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3Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
(Received 28 June 2016; published 31 August 2016)

Variational ab initio R-matrix theory combined with generalized multichannel quantum defect theory is
used to calculate singly excited Rydberg states of the hydrohelium molecular ion, HeH+, for 1,3�+, 1,3�,
1,3�, 1,3�, and 1,3� symmetry. Bound levels are calculated for n values up to n ≈ 10, and continuum states
up to ≈3 eV above the HeH2+ threshold. The calculations span the range of internuclear distances R from
1 to 5 bohrs. The present work follows a preliminary study on the 1,3� states of HeH+ [Bouhali, Bezzaouia,
Telmini, and Jungen, EPJ Web Conf. 84, 04004 (2015)] which was also based on R-matrix theory. Further—
although limited to rather small R values—the present work extends the recent ab initio computations of
Jungen and Jungen [Mol. Phys. 113, 2333 (2015)] to higher excitation energies which are not accessible to
standard quantum-chemical methods. Where a comparison with the calculations of Jungen and Jungen and
other older results can be made, namely for n � 5, very good agreement with previous ab initio results is
obtained.
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I. INTRODUCTION

The hydrohelium ion, HeH+, is thought to be the first
molecular species to have appeared in the universe, possibly
along with He2

+ [1]. According to the big-bang model,
stars formed from primordial material should contain HeH+,
which therefore could influence their formation and evolution.
Dabrowski and Herzberg, in 1977, suggested that HeH+

could exist in astrophysical environments [2]. However, many
years elapsed before the vibration-rotation spectrum [3,4] and
pure rotation spectrum [5] could actually be observed in the
laboratory, while even today HeH+ has not yet been detected
in outer space.

The hydrohelium ion is the simplest and lightest heteronu-
clear system possessing more than a single electron, which
makes this ion interesting also for theoretical studies. The
system of excited states of HeH+ qualitatively resembles that
of H2

+ [6], with a bound ground state and mostly dissociative
excited states, some of which possess shallow minima at
relatively large internuclear separations.

Following earlier quantum-chemical computations, such as,
e.g., the work of Kołos [7], Pachucki and Komasa published
state-of-the-art ab initio calculations of the electronic ground
state of HeH+ that take account of nonadiabatic, relativistic,
and quantum electrodynamics effects [8]. Previous ab initio
work on the excited states of HeH+ includes the early series
of papers by Green et al. [9–12], which were motivated
primarily by the interest in low-energy H+ + He and H + He+

charge-exchange collisions. These authors performed a CI
(configuration interaction) treatment that provided potential-
energy curves of 1,3�, 1,3�, and 1,3� symmetry states up
to R ≈ 40 bohrs and up to n = 3 (where n is the principal
quantum number of the outer electron), and they also computed
electronic dipole transition moments between these states, as
well as nonadiabatic coupling functions. A few years ago
Loreau et al. [13] recalculated essentially the same data for
a larger R range (several hundred bohrs), using the quantum

chemistry package MOLPRO [14], and including states up to
n = 4.

In a recent paper [15] we presented exploratory R-matrix
calculations of low-lying Rydberg ndδ 1� and 3� states
in HeH+. These calculations were based on the so-called
R-matrix “halfium code” [16,17] developed initially for the
study of diatomic hydrogen H2. While these computations
were restricted to a small range of internuclear distances
R (up to 5 bohrs), they gave access to higher n quantum
numbers (up to n ≈ 10) than may be reached by standard
quantum chemistry methods. It was found that for n = 3
and 4, where earlier computations existed, the R-matrix
treatment gave agreement to within <100 cm−1 with the early
results of Refs. [9,10], whereas it yielded discrepancies of
the order of 2000 cm−1 when compared with the results of
Ref. [13]. These findings have been confirmed by the very
recent quantum-chemical computations of Ref. [6]. Here we
present extended R-matrix computations. These include now
all symmetries up to 1,3� and are based on substantially
larger angular and radial basis sets than the calculations of
Ref. [15]. We find satisfactory agreement with the calculations
of Ref. [6] in all cases. At the same time we have obtained
a complete set of states up to n ≈ 10, and we have also
computed scattering states HeH2+ + e− in the electronic
continuum.

II. THEORY

A. General considerations

Over the past decade we have developed an ab initio
R-matrix approach [16] which enables bound states and
core-excited scattering states of two-electron systems to be
calculated for fixed nuclei. Our work starts out from the ideas
of Greene and Yoo [18], which it adapts and extends so as to
yield quantum defect matrices that evolve smoothly throughout
the bound and continuous energy regions, and which also
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vary reasonably mildly as functions of the molecular geometry
(internuclear distance R). The “halfium model” combines the
variational eigenchannel R-matrix method [19] with the gen-
eralized multichannel quantum defect theory (GMQDT) [20],
implemented using prolate spheroidal electron coordinates
(ξ,η,φ) that replace the more familiar spherical coordinates
(r,θ,φ). This approach has been applied primarily to diatomic
hydrogen H2, where it has been used to investigate the
ungerade [16,21] and gerade [22] singlet symmetries of H2,
as well as the gerade triplet [23] and the gerade and ungerade
1,3�− channels [17].

