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Mean-square radii of two-component three-body systems in two spatial dimensions

J. H. Sandoval,1 F. F. Bellotti,2 A. S. Jensen,2 and M. T. Yamashita1
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We calculate root-mean-square radii for a three-body system confined to two spatial dimensions and consisting
of two identical bosons (A) and one distinguishable particle (B). We use zero-range two-body interactions
between each of the pairs, and focus thereby directly on universal properties. We solve the Faddeev equations in
momentum space and express the mean-square radii in terms of first-order derivatives of the Fourier transforms
of densities. The strengths of the interactions are adjusted for each set of masses to produce equal two-body
bound-state energies between different pairs. The mass ratio, A = mB/mA, between particles B and A are varied
from 0.01 to 100, providing a number of bound states decreasing from 8 to 2. Energies and mean-square radii of
these states are analyzed for smallA by use of the Born-Oppenheimer potential between the two heavy A particles.
For large A the radii of the two bound states are consistent with a slightly asymmetric three-body structure. When
A approaches thresholds for binding of the three-body excited states, the corresponding mean-square radii diverge
inversely proportional to the deviation of the three-body energy from the two-body thresholds. The structures at
these three-body thresholds correspond to bound AB dimers and one loosely bound A particle.
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I. INTRODUCTION

The last decade has provided unprecedented accurate
techniques to tune the effective interactions between pairs of
ultracold atoms in extremely controllable external fields. The
effective two-body interactions can be varied, for a number of
special atoms, from strongly attractive to strongly repulsive
by use of the Feshbach resonance technique; see review
in Ref. [1]. The two-body interactions are experimentally
determined functions of the applied magnetic field strength.
The atomic gases, possibly with different atoms, are confined
by flexible deformed external fields. Ultimately this allows
extreme asymmetry corresponding to spatial dimensions lower
than three [2,3]. Structures of different systems can then be
simulated and studied.

Our interests in the present investigation are three-body
structures and two-dimensional universal properties. First,
few-body physics is by definition accurately solvable without
approximations in contrast to many-body physics. But now
experimental tests can be made for many of the claims derived
by theoretical calculations. We focus here on the absolutely
simplest unsolved system of three particles in two spatial
dimensions (2D). Second, the physics in 2D differ enormously
from the much more known properties in three dimensions
(3D) and for that matter any other spatial dimension [4,5].
Third, the many universal properties are arguably the most
important results confirmed by cold atomic gas experiments.
Properly formulated they are applicable throughout physics
as independent of scale and details of the corresponding
potentials [6,7].

The third of these points refer to the concept of universality
which means that the related properties can be described by
only a few scale parameters [8]. The interactions between
neutral atoms in dilute atomic gases are of very short range
compared to the two-body scattering length [9–11]. This
implies that low-energy observables are universal and only
depend on the scattering length which can be the same for
disparate potentials. Thus the universal regime can be defined

as properties depending only on lengths far larger than the
range of the potential and far smaller than the scattering length.
Thus, a zero-range interaction with its strength proportional to
the scattering length is automatically focussing on universal
properties.

The special interest in two dimensions is due to the proper-
ties arising from the negative centrifugal barrier corresponding
to the relative coordinate between two particles. This means
that binding is achieved even with an infinitesimal attraction
between the two particles. Also three particles are bound
in 2D with almost vanishing attractive two-body potentials.
For identical bosons in the universal regime all observables
in 2D can be expressed as functions of only one two-body
scale parameter, e.g., the two-body scattering length [6,7].
In 3D, both a two- and a three-body scale parameter are
needed to describe universal observables [12]. This difference
is closely related to the appearance of the pathological Efimov
effect for three particles in 3D [13] and its absence in
2D [14]. This apparent discontinuity can now be studied
with external traps varying continuously from spherical to
cylindrical geometry [15].

The status for weakly bound three-body systems in 2D
is that energies are well studied theoretically [16–26]. The
simplest reference system we have is three identical bosons
with only two three-body bound states with energies E3

proportional to the two-body energy E2, that is, E3 = 16.52E2

and E3 = 1.27E2 [16]. The previous studies include ener-
gies of three nonidentical particles where different masses
and scattering lengths substantially complicate systematic
characterization of the universal properties [19]. The sim-
plest asymmetric system, denoted AAB, is formed by two
identical bosons A and a distinguishable particle B. With
spin-independent interactions, the results also apply to two
identical fermions with symmetric spatial wave function.
The number of three-body bound states increases as the
mass ratio A = mB/mA between B and A decreases [21].
Then the B particle can be exchanged more easily between
the heavy A particles, which in turn generates an effective
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potential eventually of infinite attraction for vanishing
A [22,24,27].

In contrast to the energies, knowledge about structures
of asymmetric three-body systems in 2D is virtually not
existing. One reason is that experiments have only now become
feasible, but the lack of the necessary operating theoretical
techniques is probably also partly responsible for this delay.
Most of the studies have employed zero-range interactions
treated in momentum space, and have calculated energies
without direct access to the corresponding wave functions. The
structures therefore require a substantially larger additional
effort. Coordinate space calculations in 2D with direct links to
wave functions are also not available at the moment.

