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Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice clocks
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We consider a narrow magneto-dipole transition in the 169Tm atom at the wavelength of 1.14 μm as a
candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock
levels [Xe]4f 136s2(J = 7/2) and [Xe]4f 136s2(J = 5/2) in the spectral range from 250 to 1200 nm, we find
a “magic” wavelength for the optical lattice at 807 nm. Frequency shifts due to black-body radiation (BBR),
the van der Waals interaction, the magnetic dipole-dipole interaction, and other effects which can perturb the
transition frequency are calculated. The transition at 1.14 μm demonstrates low sensitivity to the BBR shift
corresponding to 8 × 10−17 in fractional units at room temperature which makes it an interesting candidate for
high-performance optical clocks. The total estimated frequency uncertainty is less than 5 × 10−18 in fractional
units. By direct excitation of the 1.14 μm transition in Tm atoms loaded into an optical dipole trap, we set the
lower limit for the lifetime of the upper clock level [Xe]4f 136s2(J = 5/2) of 112 ms which corresponds to a
natural spectral linewidth narrower than 1.4 Hz. The polarizability of the Tm ground state was measured by the
excitation of parametric resonances in the optical dipole trap at 532 nm.
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I. INTRODUCTION

Magnetic-dipole transitions between the ground state fine
structure components in hollow shell lanthanides are strongly
shielded from external electric fields by the closed outer 5s2

and 6s2 shells. In the solid state, these well resolved transitions,
protected from intracrystal electric fields, are widely used in
various active media doped by Er3+, Tm3+, and other ions that
lase in the near-infrared and infrared spectral ranges [1,2]. Such
shielding can also facilitate the use of inner-shell transitions
in optical frequency metrology due to their low sensitivity to
external electric fields and collisions [3].

In the early era of optical atomic clocks, the dominating
systematic uncertainty was the collisional shift in a cloud of
laser cooled atoms [4,5]. One could expect better performance
using inner-shell transitions in lanthanides, but this study was
hampered by difficulties with their laser cooling. In 1983
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Aleksandrov et al. [6] showed that the collisional broadening
of the inner-shell magnetic dipole transition in the Tm atom
[Xe]4f 136s2(J = 7/2) → [Xe]4f 136s2(J = 5/2), where J

is the total electronic angular momentum, at the wavelength
of 1.14 μm in He buffer gas is suppressed by at least 500
times compared to the outer shell transitions. It was shown
later that for Tm-He collisions shielding strongly reduced the
spin relaxation [7], but it does not reduce the spin relaxation
rate in Tm-Tm collisions due to the anisotropic nature of the
magnetic dipole-dipole interaction [8].

The problem with atom-atom collisions in optical clocks
was solved after the invention of an optical lattice clock [9,10]
which resulted in the rapid progress of accuracy and stability
over the last decade [11]. Today, lattice clocks based on Sr [12]
and Yb [13] demonstrate unprecedentedly small fractional
frequency instabilities in the low 10−18 range.

One of the important limiting factors is the shift caused
by black-body radiation (BBR) [14–16]. The optical clock
community continues an intensive search for alternative
candidates aiming for lower sensitivity to BBR and other
shifts, simplicity of manipulation, and better accuracy [17,18].
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FIG. 1. Relevant energy levels of 169Tm. The strong transition
at 410.6 nm is used for the first-stage laser cooling and detecting
the ground state populations, and the weak transition at 530.7 nm
is used for the second-stage cooling. The proposed clock tran-
sition 4f 136s2(J = 7/2,F = 4) → 4f 136s2(J = 5/2,F = 3) is at
1.14 μm.

Since hollow-shell lanthanides are expected to show small
differential static polarizabilities of the states with different
configurations of the 4f electrons, one expects small BBR
shifts of the inner-shell magnetic dipole transitions. Taking
into account large natural lifetimes of the clock levels, these
transitions can be successfully used in optical lattice clocks.
Recent progress in laser cooling of Er [19], Dy [20], and
Tm [21,22] and frequency stabilized laser systems [23,24]
open the way for experimental implementation of these ideas.

Similar to other lanthanides, laser cooling of Tm is achieved
in two stages. The first cooling stage is done at the strong
410.6 nm transition which routinely produces sub-Doppler
temperature of 80 μK in a cloud of 2 × 106 atoms [21].
The second cooling stage at the weak 530.7 nm transition
results in the Doppler-limited temperature of 9 μK [25]. This
temperature is low enough to load atoms in a shallow optical
trap or a lattice using 532 nm laser radiation [22]. Relevant
Tm levels are shown in Fig. 1. Further cooling of atoms
is possible by optimizing the cooling sequence [26] or by
evaporative cooling [27]. These experiments stimulated further
study of the inner shell transition [Xe]4f 136s2(J = 7/2, F =
4) → [Xe]4f 136s2(J = 5/2, F = 3), where F is the total
atomic angular momentum, for its application in optical lattice
clocks. In this article, the level [Xe]4f 136s2(J = 7/2) will
be referred to as the “lower clock level” while the level
[Xe]4f 136s2(J = 5/2) as the “upper clock level”.