The R-matrix scheme leads to a global analysis of the
electronic interactions active in the molecular compound, as
no distinction is made between “open” and “closed” channels
at the outset, but instead all channels are treated on the same
footing irrespective of their channel thresholds. In this picture
core-excited states are included explicitly as electron-ion
collision channels in their own right.

In the halfium model, the two-electron configuration space
is divided into two regions: (i) a reaction volume where
the variational R-matrix method is employed, and (ii) the
remaining space, called asymptotic zone, where GMQDT is
used. The connection of the inner zone and outer zone wave
functions then yields the desired reaction matrix or equivalent
quantum defect matrix. In the inner zone the full nonrelativistic
two-electron Hamiltonian is taken into account, whereas in
the asymptotic zone the single escaping electron is assumed to
move in the field of two effective fractional point charges Zeff

1
and Zeff

2 separated by R, with Zeff
1 + Zeff

2 = Zc, where Zc is the
total charge of the core. This “halfium” representation of the
asymptotic field is more realistic than the spherical Coulomb
field with Z = Zc which is commonly used in R-matrix
calculations. This is because the effective charges provide a
reasonable approximation to the nonspherical field of the ion
core, and in particular to its dipole and quadrupole components
[15,24].

B. Formalism

The reaction zone is defined by a preselected value ξ0 of
the spheroidal radial coordinate ξ . ξ0 typically is chosen to
vary with the molecular geometry R. The electronic wave
function inside the reaction volume is set up as an expansion
over two-electron configurations yij (−→r1 ,

−→
r2 ) as

�β(E) =
∑
ij

c
(β)
ij (E) yij , (1)

where E is the given total energy, and −→
r1 and −→

r2 are the
position vectors of the electrons. The expansion coefficients
c

(β)
ij (E) are the result of the variational calculation, with β

a solution index. In the variational R-matrix scheme each
eigensolution �β(E) is characterized by a stationary loga-
rithmic derivative bβ on the reaction surface max(ξ1,ξ2) = ξ0.
The two-electron configurations yij are properly symmetrized
products of one-electron functions i and j as detailed in
Refs. [16,17].

Each one-electron basis function |i〉 = |ni �̃iλi〉, confined
to the reaction volume, is separable in spheroidal coordinates

(ξ,η,ϕ) and has the form

�i(
−→
r ) = 〈−→r |i〉 = χi(ξ )√

ξ 2 − 1

ζi(η)√
1 − η2

1√
2π

θi(φ)

≡ χi(ξ )√
ξ 2 − 1

Ỹ�̃i ,±λi
(η,φ). (2)

Here, �̃i is the generalized orbital angular momentum quantum
number arising when spheroidal coordinates are used [16].
The factors Ỹ�̃λ(η,φ) on the second line of Eq. (2) thus are
normalized spheroidal harmonics, analogous to the familiar
spherical harmonics (see [24] for the definitions and numerical
implementation that we use; in the following we shall omit
the tilde on �, but unless stated specifically, � refers to
the spheroidal quantum number). Specifically, the azimuthal,
angular, and radial parts of each one-electron function �i(

−→
r )

are, respectively, solutions of the following second-order
differential equations: [

d2

dφ2
+ λ2

i

]
θi(φ) = 0,

[
d2

dη2
+ k2

η(E,R,η)

]
ζi(η) = 0, (3)

[
d2

dξ 2
+ k2

ξ (E,R,ξ )

]
χi(ξ ) = 0,

where the squared quantum angular and radial momenta are

k2
η(E,R,η) = (Z1 − Z2)Rη − p2η2 − A

1 − η2
+ λ2

i − 1

(1 − η2)2
,

k2
ξ (E,R,ξ ) = (Z1 + Z2)Rξ − p2ξ 2 + A

ξ 2 − 1
+ 1 − λ2

i

(ξ 2 − 1)2
, (4)

with p2 = −R2E
2 . In Eq. (4), A is the separation constant which

depends on the total energy E, and R is the bond length,
while Z1 and Z2 are the nuclear charges. The expressions (4)
bring out the analogy between the angular (η) and radial (ξ )
equations, particularly obvious here since they are written for
a heteronuclear molecule with Z1 �= Z2.

The variational R-matrix approach requires the basis of
two-electron functions yij used in the expansion Eq. (1) to
consist both of “closed” functions whose radial component
χ (c)(ξ0) in Eq. (2) vanishes on the reaction surface, as well
as of “open” functions whose radial component χ (o)(ξ0) is
nonzero, but has a vanishing radial derivative on the reaction
surface [16]. Each solution �β Eq. (1) may then be continued
into the external zone, for radii of the outer electron larger than
ξ0, as a linear combination of regular and irregular two-center
Coulomb radial functions,

�β(E,ω,ξ � ξ0) = 1√
ξ 2 − 1

∑
k

�k(E,ω)

×[fk(εk,ξ )Ikβ(E) − gk(εk,ξ )Jkβ(E)].

(5)

Here, E is the total energy as before, while εk = E − E+
k is the

energy of the outer electron with respect to the state E+
k of the

residual core corresponding to the channel k and for the given
R value. �k(ω) are so-called “surface harmonics”—essentially
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core wave functions coupled together with the angular factor
of the escaping electron—for each asymptotic channel k and
for each solution β, where ω stands for all coordinates except
the radial coordinate of the outermost electron. The form of
these surface harmonics as well as their symmetrization and
normalization is detailed in Refs. [16,17].