We shall continue to use the zero-range interaction with
the easy interpretation in terms of universal properties [28].
It is worth mentioning that it would be interesting to extend
the present calculation to more than three atoms to see how
the universal relations derived in [29] would change for
a mass-imbalanced situation. We use tedious mathematics
to express various radial moments of relative distances as
derivatives of momentum-space integrals. This is instead of
the extensive numerical computation of momentum-space
wave functions with subsequent Fourier transformation and
derivation of structural properties. We shall be content with
second radial moments, which are the simplest observable
quantities that carry structure information. If necessary, higher
moments can also be computed by use of the same technique,
but we believe the second radial moments of various relative
distances are sufficient to extract the dominating underlying
structure.

The paper is organized as follows. In Sec. II we give first
the appropriate Faddeev equations in momentum space for
an AAB system of one distinguishable and two identical
particles. Then we construct the three-body wave functions
and the form factors from which the radii of interest are
calculated. In Sec. III we present and analyze numerical results
of energy spectra and mean-square radii, as functions of the
mass ratio. In particular, we discuss the threshold behavior
when a level is passing into the three-body continuum of one
particle and a bound pair. Finally, conclusions and perspectives
are summarized in Sec. IV.

II. THEORETICAL FORMULATION

We consider a three-body system, AAB, consisting of
two identical bosons A of mass mA and bound-state energy
EAA < 0, and a third distinguishable particle B of mass mB

bound to each A particle with energy EAB < 0. We denote
the identical particles by A and A′ when it is necessary to
distinguish their coordinates. The two-body interactions are
assumed to be of very short range, and in this paper they
are parametrized and applied in the extreme zero-range limit
where only s waves are important. This rather schematic
interaction extracts universal properties due to the absence
of spatial regions inside the potential.

A. Faddeev equations

The preferred method in most investigations is the use of the
Faddeev decomposition in momentum space. The theoretical

formulation is a little elaborate but available in detail in
the literature [7,8]. We shall here only specify our notation
and present the Faddeev equations in momentum space. We
shall then proceed to sketch the derivation of the different
mean-square radii expressed as derivatives of integrals over
the momentum-space solutions. The three-body state |�AAB〉
corresponds to the three-body momentum-space wave function
�A′B,A when it is expressed in terms of �pA and �qA, that are,
respectively, the relative momenta between the B and the A′
particle, and the center of mass of A′ + B and the A particle.
The Faddeev decomposition then amounts to

�AB,A(�qA, �pA)

≡ 〈�qA, �pA |�AAB〉

= χA(|�qA|) + χB

(| �pA − A
A+1 �qA|) + χA

(| �pA + 1
A+1 �qA|)

|E3| + A+1
2A

p2
A

mA
+ A+2

2(A+1)
q2

A

mA

,

(1)

where |E3| is the three-body binding energy, the mass ratio
between particles B and A is denoted A ≡ mB/mA, and the
so-called spectator functions, the Faddeev components χA and
χB , are given as functions of the relative momenta in the
corresponding Jacobi coordinates, that are, �qA, �qB , and �qA′ ,
where

�qB = �pA − A
A + 1

�qA, �qA′ = �pA + 1

A + 1
�qA. (2)

The spectator functions χA and χB obey coupled integral
equations obtained after s-wave projection. The detailed
standard derivation of these equations in 2D can be found
in [20], with the result

χB(q) = 2τAA

(
|E3| + A + 2

4A
q2

mA

)

×
∫

d2pG1(p,q; E3)χA(p) (3)

χA(q) = τAB

(
|E3| + A + 2

2(A + 1)

q2

mA

)

×
∫

d2p[G1(q,p; E3)χB(p) + G2(q,p; E3)χA(p)].

(4)

G1(q,p; E3) = 1

|E3| + q2

mA
+ A+1

2A
p2

mA
+ �q· �p

mA

, (5)

G2(q,p; E3) = 1

|E3| + A+1
2A

(q2+p2)
mA

+ 1
A

�q· �p
mA

, (6)

where the two-body T matrices τAα of the interacting pair are
given by

τAα(E) =
[
−4π

mAmα

mA + mα

ln

(√
|E|

|EAα|

)]−1

, (7)

where EAα is the two-body binding energy of the pair Aα,
with α = A,B.
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FIG. 1. Schematic figure showing the three-body system of two
identical bosons A and one distinguishable particle B. The vectors
�rAB and �rAA are relative distances between the respective pairs of
particles, whereas �rA and �rB denote distances between the specified
particle and the center of mass of the remaining pairs. The point
marked C.M. means center of mass of the three-body system. The
notation used in the paper for the relevant distances is also shown.

B. Mean-square radii

The distances in the three-body system can be seen in Fig. 1,
where �rAB , �rAA′ , and �rA′B , are relative distances between pairs
of particles, and �rA′ , �rA′ , and �rB denote distances between the
center of mass of such pairs and the remaining last particle. The
momenta �qA and �pA are, respectively, canonically conjugated
to the radii �rA and �rAB .