In the next sections, we analyze effects which may impact
the performance of such clocks. First, the only stable isotope
169Tm is a boson and thus the clock transition is subject to
collisional shifts. The related scattering length depends on
the poorly known Tm-Tm potential at small distances and is
very sensitive to the calculation uncertainty of the long-range
potentials [28,29]. This difficulty can be overcome if Tm
atoms are loaded in a two-dimensional (2D)-optical lattice
with a small filling factor canceling Tm-Tm collisions. Second,
to avoid effects depending on laser intensity we calculated
the dynamic polarizabilities of the upper and lower clock
levels and defined a candidate for the “magic” wavelength
(Sec. II). Third, the large ground-state dipole moment of Tm

atoms induces a frequency shift due to magnetic dipole-dipole
interaction. Preparing Tm atoms in the |m = 0〉 (here m

is a magnetic quantum number) state cancels this shift but
magnetic relaxation still limits the interrogation time of the
clock transition and should be taken into account (Sec. III). In
Sec. IV we present the error budget of the proposed Tm optical
clock.

In the experimental part (Sec. V), we demonstrate direct
excitation of the clock transition at 1.14 μm and measure
the lifetime of the upper clock level in a one-dimensional
(1D)-optical lattice formed by 532 nm laser radiation [30].
Also, we experimentally evaluate the dynamic polarizability
of the Tm ground state at 532 nm by excitation of parametric
resonances in the optical dipole trap.

II. POLARIZABILITIES

To find the magic wavelength and to estimate the BBR and
the van der Waals shifts, one should know the energy shifts
ΔE of the clock states in an external monochromatic electric
field �E = 1/2 �Ee−iωt + c.c. at the angular frequency ω:

ΔE(ω) = −α(ω)

4
|E |2 − γ (ω)

64
|E |4 + · · · , (1)

where α(ω) is the dynamic polarizability, γ (ω) is the hyper-
polarizability, and �E is the complex amplitude of the electric
field, both depending on m and the polarization of the field.
To our knowledge, there are only a few publications where the
polarizability of Tm levels was analyzed. In [31,32] the authors
measured the static tensor polarizability, while a theoretical
calculation of static polarizabilities without accounting for a
fine-structure interaction is presented in [33]. In this section
we will calculate polarizabilities of the clock states.

To suppress the site-dependent frequency shift from varying
light polarization in the lattice, we suggest loading Tm atoms
into a 2D-optical lattice formed by four laser beams with the
same linear polarization as shown in Fig. 2. This guarantees
that the trapping light polarization is the same for all lattice
sites. Further in this paper, we consider only the transition |J =
7/2,F = 4,m = 0〉 → |J = 5/2,F = 3,m = 0〉 which is free
from the frequency shifts induced by the magnetic dipole-
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FIG. 2. Geometry of a 2D-optical lattice. The lattice is formed
by four horizontal laser beams (lattice, red) with linear vertical
polarization. A uniform external magnetic field B0 is applied along
the vertical axis. An interrogating laser beam (clock, blue) lies in
the optical lattice plane (horizontal) to eliminate frequency shifts
by the Doppler effect and photon recoil. The B component of the
interrogating light should be vertical to excite the |m = 0〉 → |m =
0〉 clock transition (which is of a magnetic dipole type).
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dipole interaction (see Sec. III). Since both levels have m = 0,
the contribution from the vector polarizability for this transi-
tion also vanishes, and the total polarizability α can be sepa-
rated into the scalar αs and the tensor αt parts [34] as follows:

αJFm(ω) = αs
JF (ω) + αt

JF (ω)
3m2 − F (F + 1)

F (2F − 1)
,

αs
JF (ω) = 1

2F + 1

m=F∑
m=−F

αJFm(ω) ,

αt
JF (ω) = αJF,m=F (ω) − αs

JF (ω).

(2)

For consistency with other papers, we will calculate the po-
larizabilities in atomic units (a.u.); 1 a.u. = 4πε0a

3
0 = 1.65 ×

10−41 J/(V/m)2, where a0 is the Bohr radius and ε0 is the
vacuum permittivity (for conversion to another units, see [35]).