The regular and irregular radial channel functions fk and
gk that occur in Eq. (5) are solutions of the radial Schrödinger
equation of the one-electron two-center Coulomb problem
with effective charges Zeff

1 and Zeff
2 (where Zeff

1 + Zeff
2 = Z1 +

Z2 − 1). In the previous applications to the H2 molecule the
only reasonable choice of the charges was Zeff

1 = Zeff
2 = 1/2

(hence the name “halfium” model), because in a neutral system
we also must have Zeff

1 + Zeff
2 = Zc = 1 (with Zc the total core

charge), and the inversion symmetry must be preserved. In the
dipolar system HeH+ we must have Zeff

1 + Zeff
2 = Zc = 2, but

various choices of the effective charges are now possible as
will be discussed in Sec. III below.

The summation index k in Eq. (5) runs over those channels
k ≡ i ′j ′ that are taken into account explicitly in the asymptotic
zone. The matching of the outer and inner eigensolutions,
Eqs. (5) and (1), respectively, yields the coefficient matrix
elements Ikβ and Jkβ that appear on the right-hand side of
Eq. (5); see Refs. [16,17] for a detailed description of the
matching procedure. Finally, the short-range reaction matrix
is obtained according to K = JI−1. This matrix contains, in
compact form, the information on the intra- and interchannel
interactions that take place inside the reaction volume. It
provides the input to the MQDT routines used to compute
the energies of the bound states, and also the positions and
widths of core-excited resonances.

C. Bound levels

Bound states are determined by setting up the MQDT
secular equation:

det| tan βk(εk)δkk′ + Kkk′(E)| = 0, (6)

which is solved separately for each R−value and total energy
E, and yields discrete electronic eigenenergies En(R) for
arbitrarily high n values. The accumulated phase parameters
of generalized multichannel quantum defect theory, βk(εk), are
evaluated using the procedures given in Ref. [20]. The quantity
βk/π measures the number of radial half wavelengths that
“fit” into the asymptotic potential at the given channel energy
εk . The eigenenergies En(R) are converted into potential-
energy curves Un(R) by adding the internuclear repulsion
energy. Finally, effective quantum number functions n∗(R)
may be derived by means of the one-channel Rydberg equation
(written here in atomic units):

n∗(R) = Zc√
2[E+

k=1(R) − En(R)]
, (7)

where Zc = 2, appropriate for HeH+, is the net charge
experienced by the outermost electron, and E+

k=1 is the
ionization threshold. Since the k = 1 HeH2+ ground state
has 2�+ symmetry, the 1,3� Rydberg channels of HeH+

are conveniently labeled as ε�λ with λ = �, while n�λ
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FIG. 1. Accumulated spheroidal phase parameters β/π for Z1 =
Z2 = 1, �,λ = 0 (� = 0 − 3), and various R values, plotted as
functions of n∗ which is related to the energy by Eq. (7). The Coulomb
reference phases are represented by thick lines and correspond
to n∗ − �. The phase parameters of the two-center system are
represented by thin lines with color coding as indicated in the figure.

approximately labels the individual Rydberg states as long
as channel mixing is not very strong.

The quantity n∗(R) − �, with n∗ evaluated according to
Eq. (7) is in fact the analog of the phase parameter βk=1/π of
Eq. (6) for a spherical Coulomb field. It is thus of interest to
compare the Coulomb phase parameter with the the two-center
parameter implied by Eq. (6). Figure 1 illustrates this for λ = 0.
The figure is a plot of the spherical Coulombic (thick lines)
and the spheroidal two-center (thin lines) accumulated phase
parameters versus n∗. The plot shows how, apart from the
lowest energies corresponding to n∗ � � + 1, the differences
β/π − n∗ + �, while depending on the geometry R, have
essentially constant values as functions of the excitation
energy. These differences account for the R-, energy-, and
�λ- dependent contributions to the quantum defect that stem
from the two-center nature of the asymptotic field in which
the electron is moving once it has escaped from the core
region. The figure also shows that as � increases, the difference
between the Coulombic and the two-center accumulated
phase parameter values decreases. The role of the inner-
zone variational R-matrix calculation is to account for the
deviations from two-center-like behavior, namely exchange
effects between the two electrons and the increased nuclear
attraction in the vicinity of the He nucleus [25].

III. DETAILS OF CALCULATIONS

The main parameters determining an R-matrix calculations
are (i) the choice of the reaction volume ξ0 for any given
R value. (ii) the radial and angular basis set (configuration
functions yij ) used inside the reaction zone, (iii) the number
of channel functions (partial-wave expansion), (iv) the number
of core states explicitly included in the external zone, (v)
the choice of the effective charges Zeff

1 and Zeff
2 , the sum

of which must equal Zc = 2, the core charge. The present
R-matrix calculations have been improved and optimized in
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TABLE I. 1� states of HeH+ for R = 4 a.u.: choice of external �

basis.

ab initio R matrix, �max = 3 R matrix, �max = 5
State Ref. [6] Ref. [15] �U Present �U

3dδ −1.94500a −1.94509 20b −1.94508 18
4dδ −1.86385 −1.86401 35 −1.86392 15
5dδ −1.82455 −1.82462 15 −1.82462 15

4f δ −1.87510 −1.87306 −448 −1.87516 13
5f δ −1.83025 −1.82924 −222 −1.83030 11
5gδ −1.83113 −1.83117 9

aTotal energy Un(R = 4) in a.u.
b�U , difference ab initio, R matrix, in cm−1.

several respects as compared to our preliminary computations
of Ref. [15], as we now describe. In order to illustrate
the optimization procedures we shall in the following use
the quantum-chemical computations of Ref. [6] as reference
calculations.