The mean-square radii can be computed from the
momentum-space wave function by Fourier transform and
subsequent calculation of the corresponding matrix element.
To be precise we first define one-body densities related to one
set of Jacobi coordinates, �rA and �rAB , that is,

ρ(�rA) =
∫

d2rAB |〈�rA,�rAB |�AAB〉|2, (8)

ρ̄(�rAB) =
∫

d2rA|〈�rA,�rAB |�AAB〉|2, (9)

where 〈�rA,�rAB |�AAB〉 is the coordinate-space wave function
expressed in terms of �rA and �rAB . We first expand the Fourier
transform FA of ρ(�rA) to second order in the corresponding
momentum, that is,

FA(Q2) =
∫

d2rAe
i
�

�Q·�rAρ(rA) ≈ 1 − 1

4�2
Q2

〈
r2
A

〉
, (10)

〈
r2
A

〉 =
∫

d2rAr2
Aρ(rA), (11)

where we assumed a normalized one-body density and used
that all odd powers of �Q vanish due to spherical symmetry.
The first-order derivative with respect to Q2 then gives the
desired mean-square radius. In the same way we obtain

〈
r2
AB

〉 =
∫

d2rABr2
ABρ̄(rAB) (12)

from the Fourier transform FAB(Q2) of ρ̄(�rAB). These Fourier
transforms are related to the momentum-space wave function

in Eq. (1) by

FA(Q2) =
∫

d2qd2p�AB,A

(
�q+

�Q
2

, �p
)

�AB,A

(
�q−

�Q
2

, �p
)

,

(13)

FAB(Q2) =
∫

d2qd2p�AB,A

(
�q, �p+

�Q
2

)
�AB,A

(
�q, �p−

�Q
2

)
,

(14)

which can be verified by directly inserting the definitions of
ρ(rA) and ρ(rAB) from Eqs. (8) and (9) into Eq. (10) and the
corresponding definition of FAB(Q2).

To calculate the remaining mean-square radii we express the
three-body wave function in the set of Jacobi momenta of the B

particle, �AA,B(�qB, �pB) ≡ 〈�qB, �pB |�〉. The mean-square radii
〈r2

B〉 and 〈r2
AA〉 are then obtained as first-order derivatives with

respect to Q2 of the Fourier transforms, FB(Q2) and FAA(Q2),
defined by replacing �AB,A with �AA,B in Eqs. (13) and (14).

The procedure is now to solve the three-body equations
in Eqs. (3) and (4) and obtain three-body energy, spectator
functions, and the total wave function in Eq. (1). The next
steps are to calculate numerically FA, FB , FAA, and FAB and
the necessary first-order derivatives of these functions of the
squared momenta.

III. MASS DEPENDENCE

The three-body wave function is completely determined
from the two ratios of particle masses, A = mB/mA, and
two-body bound-state energies, EAA/EAB , both negative. To
extract meaningful structure properties it is crucial to know all
independent distances in a given system, as illustrated in Fig. 1.
We calculate energies and radii of the lowest-lying excited
states as functions of A for an energy ratio of EAA/EAB = 1.
Each of the two-body energies results from the related
reduced mass, which therefore is varied in our investigations.
The calculated results therefore illustrate typical behavior of
mean-square radii and structure in general. We confirm this
expectation with test calculations of varying energy ratio.

A. Three-body energies

The energy is for most quantum states the all-important
characterizing quantity which is necessary to understand first.
Universal structure of weakly bound systems often relates
spatial extension and binding energy [19]. We therefore first
focus on the energy dependence of the system AAB, sketched
in Fig. 1. We solve the coupled set of integral equations,
Eqs. (3) and (4), and show the calculated energy spectrum
in Fig. 2. For A = 1 we recover the well-known results that
only ground and first excited states are bound with universally
given energies, E3 = 16.52EAB and E3 = 1.27EAB . These
energies are predicted by a number of entirely different
calculations [16,19,21].

Upon increasing the mass ratio above unity, A � 1, the two
bound states remain with moderate relative energy variations.
This may be understood from the limit of one very heavy
particle surrounded by two light masses moving around the
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FIG. 2. Low-energy spectrum of an AAB system as a function of
the mass ratio A = mB/mA. The two two-body energies are equal,
EAB = EAA, and the three-body energy is E3. The energies on the
y axis are given relative to the two-body bound-state energies EAB .
The vertical lines indicate the mass ratios A = 6/133 and A = 6/87
corresponding to the systems 6Li -133Cs -133Cs and 6Li -87Rb -87Rb.

center of mass in a roughly mass-independent field. Superfi-
cially this resembles a helium atom with two electrons moving
around the four bound nucleons. However, the interactions
differ enormously from the long-range Coulomb potential to
the zero-range interaction. The properties in 2D also differ
enormously from the 3D calculations of a helium atom. These
differences are evident from the order-of-magnitude-larger
ground-state binding of three particles compared to two
particles.

In the other limit of small A we find a tremendous increase
of bound states with decreasing mass ratio A. The smallest
mass ratio we consider isA = 0.01, where the system displays
eight bound states. The excited three-body states disappear into
the continuum of positive energies as A increases from very
small values. The rather dramatic mass dependence for small
A can be understood as a consequence of the increase of the
effective interaction generated by the light particle. This has
been known since 1979 [30] and 1980 [27] for systems in three
and two dimensions, respectively.

Recently, a different technique was used to derive an
effective two-body potential in two dimensions [22]. This
derivation assumed the Born-Oppenheimer approximation
whose validity only is justified for A � 1. After integrating
out the coordinate of particle B, an effective Hamiltonian is
left for the relative motion of the two heavy A particles, that
is,

HBO = − �
2

2μAA

��rAA
+ VAA(rAA) + V (BO)(rAA), (15)

where �rAA is the relative coordinate between the two A

particles, μAA and VAA(r) are their reduced mass and two-
body potential, and V (BO)(rAA) is the strongly A-depending
Born-Oppenheimer potential resulting from the light third
particle B.