A. Discrete spectrum

The contribution of the discrete spectrum is given by [34,36]

αFm(ω) = 3

2

c3
�

4

a3
0

∑′
F ′

2Fu + 1

(EF ′ − EF )2

(
Fu 1 Fd

−m 0 m

)2

× AFu→Fd

(EF ′ − EF )2 − (�ω)2
, (3)

where c is the speed of light, � is the reduced Planck’s
constant, and EF and EF ′ are energies of levels |F 〉 and
|F ′〉, respectively. The summation is over all levels F ′. For
each term, Fu = F ′ and Fd = F if EF ′ > EF and vice versa.
AFu→Fd

is a transition probability (spontaneous decay rate)
from |Fu〉 to |Fd〉.

Assuming JI coupling between the total electron momen-
tum J and the nuclear spin I , the scalar polarizability is
independent of F [34,36]:

αs
JF (ω) = αs

J (ω) = 1

2J + 1

mJ =J∑
mJ =−J

αJmJ
(ω)

= 1

2

c3

a3
0

∑′
J ′

2Ju + 1

2Jd + 1

1

(ωJ ′J )2

AJu→Jd

(ωJ ′J )2 − ω2
, (4)

where ωJ ′J = (EJ ′ − EJ )/�. The tensor polarizability equals

αt
JF (ω) = αt

J (ω)(−1)I+J+F

{
F J I

J F 2

}

×
√

F (2F − 1)(2F + 1)(2J + 3)(2J + 1)(J + 1)

(2F + 3)(F + 1)(2J − 1)J
,

(5)

where

αt
J (ω) = 3c3

a3
0

∑
J ′

′ 2Ju + 1

ω2
J ′J

AJu→Jd

ω2
J ′J − ω2

(−1)J+J ′

×
{

1 1 2
Jd Jd Ju

}√
5J (2J − 1)

6(J + 1)(2J + 1)(2J + 3)
.

(6)

Note that αt
7/2, 4 = αt

7/2
and αt

5/2, 3 = αt
5/2

.
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FIG. 3. (a) The photoionization cross sections for |J = 7/2〉
(solid blue) and |J = 5/2〉 (dashed red) clock levels. Peaks around
28 and 35 eV correspond to strong resonance enhancement [42].
(b) Contribution to the scalar polarizability αs

cont from the continuous
spectra. The hyperfine interaction is not taken into account.

As an input for the calculation of α, one should have
transition probabilities AJ ′→J from the level of interest
to all others. Though many transition wavelengths in the
spectral range from 250 to 807 nm and their probabilities
were measured in [37,38] by Fourier-transform spectroscopy
and time-resolved laser-induced fluorescence, there is still
a number of transitions in the UV, visible, and IR spectral
ranges which are essential for calculation and have unknown
probabilities. We used the numerical package COWAN [39]
to calculate transition wavelengths and probabilities in the
spectral range from 250 to 1200 nm (see the Appendix).

The most self-consistent approach for calculating the
differential static polarizability of the clock levels is to use
only numerically calculated wavelengths and probabilities. A
slight modification of this approach is used to calculate the
magic wavelengths (Sec. II C).

As expected from general considerations concerning the
inner shell transitions, the static scalar polarizabilities for the
clock levels are nearly equal. Our calculation shows that they
differ by less than 0.1 a.u. and are equal to 138 a.u. Note that
the calculated static tensor polarizability of −2.7 a.u. for the
lower |J = 7/2〉 clock level is in good agreement with the
known experimental value of −2.7(2) a.u. [31]. For the upper
|J = 5/2〉 clock level our calculations give −2.3 a.u. for the
tensor static polarizability.

B. Continuous spectrum

To determine the contribution of the continuous spectrum
(ignoring hyperfine interaction) to the polarizability we used
the formula [40]:

αs
cont(ω) = c

2π2

∫ ∞

ωI

σ (ω′)dω′

(ω′ − ωn)2 − ω2
, (7)

where ωI is the photoionization limit and σ (ω) is the pho-
toionization cross section of the energy level. The ionization
cross section was numerically calculated using the package
FAC [41] and the results are shown in Fig. 3(a). Using these
results, we evaluated the polarizabilities αs

cont(ω) for the clock
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levels resulting from transitions to the continuous spectrum
[Fig. 3(b)].

The contributions αs
cont(ω) are small compared to the contri-

bution from the discrete spectrum and differ only by 2 a.u. for
the clock levels. This means that the transitions to continuum
basically do not influence positions of magic wavelengths.
We also assume that the corresponding contribution to the
tensor polarizability is even smaller and will neglect it in
further analysis. Since the discrete spectrum gives the equal
static scalar polarizabilities for the clock levels, we expect the
continuous spectrum to contribute to polarizabilities of both
levels equally as well. Thus, a rough estimation of the error of
differential polarizability caused by the continuous spectrum
is about the difference between αs

cont(0) for the clock levels,
i.e., 2 a.u. Unfortunately, we do not know of any experimental
data on the photoionization cross sections for Tm atoms and
therefore can’t rigorously estimate the error.

