collision energies. Most important are the two lowest
electronic states of 2A′ symmetry. These states are dissociating
quasidiabatically into N2(3�u

+
) + H and N2(3�g) + H.

As described above, the potentials of the resonant states
calculated by the group of Talbi and Hickman [16] have
lower asymptotic energies than the potential-energy surfaces
considered here. In [16], a larger structure calculation was
performed and we believe that when the resonant states have
crossed the ion, their description of the resonant state is better
than ours. To examine the effect on the direct DR cross
section by a lowering of the asymptotic energy, we connect
our potentials for the 1,2 2A′ resonant states for z � 3.0a0

with their potentials at larger values of z. For the θ and r

dependencies, we used the form obtained in our calculations.
The resulting cross sections for direct dissociation along
modified potential-energy surfaces of the 1 2A′ and 2 2A′
resonant states are shown with the dashed lines in the top
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FIG. 7. Contributions from resonant states of 2A′ (left) and 2A′′ (right) symmetries to the direct DR cross section of N2H+ calculated using
wave-packet propagation including all three degrees of freedom. The dashed (black and red online) curves in the left figure show the cross
section for wave-packet propagation on the modified potentials of the 1 2A′ and 2 2A′ resonant states, where the large z dependencies of the
potentials are the same as what was obtained in the calculation by the group of Talbi and Hickman [16].

of Fig. 7. At low energies the direct DR cross section increases
with as much as a factor of 10 for the 1 2A′ resonant state.

In Fig. 8, we compare the measured cross section of DR
of N2H+ using the CRYRING ion storage ring [13] with
the calculated cross sections for the indirect and direct DR
mechanisms.

For collision energies lower than 0.4 eV, the DR cross
section calculated from the indirect mechanism dominates the
cross section. As the threshold for each vibrational state is
reached, the contribution from that state to the cross section
(see Ref. [23]) goes to zero, leading to downward steps in the
magnitude. At about 0.4 eV, only the contributions into the v =
2 modes are nonzero. At this point the direct DR cross section
which at low energies is an order of magnitude smaller, now
dominates the cross section. Overall, there is a good agreement
between the calculated and measured cross section. In Fig. 7,
we show the change in cross section that resulted from a shift
in the asymptotic energies of the potential-energy curves. This
change was significant only for low energies. However, in

FIG. 8. Measured cross section of N2H+ DR (blue squares) [13]
is compared with the calculated DR cross section through the indirect
(black solid line) and direct (red dashed line) mechanisms.

that energy region, the total cross section is dominated by the
indirect mechanism, so the overall effect is not significant.

V. CONCLUSION

Potential-energy surfaces and autoionization widths of
resonant states important in N2H+ DR have been determined
including all three nuclear degrees of freedom by combining
electron-scattering calculations with structure calculations.
The potential-energy surfaces have been compared with those
calculated by the group of Talbi and Hickman [16].

The indirect and direct DR cross sections are calculated
using simplified models. For the indirect mechanism, the cross
section is obtained from a vibrational frame transformation
of the elements of the scattering matrix obtained with the
electron-scattering calculations. Autoionization is in this
model and, contrary to Ref. [17], not only vibrational excitation
of the ionic core of v = 0 to v = 1 are considered, but also
v = 0 to v = 2. This extends the energy region, where the
indirect mechanism contributes to the total cross section.

The direct DR cross section is computed by wave-packet
propagation on three-dimensional potential-energy surfaces,
where the 3D autoionaization widths are considered. Our
results clearly show that the indirect mechanism dominates at
low collision energies, while the direct mechanism dominates
at energies higher than 0.4 eV. We also find that the breakup
proceeds almost entirely into the two-body (N2 + H) channel
with the three-body (N + N + H) as a minor channel. Further
details on the branching ratios into specific N2 electronic states
would require inclusion of nonadiabatic couplings between the
neutral states and are beyond the scope of this work.
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