The Born-Oppenheimer potential is obtained by standard
derivation in three-body physics, that is, with two centers at a

fixed distance interacting with the light particle through zero-
range interactions. This quantum mechanical problem in 2D
is solved in the center of mass of the total system. The result
is in Ref. [22] found to be

ln
|V (BO)(R)|

|EAB | = 2K0

(√
2μAA,B |V (BO)(R)|

�2
rAA

)
, (16)

where K0 is a Bessel function, μAA,B is the reduced mass
of B versus the AA system, and R = rAA

√
mA|EAB |/�2 with

μAA,B . This analytical result was in Ref. [22] shown to be
well approximated as a function of A = mB/mA by simpler
expressions in both limits of small and large distances. The A
dependence is through the combination

meff =
(

4A
2 + A

)1/2

, (17)

and the results from Ref. [22] are

V (BO)(rAA) ≈ −2|EAB | exp(−γ )

Rmeff
(18)

for Rmeff � 1.15, where γ = 0.5772156649 is Euler’s con-
stant, and

V (BO)(rAA) ≈ −|EAB |
(

1 +
√

2π exp(−Rmeff)√
Rmeff

)
(19)

for Rmeff � 1.15. These approximations are accurate to
better than 10%, where the largest deviations found around
Rmeff = 1.15 [22].

The short-distance part exhibits an attractive Coulombic
behavior in Eq. (18). The large-distance behavior in Eq. (19) is
exponentially convergent toward the negative two-body energy
EAB , with a length scale proportional to 1/meff . Thus, only a
finite number of bound states below EAB are possible, although
that number would increase without limit since the 1/meff

diverges with vanishing mass ratio A. However, we are mostly
interested in the lowest energy states which necessarily are
located in the strongly attractive region at smaller distances.
The small-distance Coulomb-like behavior is controlled by an
effective charge squared Z2

eff defined by

Z2
eff = 2� exp(−γ )

√|EAB |
meff

√
mA

. (20)

The kinetic energy operator in Eq. (15) has a mass of μAA =
mA/2, and in two dimensions the crucial negative centrifugal
barrier term corresponds to the angular-momentum quantum
number of 
 = −1/2. The Coulomb energy spectrum for this
small-distance behavior is therefore

E
(BO)
3 = −Z4

effμAA

2�2

1

(nr + 
 + 1)2

= (1 + A/2)

2A
exp(−2γ )|EAB |

(nr + 
 + 1)2

= 0.630473504(1 + A/2)|EAB |
A(2nr + 1)2

. (21)

The entire Coulomb spectrum is then obtained with nr =
0,1,2, . . . and 
 = −1/2,1/2,3/2,5/2 . . .
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TABLE I. Energies of ground and first excited states for the
mass ratios A = 0.01, 0.02 for the analytic Born-Oppenheimer
approximation, E

(BO)
3 /EAB [in Eq. (21)], the numerical results both

without, E
(NI)
3 /EAB , and with, E3/EAB , interaction between the two

heavy A particles.

State A E
(BO)
3 /EAB E

(NI)
3 /EAB E3/EAB

Ground 0.01 63.04 53.07 157.56
0.02 31.52 27.76 90.75

First 0.01 7.00 7.72 11.34
0.02 3.50 4.25 6.36

Second 0.01 2.52 3.21 3.94
0.02 1.26 1.92 2.34

Third 0.01 1.28 1.92 2.18
0.02 0.64 1.28 1.42

We can use Eq. (21) as a useful reference spectrum for
comparison to the energies in the limit of A � 1, shown
in Fig. 2. To do this we have to distinguish between the
present numerical calculations and the pure Coulomb spectrum
obtained by neglecting the short-range potential, VAA, between
the two heavy A particles. We compare these results in the
first two columns of Table I. The pure Born-Oppenheimer
Coulomb estimate of the ground state binding energy is 15%
larger than the numerically calculated value. On the other
hand, the Coulomb estimates give too small binding for all the
excited states. They exploit distances outside the Coulomb-like
attractive region.

The ground-state deviations were also found in Ref. [22].
They are necessarily due to the approximations in the Born-
Oppenheimer procedure, since the accuracy of our numerical
computations are fractions of per-mille. The most obvious
reason for these differences is the neglect of the nonvanishing
term arising from the heavy-heavy kinetic energy operator.
The Born-Oppenheimer wave function depends first of all on
the fast coordinate, but there is still also a dependence on the
slowly varying coordinate rAA. This term is not included in our
Born-Oppenheimer calculation, where the inherent two-step
quantization procedure in any case is an approximation.

It is illuminating to compare three-body calculations with
the hyperspherical adiabatic expansion method, where the
hyperradial part of the kinetic energy operator gives rise to
an analogous term [14]. Inclusion or not of this term, in the
adiabatic expansion with only one adiabatic potential, provides
an upper or lower bound on the correct energy [14]. Including
more and more of the higher-lying potentials in this method
provides a fully converged solution. The Born-Oppenheimer
potential is analogous to the one-potential approximation,
which over binds in agreement with the bounds of the men-
tioned hyperspherical adiabatic method. The simplicity of the
Born-Oppenheimer results allows qualitative understanding
of spectra and structure, which is appealing even though the
Faddeev calculations could speak for themselves. In any case
the present Born-Oppenheimer approximation suffices for our
purpose.