(i) Choice of ξ0. It has been customary [18] to parametrize
the R dependence of the reaction boundary as

ξ0 = 1 + C/R, (8)

defining an ellipsoid with a major axis equal to R + C. The
parameter C must be chosen such that the electronic wave
function of the residual core, HeH2+ in our case, is fully
contained inside the volume for all R values considered, in
such a way that the eigenvalue of the confined state differs
from the free state by less than a preselected small value. At the
same time it is desirable to keep ξ0 as small as possible in order
to minimize the energy dependencies of the quantum defects or
reaction matrices. We have found that the choice of C = 12 a.u.
in Eq. (8) is satisfactory as it yields the 1sσ and 2pσ HeH2+

core states correctly to within <10 cm−1. By contrast, with the
choice C = 10 bohrs, for instance, the confined 2pσ core state
is shifted to higher energy by �20 cm−1.

(ii) As compared to our previous work [15], the inner-zone
basis sets have been increased from about 300 two-electron
functions up to 1000 functions.

(iii) The outer zone angular basis included partial waves
up to � = 5 instead of 3 previously. Table I illustrates the
effect of this for the lowest 1� states. Inclusion of two more
partial-wave components is seen to improve the � = 3 state
energies substantially, whereas the � = 2 states are just very
slightly improved. We have verified that a further increase of
the basis to �max = 7 changes the results by �1 cm−1.

(iv) We have found that in the energy range explored here,
and unlike in H2, it is not necessary to explicitly include
core-excited channels in the outer zone. The data presented
in Table II demonstrate this: explicit inclusion of the channels
associated with the 2pσ core state systematically lowers the
Rydberg energies somewhat, but in fact by less than ≈1cm−1

in all cases.
This behavior is in contrast to H2, where the inclusion

of core-excited channels is known to be crucial. Figure 2
compares the ground state and excited core states for the
two molecules. The 1sσ and 2pσ states are seen to remain
widely separated in HeH2+ over the range of R values shown,

TABLE II. 1� states of HeH+ for R = 4 a.u.: choice of core state
basis.

ab initio R matrix R matrix
State Ref. [6] Core 1sσ �U Core 1sσ,2pσ �U

3dδ −1.94500a −1.945080 18b −1.945086 19
4dδ −1.86385 −1.863921 16 −1.863923 16
5dδ −1.82455 −1.824619 15 −1.824619 15

4f δ −1.87510 −1.875157 13 −1.875158 13
5f δ −1.83025 −1.830296 10 −1.830297 10
5gδ −1.83113 −1.831170 9 −1.831170 9

aTotal energy Un(R = 4) in a.u.
b�U , difference ab initio, R matrix, in cm−1.

whereas in H2
+ they quickly coalesce as R increases. The

different dissociation behavior of the 1sσ and 2pσ states in
the two one-electron core ions is required by the different
correlation rules for molecules with equal or unequal nuclear
charges [26]. The qualitatively different behavior of the core
states carries over into the Rydberg manifolds associated with
them (broken lines in Fig. 2), with the result that core excited
configurations in HeH+ interact only weakly with ground-state
Rydberg configurations. In view of these considerations and
the results shown in Table II, we have therefore omitted
core-excited channels in our description of the wave functions
in the asymptotic zone.

The basis set choices for the asymptotic zone just described
yield quantum defect or reaction matrices of dimension
�max + 1 − λ, i.e., 6 × 6 matrices for 1,3�+ symmetry, and
correspondingly reduced dimensions for larger values of
λ = �.

(v) The distribution of the total ion core charge Zc = 2
on the two centers is in principle arbitrary, as any converged
calculation should yield the same result whatever choice has
been made. However, the �-mixing channel interactions will be
different and the convergence properties may not be the same.

0 4 8
R (a.u.)

-2

-1

0

U
 (a

.u
.)