We now include the AA interaction and focus on the results
in Fig. 2 where each level for small A roughly follows the
predictions in Eq. (21). However, the calculated ground-state
binding energies for both values, A = 0.01,0.02, are much
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FIG. 3. Dimensionless product mA〈r2
AA〉|EAB |/�

2 (EAA = EAB )
as a function of the mass ratio A. As A is increased the radii
diverge at the threshold where the excited states disappear. The
remaining ground and first excited states assume a constant value
as A → ∞. Vertical lines are the mass ratios corresponding to the
systems 6Li -133Cs -133Cs and 6Li -87Rb -87Rb.

larger than the pure Coulomb spectrum, see Table I. The
strong short-range AA attraction has its largest effect on the
lowest-lying levels, that is, more binding by factors of about
3 and 1.5 for ground and first excited states, respectively. The
higher-lying excited states shown in Table I and Fig. 2 feel
the long-range non-Coulombic Born-Oppenheimer potential
and exhibit a less systematic behavior. As A increases, the
bound states move up in energy, the number decreases, and
the Coulomb potential supports fewer and fewer bound states.

B. Sizes

Equipped with an understanding of the energy spectrum
as function of the mass ratio we turn to the corresponding
underlying structure. We show first in Fig. 3 the calculated
mean-square radial distances 〈r2

AA〉 between the two identical
particles. We notice an almost reflected behavior compared to
the three-body energies. The radii decrease while the binding
energies increase. The two lowest bound states are present
for all mass ratios, whereas the sizes for the higher-lying
excited states diverge as their energies reach their thresholds
for binding.

These radii are for small mass ratios, A � 1, related to
the Coulombic orbits discussed in connection with Fig. 2. The
Coulomb radii are given analytically by

〈
r2
AA

〉 = 1

2

(
�

2

μAAZ2
eff

)2

(nr + 
 + 1)2

× [5(nr + 
 + 1)2 + 1 − 3
(
 + 1)]

= 3.1722�
2A(2nr + 1)2[5(2nr + 1)2 + 7]

16mA|EAB |(1 + A/2)
, (22)

where we used Eq. (20) and 
 = −1/2.
Let us first consider the radii of the states obtained for

the smallest mass ratios of A = 0.01, 0.02. We compare
with the Born-Oppenheimer estimates precisely as we did
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TABLE II. Mean-square radii in the Born-Oppenheimer approx-
imation 〈r (BO)2

AA 〉, from Eq. (22), and numerical results, respectively,
with and without the interaction between the two A particles, 〈r2

AA〉
and 〈r (NI)2

AA 〉. All these lengths are in units of Ru ≡ �/
√

mA|EAB |.

State A 〈r (BO)2
AA 〉/R2

u 〈r (NI)2
AA 〉/R2

u 〈r2
AA〉/R2

u

Ground 0.01 0.023 0.029 0.006
0.02 0.047 0.056 0.011

First 0.01 0.923 0.916 0.427
0.02 1.837 1.767 0.757

Second 0.01 6.510 6.268 3.911
0.02 12.955 12.254 7.201

Third 0.01 24.359 23.381 16.594
0.02 48.478 48.534 32.219

for the energies in Table II. As usual for universal structures
the radii have the opposite behavior to the energies, that is,
the mean-square radii are largest for the smallest binding
energies. The Born-Oppenheimer results for the ground state
are about 15% smaller than those obtained from the full
numerical calculation without an AA interaction. These
deviations are again probably mostly due to the neglect of
the heavy-heavy kinetic energy operator on the light-particle
Born-Oppenheimer wave function. For the excited states the
same comparison shows larger Born-Oppenheimer radii. The
observed opposite tendencies of energy and radii are reflected
in the formulas in Eqs. (21) and (22) where the product is state
independent apart from the last factor in Eq. (22).

We now turn to the full calculation with sizable two-body
energies between all three pairs of particles, shown in the last
column of Table II. The ground-state mean-square radius is
a factor of about 3.5 smaller than derived from the Coulomb
estimate in Eq. (22). This deviation is again consistent with the
similar larger binding energy obtained for that state with the
same interaction. The first excited state is only smaller than
the Coulomb estimate by a factor of 2.2. The following two
higher-lying states have radii rather similar to the Coulomb
estimates. These states extend beyond the Coulomb region
and into the region of the more confining large-distance
Born-Oppenheimer potential from Eq. (19). The effect is a
comparably smaller spatial extension which is very close to
the results from Eq. (22).

At least one more distance is required to characterize the ge-
ometric structure of the three-body system. We first choose the
distance rAB between unequal pairs of particles A and B. The
mean-square radius is a quantum mechanical expectation value
where the two identical particles cannot be distinguished. The
results shown in Fig. 4 are therefore averages over distances
between particle B and the two A particles. We notice first
that the AB mean-square distance is a flat or slightly increasing
function with decreasing small mass ratios for both ground and
first excited states. The higher-lying states show the opposite
tendency of marginal decrease. Furthermore the rAB value in
Fig. 4 is much larger than the rAA radius in Fig. 3, although with
a difference decreasing with excitation energy. To understand
this we cannot turn to the Born-Oppenheimer calculations
which only provide information about the AA system while
the B coordinate is integrated out. In the limit of small mass
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FIG. 4. Same as Fig. 3, but when 〈r2
AB〉 replaces 〈r2

AA〉.

ratios the light B particle is very little concerned with the slow
relative AA motion. The B particle moves much faster and
almost independently in an orbit of much larger radius.

The behavior changes drastically with increasing mass
ratios. First the radii of the excited states diverge at their
thresholds of binding. Second, the distance rAB decreases with
increasing A for the two bound states. The results for A = 1
agree with the known mean-square ratio of about 70 between
the two bound states [14]. As A increases above 1 we see that
the radii only change very little, precisely consistent with the
same behavior as shown by the binding energies.

C. Structure

The sizes reflect the structures described by the corre-
sponding wave functions. We would like, schematically and
optimistically, to reproduce the relative as well as the absolute
sizes in Figs. 3 and 4 by interpretation with appropriate
wave functions and/or geometric configurations. We focus
on a large mass ratio of A = 100 where the ratio between
mean-square distances of AA and AB particles is 1.67 and 1.3
for ground and excited states, respectively. A fully symmetric
wave function in hyperspherical coordinates corresponds to
ρ−3/2 exp(−κρ) where ρ in the present case is defined by

(2mA + mB)ρ2 = mA(�rA − �rA′)2 + mB(�rA − �rB)2

+mB(�rA′ − �rB)2, (23)

where the κ value is given by �
2κ2 = 2mA|E3|. This wave

function has the correct large-distance asymptotic behavior.
The mean-square radius between a pair of particles, i and k, is
then from this very simplified symmetric wave function found
by straightforward calculations to give〈

r2
ik

〉 = �
2/(8μik|E3|), (24)

where μik is the reduced mass of particles i and k (i,k =
A,A′,B). We shall refer to it as a symmetric estimate since
it is obtained from the fully symmetric wave function. This
schematic estimate from Eq. (24) for the AA mean-square radii
of ground and excited states is smaller by a factor of 2.6 and 8.8,
respectively. The corresponding ratios for the AB mean-square
radii are 3.1 and 14 which first of all reflect the different
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reduced mass dependence. These numbers are for squared
radii, and the linear distances, obtained by taking the square
root, then only deviate by factors varying from 1.5 to about 4.

Extreme asymmetric structures may be viewed with two
particles in a bound state at small distance and the third particle
more loosely bound at a larger distance. To produce a finite
AA distance the configuration must correspond to a structure
like A-(AB) [see Eq. (22)]. The mean-square radius is then
�

2/(4μA,AB |EA,AB |) which again is inversely proportional to
the two-body reduced mass of the distant A particle relative to
the stronger bound AB entity. However, the absolute value of
this estimate lies between those of ground and excited states
for a reasonable choice of EA,AB ≈ 2 × EAB .

Both extreme structures of total symmetry and extreme
asymmetry fail to reproduce the calculated moments. Fur-
thermore, the large difference between ground and excited
states indicate a sizable structure variation. The ground state is
within a factor of 2 from the symmetric estimate, whereas the
excited state extends in size substantially beyond the inverse
three-body energy relation in Eq. (24). The latter is more
reminiscent of the huge increase of radii found in the Efimov
states which in three dimensions are coherent superpositions
of asymmetric geometric structure.

Let us finally consider asymmetric structures where a finite
average radius is assumed between the strongest bound AB

two-body substructure. We first assume a given distance rAA′

between the two A particles, where the B particle moves
in a uniform circular orbit of size rA′B around one of the
A′ particles. Then we estimate the mean-square distance
〈r2

AB〉 ≈ (〈r2
AA′ 〉 + 〈r2

A′B〉)/2, where 1/2 is from adding the
two symmetrized configurations. To reproduce the calculated
mean-square radii we need 〈r2

AB〉/〈r2
AA〉 ≈ 0.2,0.5 for ground

and excited states. These values show a strong tendency toward
symmetric configurations.

The sizes are often measured as distances relative to the total
center of mass. This only provides little additional information
but it is very illustrative besides serving as a consistency check
on our understanding of the underlying structures. We show
in Fig. 5 the mean-square radial distance of particles A from
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FIG. 5. Same as Fig. 3, but when the mean-square distance
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〉 → 0.

the center of mass. The two limits of A differ very much from
each other. Varying A from small to large values causes the
three-body center of mass to move from the center of mass
of the AA system to the center of particle B. This implies
by geometric reasoning that

√
〈r2

A〉 approaches
√
〈r2

AA〉/2 and√
〈r2

AB〉 in these two limits, respectively. These predictions are
confirmed by comparing Fig. 5 with the results in Figs. 3 and 4,
that is, observing that 〈r2

A〉 → 〈r2
AA〉/4 and 〈r2

A〉 → 〈r2
AB〉 for

small and large A.
The different behavior of 〈r2

B〉 is seen in Fig. 6. The
geometry now predicts that rB should vanish for large A since
the total center of mass coincides with the center of particle
B. In the other limit of small A we know that 〈r2

AA〉 � 〈r2
AB〉

and consequently 〈r2
B〉 should approach 〈r2

AB〉, since the AA

system looks like an entity from far away where particle B is
located. Again these predictions are confirmed numerically by
comparing Figs. 4 and 6.