HeH2+                                           H2
+

2pσ                                          2pσ

1sσ                                  1sσ

n=2

0 4 8-1

0

1

n=2

FIG. 2. The ground- and first excited-state potential-energy
curves of HeH2+ (left) (after Winter et al. [27]) and H2

+ (right): full
lines. Rydberg potential-energy curve associated with the excited-
state ion curve and corresponding to n = 2: broken lines.
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The following arguments suggest the choice Zeff
1 = Zeff

2 = 1
which we have adopted: First, the work of Ref. [6] highlighted
the similarities between the electronic level structures of HeH+

and of H2
+, which stem from the fact that the He+ ground-state

ion with its tightly bound (1s) electron effectively acts in a good
approximation like a singly charged point charge. Therefore
it is natural to represent the ion core HeH2+ by two equal
point charges as in H2

+. Further, if the effective charges are
distributed in such a way that at very large distance ξ from the
core the outermost electron sees a double point charge situated
on the center of charge of the ion core, the dipole component
of the longe-range field vanishes [28], and therefore dipolar
channel couplings are minimized and the convergence is faster.
This choice is dependent on the internuclear distance R, but
since HeH2+ quickly approaches the configuration He+ + H+,
the center of charge will be near the midpoint between the two
nuclei, implying once again Zeff

1 = Zeff
2 = 1. Finally, we have

verified by means of test calculations in which the choices
Zeff

1 = 8/5 and Zeff
2 = 2/5, or alternatively Zeff

1 = 4/3 and
Zeff

2 = 2/3 were made (cf. the discussion given in Ref. [15]),
that the convergence was indeed substantially slower than
when Zeff

1 = Zeff
2 = 1 was taken.

It is not straightforward to provide an a priori estimate
of the accuracy of our calculations, in particular because
only comparatively few computations of bound states using
R-matrix methods have been made in the past, cf. the reviews
by Aymar et al. [29] and Tennyson [30]. However—in the
absence of experimental results for excited HeH+—we can
obtain an approximate estimate of the accuracy by comparing
our data with available ab initio results where these exist.
The energies given in Tables I and II are seen to differ from
the quantum-chemical results of Ref. [6] in the fifth digit
after the decimal point. We have therefore chosen to quote
our results—n∗ values and energies—with five digit accuracy
throughout, although it shall turn out below (cf. Table V, Sec.
IV A) that in some cases the differences with respect to Ref. [6]
are up to two orders of magnitude larger.

Further justification for quoting our results with five
digit accuracy is based on the following arguments: As the
R-matrix computations initially provide phase shifts rather
than energies—the latter are obtained only in the subsequent
MQDT calculations—it is reasonable to assume that the
phase-shift accuracy varies little along a given Rydberg series.
The relationship between the energy and the effective principal
quantum numbers on the other hand is highly nonlinear, as it
scales, in cm−1, according to

�Un = 2Z2
cR

n∗3
�n∗, (9)

with R the Rydberg constant. By systematically quoting our
calculated n∗ values with five figures after the decimal point,
we avoid rounding-off errors �1 cm−1 resulting from the use
of Eq. (9) for any n value along any given Rydberg series,
when converting phase shifts into energies. This is the case
irrespective of the real accuracy of the effective principal
quantum numbers. Logically, the energies are given with
the same number of digits (with the exception of the ion
limits, Table III below, which should be accurate to one more
significant figure). As already mentioned we shall find below

TABLE III. HeH2+ ground-state
electronic energies (a.u.).

R Ek=1
+

1 −3.033355
2 −2.512195
3 −2.335549
4 −2.250605
5 −2.200235

(Table V, Sec. IV A) that the actual accuracy of our calculated
n∗ values is probably up to two orders of magnitudes less.

IV. RESULTS AND DISCUSSION

A. Comparison with previous work

For energies in the discrete range our calculations yield
total electronic energies En(R). Following our own earlier
work [16] and also that of Ref. [6], we prefer here to convert
the energies into effective principal quantum numbers n∗(R)
by means of the Rydberg equation Eq. (7) with Zc = 2.
The HeH2+ one-electron ion core energies Ek=1

+ required to
evaluate Eq. (7) were computed by direct numerical integration
of Eqs. (3) with Z1 = 2, Z2 = 1. They are listed in Table III.
The advantage of the n∗ values is that they provide a direct
measure of the effective electron-ion scattering phase. Indeed,
one has n∗(mod1) = −μeff , where μeff is the effective phase
shift or quantum defect with reference to a pure Coulomb
field. The interpretation of the results in terms of Rydberg
series is thus straightforward. Table IV lists our results for
singlet and triplet �+ states, for n values up to 6 for which
the comparison with the results of Ref. [6] is possible. Note
that the assignments given in the table have only a limited
meaning and serve primarily for bookkeeping purposes, as
all the series are mixed to some extent. The table lists n∗
values for the singlet states as well as the singlet-triplet
differences �n∗(s − t) = n∗(singlet) − n∗(triplet). For each
of these entries, the difference with respect to the equivalent
data from Ref. [6] is given. The rms deviation between
our 90 singlet n∗ values listed in the table and those of
Ref. [6] is −0.0018 ± 0.0026, which is very good agreement.
This is nearly an order of magnitude better than what we
achieved previously for H2 [16,22], and more than ten times
better than what Greene and Yoo [18] envisioned—again for
H2—necessary to obtain a meaningful quantitative description
of the Rydberg physics in a diatomic molecule.