There is a lack of experimental information concerning
the sizes of these systems in two dimensions. However, we
are able to compare our results for A = 1 with those from
Ref. [14] as follows. The spatial extension of a system can
be measured by radial moments. Often the second moment,
the root-mean-square radius, is used as an average measure.
Different distributions can be of interest as exemplified by
average charge or mass radii. For a self-supported system of
bound particles the center of mass is conserved and it is natural
to measure all distances with respect to this point, �RC.M.. The
corresponding expectation value is related to the root-mean-
square radius Rrms of the mass distribution as defined for our
three-body system by

R2
rms

∑
k=A,A′,B

mk =
∑

k=A,A′,B

mk〈(�rk − �RC.M.)
2〉

=
∑

k=A,A′,B

mk

〈�r2
kC.M.

〉
, (25)

where the vectors �rkC.M.
by definition connect particle k and the

center of mass of the three-body system. The three-body center
of mass lies on the line connecting particle A with the center of
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mass of the remaining pair of AB particles, and analogously
for particle B. We therefore have the relations

〈
r2
AC.M.

〉 =
(

1 + A
2 + A

)2〈
r2
A

〉
, (26)

〈
r2
BC.M.

〉 =
(

2

2 + A

)2〈
r2
B

〉
, (27)

which can be used to express R2
rms from Eq. (25) in terms of

different mean-square radii, that is,

R2
rms = 2

〈
r2
AC.M.

〉 + A
〈
r2
BC.M.

〉
2 + A

= 2
(1 + A)2

(2 + A)3

〈
r2
A

〉 + 4A
(2 + A)3

〈
r2
B

〉
. (28)

For three identical particles, where A = 1 and 〈r2
A〉 = 〈r2

B〉,
this relation reduces to

Rrms = 2
3

√〈
r2
A

〉
, (29)

with 〈r2
A〉 plotted in Fig. 5.

The two bound three-body states labeled 0 and 1 are in [14]
found to have root-mean-square radii given by

R(0)
rms = 0.111a = 0.125

√
�2

mA|EAB | , (30)

R(1)
rms = 0.927a = 1.041

√
�2

mA|EAB | , (31)

where the two-dimensional scattering length a is related to the
two-body energy EAA = EAB = −4e−2γ

�
2/(mAa2). These

values match exactly our numerical results.

D. Threshold behavior

We want now to investigate in more detail how the structure
varies with mass ratio when the energy of a state approaches its
threshold for binding. We know that in three dimensions the
sizes of bosonic three-body systems diverge logarithmically
at their three-body energy thresholds. In contrast, the sizes
remain finite for Brunnian systems (all pairs are unbound)
with more than three bosons [31], even at their corresponding
thresholds of binding. In these cases, the thresholds are reached
from the bound side by decreasing the two-body attraction.
In the present study we are decreasing the mass ratio and
in practice decreasing the effective interaction between the
constituents of the system.

Again we use the mean-square radii as indicative measures.
We focus on the second excited state which is the lowest-
lying state with diverging size. Its behavior is repeated by
the other excited states, which we therefore do not need to
discuss in this paper. We show in Fig. 7 the results as functions
of A for the different radii of the second excited state. We
multiply the radii by the energy deviation from the two-body
threshold, |E3 − EAB |, in order to extract the behavior of the
divergence. The striking result is that this product converges
toward a constant as the threshold is approached. Thus, the
divergence of the mean-square radius is inversely proportional
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FIG. 7. Threshold behavior of different mean-square radii for
the second excited state as a function of mass ratio. The divergent
mean-square radii multiplied by E3 − EAB reach constant values at
threshold. Vertical lines are the mass ratios corresponding to the
systems 6Li -133Cs -133Cs and 6Li -87Rb -87Rb.

to E3 − EAB . This behavior is well-known for weakly bound
two-body halos in three dimensions [6] and shown in Ref. [14]
to be valid also in two dimensions. The implication is that the
threshold structure must correspond to one particle moving
away from a bound and spatially confined subsystem, which
in our case only can be a bound dimer.

Two structures are possible at threshold, that is, either
particle A or particle B is ejected while the remaining pair
settles in their ground state. In both cases the threshold
structure resembles two-body systems, that is, (AA)-B or
(AB)-A with corresponding reduced masses μAA,B ≈ 0.18
or μAB,A ≈ 0.54, where the numbers are obtained with a
threshold value of A ≈ 0.2.

These structures would according to Ref. [14] lead to the
two-body divergence, 〈r2

ik〉 = �
2/(3μik|Eth|), where μik and

|Eth| are two-body reduced mass and the vanishing threshold
energy, respectively. This means that the curves in Fig. 7
for mA〈r2

ik〉|Eth|/�
2 = mA/(3μik) can be either 1.85 or 0.62.

Thus, (mA〈r2
AA〉|Eth|/�

2,mA〈r2
AB〉|Eth|/�

2) → (0.0,1.85) or
(mA〈r2

AA〉|Eth|/�
2,mA〈r2

AB〉|Eth|/�
2) → (0.62,0.62) are the

two corresponding two-body threshold structures, where either
B or A are ejected. The two identical finite values in the latter
case are due to the same distance between the ejected A particle
and both the remaining A and B particles in a bound state.

Obviously the best match to the results displayed in Fig. 7 is
ejection of one of the A particles. In the calculated expectation
value is contained an average over the distances between the
two A particles and particle B. One of these distances remains
finite and does not contribute except through a reduction of
the probability by a factor of 2. This accounts for the value

of mA〈r2
AB 〉

�2 (E3 − EAB) = 0.6, being only about two thirds of
mA〈r2

AA〉
�2 (E3 − EAB) = 0.9, at threshold.

IV. SUMMARY, CONCLUSIONS, AND PERSPECTIVES

We studied the structures of three-body systems in two
spatial dimensions. We concentrate on asymmetric systems
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formed by two identical bosons and a third particle. We assume
spin-independent interactions and all results are therefore also
valid for two identical fermions with spatially symmetric wave
functions. We use two-body zero-range interactions and the
Faddeev equations in momentum space to solve the three-body
problem. Universal properties are then emphasized due to
the vanishing interaction range. The three-body system is
characterized by two masses and two zero-range strength
parameters chosen to reproduce specified two-body energies.
The equations only depend on two parameters, that is, mass
and energy ratios. In this paper we essentially only investigate
the mass dependence for equal two-body energies.

Our aim is to obtain information about universal structures.
We calculate second-order radial moments corresponding to
two independent distances within the three-body system.
Correlations between these quantities are very indicative of
the underlying dominating structure. Relatively low orders
of radial moments are substantially easier to compute than
the density distributions, especially when the starting point
is in momentum space. We therefore first derive suitable
expressions for the desired radial moments expressed in terms
of single first-order derivatives of integrals over momentum-
space wave functions.

We first calculate and analyze the energy spectrum as the
primary characterizing quantity of any quantum system. We
keep equal two-body energies. The number of bound states
are always finite but varies from 2 and upward, diverging as
the relative mass of the distinguishable particle decreases from
very large to approaching zero. Only precisely two bound
states are present as for equal masses until the mass ratio has
decreased to about 0.2. Then a third state appears followed by
numerous other states as the mass ratio decreases toward zero.
This agrees qualitatively with similar previous observations,
as well as quantitatively for the known case of equal masses.

We analyze the spectra for small mass ratio by use of the
Born-Oppenheimer approximation of the potential. The effec-
tive interaction generated by the light particle has Coulomb
behavior for small distances between particles of the heavier
pair. Combining with the kinetic energy operator in two dimen-
sions the Coulomb energy spectrum appears for an angular mo-
mentum quantum number equal to −1/2. The small-distance
region is the most attractive region, where the short-range
interaction between the two heavy particles also is strongest.
Consequently this is where the lowest states are located.

Considering this Coulomb potential calculated for small
mass ratios from the Born-Oppenheimer approximation, the
three-body energies and heavy-heavy mean-square radii are
derived and compared to the full calculations. We see that
the numerically obtained ground state is more bound with
a smaller radius than arising from the Coulomb estimate.
This is due to the additional attractive heavy-heavy zero-range
interaction. The first few of the following higher-lying states
still feel the heavy-heavy short-range interaction but they have
energies and radii closer to the Coulomb estimates. This
reflects that the effect of the zero-range attraction quickly
decreases as the states move to larger distances. The higher-
lying excited states extend spatially beyond the Coulomb-like
potential, but all bound states are eventually confined within
the exponentially decaying Born-Oppenheimer potential at
large distance.

The mean-square radii are to a large degree a reflection of
the energies, that is, small energy corresponds to a large radius
and vice versa. This is the general observation for universal
properties when all angular momenta are zero or vanishingly
small. By comparing two independent lengths in the same
three-body system we can generate a geometric picture of an
underlying schematic structure. The variation with mass ratio
is substantial. The two remaining states for moderate and large
mass ratios appear to be consistent with the light particles at
roughly twice the distance between light and heavy particles.
For small mass ratios we find for both ground and excited
states that the light particle is located at distances much larger
than the distance between the two heavy particles.

The disappearance of excited states into the continuum
for threshold values of the mass ratio is related to specific
bound-state structures close to the thresholds. The mean-
square radii here prove themselves to be efficient measures of
the corresponding structures. We show numerically that these
mean-square radii diverge inversely proportional to the devi-
ation of the three-body energy from the two-body threshold
energy. Comparing distances between identical and unequal
particles we conclude that the threshold structure corresponds
to one of the identical particles far away from a bound dimer
of the other two particles. Thus, this far-away particle is being
ejected into the continuum. It should be possible to confirm
these predictions by cold atom experiments where three-
body atomic systems of 6Li -133Cs -133Cs and 6Li -87Rb -87Rb,
among others, are already produced in laboratories.

The technique we developed is based on the schematic, but
hugely popular, zero-range interaction treated in momentum
space. This interaction is the extreme limit of a short-range
potential, and therefore in general the simplest tool to
provide quantitative information about universal properties.
The present method to calculate mean-square radii is a
special application to derive structure information through
expectation values. The method is simpler and faster than
using brute force to obtain wave functions which afterward
supply the desired observables. An interesting continuation of
the present study is to extend it to more than three atoms and
see how the universal relations derived in [29] would change
for a mass-imbalanced system.

The method can be used directly to investigate the de-
pendence of radii on the strengths of the two-body interac-
tions. The formalism can be relatively easily generalized to
apply to three-body systems where one or more two-body
subsystems are unbound, whereas the three-body system
still remains bound. All applications may be extended to
three distinguishable particles with their different masses
and interaction parameters. The application to two spatial
dimensions is interesting because this is a rigorous limit with
unique properties compared to other geometries. However,
both one and three dimensions are equally accessible, and
a continuous variation between dimensions also becomes
increasingly interesting.
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