Analogous tables for the 1,3�, 1,3�, 1,3�, 1,3� symmetries
may be found in the Supplemental Material associated with the
present paper [31]. The mean deviations between the ab initio
and the R-matrix n∗ values for all the symmetries are collected
in Table V, which shows that the quantum-chemical and the
R-matrix results are equally consistent for all symmetries.
Figure 3 displays the values n∗(mod 1) as functions of R

for singlet �+, �, and � symmetry (upper panels) as well
as the corresponding singlet-triplet splittings (lower panels).
Starting from the united-atom limit (R = 0), the n∗ values
evolve as closely spaced families of curves corresponding
each to a specific value �λ. The close spacings highlight the
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TABLE IV. Effective principal quantum numbers n∗ for 1,3�+ states of HeH+ R = internuclear distance in a.u., n∗ = effective principal
quantum number evaluated with Eq. (7) for the singlet component. �n∗(s − t) = n∗(singlet) − n∗(triplet). All n∗ values are given with five-digit
accuracy, but the actual accuracy could be up to two orders of magnitude less; cf. comments in the text.

n∗ Ref. [6] - col. 1 �n∗(s − t) Ref. [6] - col. 3 n∗ Ref. [6] - col. 5 �n∗(s − t) Ref. [6] - col. 7
R/a.u. 1 2 3 4 5 6 7 8

1,3�+

2sσ 3pσ

1 2.13151 −0.00411 0.11313 −0.00392 2.86608 −0.00450 0.16191 −0.00486
2 2.31897 −0.00306 0.10050 −0.00250 2.72020 −0.00391 0.10210 −0.00411
3 2.46586 −0.00410 0.10036 0.00563 2.71875 −0.00545 0.12184 −0.00633
4 2.54246 −0.00992 0.17082 −0.01229 2.65204 −0.00153 0.07603 0.00046
5 2.48129 −0.00070 0.14687 −0.01502 2.72469 −0.00200 0.08097 −0.00124

3dσ 3sσ

1 2.97245 0.00018 0.00568 0.00015 3.13914 −0.00756 0.10476 −0.00381
2 2.90583 −0.00115 0.03679 −0.00083 3.32895 −0.00508 0.08913 −0.00247
3 2.80119 −0.00222 0.05594 −0.00216 3.47997 −0.00358 0.09092 −0.00328
4 2.81292 −0.00117 0.04335 −0.00172 3.56617 −0.00464 0.13760 −0.00556
5 2.87215 −0.00405 0.03940 −0.00632 3.53019 −0.00003 0.12003 −0.00481

4pσ 4dσ

1 3.86377 −0.00222 0.15374 −0.00810 3.96720 0.00513 0.00588 0.00141
2 3.73964 −0.00234 0.10219 −0.00655 3.90500 −0.00200 0.04260 −0.00015
3 3.73179 −0.00410 0.13116 −0.00570 3.82156 −0.00429 0.05208 −0.00359
4 3.65955 −0.00080 0.06018 −0.00036 3.86168 −0.00144 0.04548 −0.00200
5 3.74490 −0.00223 0.05090 −0.00111 3.80645 −0.00053 0.02291 0.00153

4f σ 4sσ

1 3.99709 −0.00505 0.00096 −0.00091 4.14094 −0.00807 0.10085 −0.00278
2 3.97175 −0.00071 0.00015 0.00027 4.33179 −0.00526 0.08560 −0.00265
3 3.93638 0.00040 0.00205 0.00049 4.48404 −0.00156 0.08470 −0.00268
4 3.88660 −0.00008 0.01129 0.00034 4.57712 −0.00359 0.12900 −0.00493
5 3.93542 −0.00206 0.04637 −0.00189 4.55561 −0.00326 0.11714 −0.00476

5pσ 5dσ

1 4.86299 −0.00114 0.14923 −0.00814 4.96756 0.00476 0.00655 0.00133
2 4.74827 −0.00218 0.10182 −0.00698 4.90444 −0.00227 0.04453 −0.00005
3 4.73511 −0.00406 0.13191 −0.00598 4.83255 −0.00456 0.05142 −0.00410
4 4.66252 0.00016 0.05519 −0.00042 4.87349 −0.00074 0.03661 −0.00139
5 4.75040 −0.00282 0.04205 −0.00188 4.80016 −0.00042 0.03229 0.00238

5f σ 5gσ

1 4.99259 −0.00036 0.00075 −0.00066 5.00059 −0.00346 0.00020 −0.00020
2 4.97047 0.00038 0.00026 0.00041 4.98858 −0.00029 0.00004 −0.00004
3 4.93601 0.00002 0.00446 −0.00055 4.97337 −0.00024 0.00007 −0.00004
4 4.89426 −0.00097 0.02579 −0.00025 4.95202 −0.00016 0.00003 0.00009
5 4.92383 −0.00021 0.00926 −0.00039 4.96407 −0.00220 0.04046 −0.00197

5sσ 6pσ

1 5.14187 −0.00809 0.09914 −0.00220 5.86273 −0.00027 0.14672 −0.00795
2 5.33275 −0.00439 0.08359 −0.00218 5.75264 −0.00209 0.10160 −0.00687
3 5.48582 −0.00120 0.08171 −0.00274 5.73650 −0.00407 0.13194 −0.00623
4 5.58246 −0.00339 0.12499 −0.00486 5.66401 0.00019 0.05307 −0.00039
5 5.56662 −0.00260 0.11617 −0.00528 5.75218 −0.00230 0.03811 −0.00285

6dσ 6f σ

1 5.96771 0.00492 0.00689 0.00130 5.99108 0.00156 0.00067 −0.00056
2 5.90409 −0.00220 0.04529 0.00003 5.96999 0.00093 0.00041 0.00039
3 5.83874 −0.00459 0.05129 −0.00411 5.93547 0.00042 0.00519 −0.00044
4 5.87459 −0.00016 0.02687 −0.00064 5.90331 −0.00127 0.03840 −0.00068
5 5.79726 −0.00028 0.03595 0.00339 5.92296 0.00058 0.00060 0.00002

6gσ 6hσ

1 5.99843 0.00041 0.00001 0.00112 6.00152 −0.00090 0.00020 0.00093
2 5.98856 0.00016 0.00002 −0.00002 5.99384 0.00026 0.00001 −0.00001
3 5.97308 0.00018 0.00003 0.00002 5.98619 −0.00010 0.00007 −0.00007
4 5.95158 0.00032 0.00011 0.00005 5.97549 −0.00041 −0.00006 0.00006
5 5.96216 −0.00116 0.03399 0.00409 5.97947 −0.00252 0.01742
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FIG. 3. Effective quantum defects, −μeff = n∗ [mod(1)], for
singlet components (top panels) and singlet-triplet splittings �n∗(s-t)
(bottom panels) for �+, �, and � states (from left to right) in HeH+,
as functions of the internuclear distance R and for various values n,
2 � n � 6. Different n values are distinguished by different colors
and line styles as indicated in the figure. The values for R = 0 (Li+)
have been calculated based on the compilation of Moore [32].

near constancy with energy of the effective quantum defect.
As the internuclear distance increases, this simplicity gets
lost to some extent, owing, in part, to the fact that �-mixing
interactions occur, but also because the effective core charge
seen by the excited electron starts to change from 2 to 1 as
has been discussed in Ref. [6]. The effective quantum defects
μeff = −n∗(mod 1) nevertheless are seen to exhibit overall a
more or less smooth behavior.

B. Nonpenetrating versus penetrating states

Figure 4 (upper panel) illustrates the effective principal
quantum number n∗ and its evolution with R for a high-�, high-
λ state, 4f φ. Owing to the high orbital angular momentum
values, the Rydberg electron is effectively kept away from the
nuclei, that is, it has nonpenetrating character, with the result
that the screening of the doubly charged He nucleus by the 1s

electron should be complete. We therefore expect the HeH+

4f φ state to behave very nearly like its counterpart in H2
+.

Figure 4 shows that this is indeed the case. The theoretical
HeH+ values are indistinguishable on the global scale of the
figure from those of H2

+, and it is only in the blown-up sections
shown for R = 2 and R = 4 that differences of the order of
10−3 become visible. It appears unlikely, however, that these
small differences have any physical significance. They may
well reflect the conceptual and numerical limits of each of the
two theoretical methods which we compare here. Nevertheless
it is interesting to note—see Table V—that the R-matrix results
for the higher � and hence � values correspond systematically
to very slightly lower energies than the variational quantum-
chemical results.

Finally, as a contrast, the lower panel of Fig. 4 displays the
same information for the 4sσ state which belongs to the most
strongly penetrating Rydberg series of HeH+. Here the singlet-
triplet splitting is seen to be well developed, and the deviations
from H2

+-like behavior are substantial. At the same time, the
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FIG. 4. Effective principal quantum numbers n∗ for the 4f φ

(top) and 4sσ (bottom) states of HeH+, plotted as functions of the
internuclear distance R. The R-matrix results (full lines and dotted
lines) are compared with the quantum-chemical results from Ref. [6]
(dashed lines and dot-dashed lines), as well as with the values for the
H2

+ ion (circles). Upper panel, insets: enlarged sections near R = 2
and 4 a.u. The calculated singlet-triplet splitting is not visible on
the scales used in the figure and has therefore been omitted. Lower
panel: The singlet-triplet splitting is well developed and significant
deviations from H2

+ are apparent.

R matrix and ab initio values can hardly be distinguished on
the plot. This proves that exchange and penetration effects are
taken into account at an equivalent level—and therefore most
probably correctly—in the two theoretical approaches.

C. Extension to higher energies

Extensive R-matrix and generalized MQDT computations
have been carried out for all symmetries and geometries 1 �
R � 5, and up to n ≈ 10. Detailed tables are given in the
Supplemental Material [31] which contains information on
nearly 100 electronic states. As an example of these results,
Fig. 5 depicts the (negatives of the) effective quantum defects
of 1�, 1�, and 1� symmetry for R = 4 a.u., respectively, as
functions of the Rydberg energy ε = −Z2

c /n∗2. The plots span
the energy range from n = 5 or 6, values for which the highest
ab initio values have been obtained, up to n ≈ 10–11. Our

TABLE V. Mean deviations ab initio, R matrix.

Number of ab initio, R matrix

data points �n∗(singlet) Singlet-triplet splitting

�+ 90 −0.002 ± 0.003 −0.002 ± 0.003
� 60 −0.001 ± 0.002 −0.001 ± 0.002
� 30 +0.0001 ± 0.0001 +0.00003 ± 0.0002
� 15 +0.0006 ± 0.0004 +0.00000 ± 0.00001
� 15 +0.0008 ± 0.0006 −0.000001 ± 0.000003
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calculations are seen to predict the numerous Rydberg series
to evolve quite regularly. Not unexpectedly, the higher � values
yield near-zero quantum defects. In addition, interestingly, the
higher the value of �, the closer we find the series crowded
together near the n∗ − n = 0 line. For � = 0, on the other
hand, the various series are clearly spread apart by interseries
interactions.

D. Continuum states

The HeH2+ - e− electron-ion continuum scattering phases
are derived by use of the secular equation (6), where it suffices
to replace, for each open channel k, the closed-channel phase
parameter βk by the negative of the continuum eigenphase,
−πτ . Equation (6) thereby is converted into an eigenvalue
equation that yields eigenphases πτρ , ρ = 1 . . . No, where No

is the total number of open continua at energy E (see, e.g.,
Ref. [33] for a detailed description of this methodology).

Figure 6 displays the eigenphase sums
∑

ρ τρ for 1,3�+,
1,3�, and 1,3� symmetry, in units of π radians and evaluated
for R = 4 bohrs, using the same reaction matrices, K(E),
that have been employed for the bound-state calculations.
The eigenphase sums are seen to exhibit a smooth, almost
constant, behavior as functions of the energy, which is in line
with the nearly constant effective bound-state quantum defects
μeff displayed in Fig. 5. It should be noted however that the
phase sums plotted in Fig. 6 refer to the two-center spheroidal
reaction matrices and thus are not directly comparable to the
quantum defects of Fig. 5 which are Coulombic [Eq. (7)]; cf.
the discussion in Sec. II C. Not unexpectedly, the singlet-triplet
difference of the phase sums is large for �+ symmetry and
decreases rapidly as � increases.

Inspection of the individual eigenphases indicates that for
all symmetries one single eigenphase (two in the case of 1,3�+
symmetry), namely that which corresponds approximately to
the lowest � value, differs significantly from zero and thus
provides the main contribution to the scattering and hence
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FIG. 6. HeH2+-e− continuum eigenphase sums (in units of π ) for
1,3�+, 1,3�, and 1,3� symmetry, respectively, plotted vs the energy of
the continuum electron (in Rydbergs). The plot corresponds to R = 4
bohrs. The meaning of the symbols is indicated in the figure. The
full line is the result of a 1�+ calculation where six closed channels
� = 0–5 associated with the 2pσ excited-state core were included in
addition to the six open channels associated with the 1sσ ground-state
HeH2+ ion core.

the phase sum. The minor components are crucial in order to
achieve good accuracy in the bound-state calculations as we
have seen in Sec. III, but do not seem to play a major role here.

It is well known that the energy derivative of the eigen-
phase sum exhibits characteristic peaks near autoionization
resonances, where in the case of isolated resonances these
peaks have a Lorentzian shape. Closed channels associated
with the 2pσ excited HeH2+ core are in principle present in
the range covered by Fig. 6, although we have excluded them
from our calculations based on the arguments given in Sec. III.
As an additional check we have carried out a 1�+ R-matrix
and MQDT calculation for R = 4 bohrs whereby the � = 0–5
closed channels associated with the 2pσ excited-state core
were reintroduced in addition to the � = 0–5 open channels
associated with the 1sσ ground-state core. The result of this
calculation is represented by a full line in Fig. 6. It may be seen
that on the scale of the figure no difference is visible between
the 12-channel (full line) and the six-channel calculation
(circles), indicating that resonance effects are negligible in
this energy region.

V. CONCLUSION

In the present work we have investigated highly excited
electronic states of the hydrohelium ion HeH+. These results
are an extension of the quantum-chemical calculations of
Ref. [6] which—while covering a larger range of nuclear
geometries than we consider here—were limited to moderate
electronic excitation. The region of overlap of the two
studies—moderate electronic excitation at small R values—
has permitted us to test the accuracy of our R-matrix
approach by comparison with the quantum-chemical results.
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The comparison is gratifying, as in terms of electron phase
shifts the R-matrix data deviate from the quantum-chemical
results by less than two parts per thousand in all cases.
This level of quantitative agreement represents a substantial
improvement, by nearly an order of magnitude, as compared
to earlier R-matrix calculations on similar systems, such as H2

[16,22] or HeH [34], including also our own previous work on
HeH+ [15]. This comparison obviously takes account of the
Z scaling between neutral and charged Rydberg systems.

HeH+ molecules may be formed in the divertor region
of fusion reactors such as ITER, and HeH2+-e− scattering
processes could play a role in such plasmas. Comprehensive
data on the electronic structure of this ion and related collision
processes should therefore be useful in this context [35]. As
an extension of this work we plan to compute dipole transition
moments from the HeH+ ground state to its excited states as
well as to the ionization continuum.

We are not aware of any previous systematic application
of R-matrix theory combined with quantum defect theory to
a molecular ion. It has been pointed out in Ref. [6] that a
conceptual problem arises as R increases, when MQDT is
applied to a system with a doubly charged core. The reason
is that upon dissociation the effective core charge is bound to
change from 2 to 1, when the excited electron is attached to
either one of the singly charged fragments of the core. It is not
clear yet at this point how these features can be built into the
theory in a satisfactory manner.
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