C. Magic wavelength

The magic wavelengths for optical traps, which provide
vanishing total light shifts of clock transitions (1), are
widely used in optical clocks [9]. To determine the magic
wavelengths, one should search for the crossing points of the
dynamic polarizabilities for the upper and lower clock levels
(neglecting the contribution from the hyperpolarizability in the
first approximation). Positions of magic wavelengths strongly
depend on energies and probabilities of the resonances in the
atom. In general, we can’t only use results of our calculations
due to insufficient accuracy provided by the COWAN package
(see the Appendix).

To solve this problem, first we tried a “combined” ap-
proach. Calculated transitions were assigned to experimental
ones which can be done unambiguously for wavelengths
λ > 500 nm. It turns out to be impossible for the shorter
wavelengths (λ < 500 nm) due to a higher density of
transitions. Then we combined the calculated spectrum for
λ < 500, the available experimental data for λ > 500 nm,
and calculated probabilities for known transitions without
measured probabilities. After detailed study we concluded
that it is a questionable approach because the calculated and
experimentally measured transition probabilities sometimes
differ by an order of magnitude see Fig. 9(b). This difference
impacts the calculated polarizabilities in a wide spectral range
impeding reliable prediction of the magic wavelengths.

In our opinion, a more reliable approach is based on
maximal use of calculation results: We took the calculated
spectrum and substituted the predicted wavelengths with
correct ones known from the experiment for all transitions with
λ > 500 nm. As for the probabilities, we used the calculated
ones except for the case when the probability is smaller
than 105 s−1. This method gives reliable results for the magic
wavelengths in the near-IR region with a low density of strong
transitions.

The selected approach predicts a reliable candidate for
the magic wavelength at 807 nm with an attractive lattice
potential (Fig. 4). Its presence is caused by the weak transition
from the |J = 5/2〉 clock level 4f 13(2Fo)6s2(J = 5/2) with
the energy 8771.24 to 4f 12(3F4)5d3/26s2(J = 5/2) with the
energy 21161.4 cm−1 at 807.1 nm [37]. At the same time,
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FIG. 4. The magic wavelength for the 1.14 μm clock transition in
the Tm atom (|m = 0〉 → |m = 0〉) around 807 nm calculated for the
linear vertical polarization of the trapping light (see Fig. 2). The solid
curve is the differential polarizability of the lower |J = 7/2,F =
4,m = 0〉 and the upper |J = 5/2,F = 3,m = 0〉 clock states. The
dashed curves show the anticipated uncertainty in the calculation of
the differential polarizability which may impact the position of the
magic wavelength. The thin vertical line denotes the position of the
weak resonance at 807.1 nm discussed in the text.

there are no allowed transitions from the |J = 7/2〉 clock
level in the vicinity of 807 nm. Taking into account the
uncertainty in the contribution of the continuous spectra to the
evaluated differential polarizability of ±1 a.u., the proposed
magic wavelength should be blue detuned from the transition
807.1 by 0.1 to 1 nm.

The figures-of-merit for an optical lattice come from its
depth, the off-resonant scattering rate, and the magnetic dipole-
dipole relaxation rate. The optical lattice depth in kelvins is
given by

U [K] = α[a.u.]
2πa3

0

c kB

I [W/m2], (8)

where I is the field intensity in lattice antinodes given in
W/m2 and kB is the Boltzmann constant. The spontaneous
decay following the off-resonant excitation by the lattice field
perturbs the coherence of the clock levels and should be
taken into account. The off-resonance scattering rate for the
transition |m = 0〉 → |m = 0〉 can be estimated as [34]

Γ (ω)0→0 = I
∑
F ′

′ ω2
F ′F + ω2[

ω2
F ′F − ω2

]2

3πc2 AF ′→F

�ω3
F ′F

×
(

Fu 1 Fd

0 0 0

)2

(2Fu + 1)ΓFu
, (9)

where ΓFu
is the inverse lifetime of |Fu〉 level.

The optical lattice at 807 nm can be formed by a Ti:sapphire
laser beam. With 0.5 W output power focused in the beam waist
of 50 μm (radius at 1/e2 intensity level) corresponding to I =
50 kW/cm2 in the retroreflected configuration, one expects the
trap depth of 20 μK. This is enough to capture Tm atoms from a
narrow-line magneto-optical trap (MOT). Even for the smallest
expected detuning from the 807.1 resonance of 0.1 nm, the
off-resonant scattering rate is less than 0.1 s−1.
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D. Hyperpolarizability

The magic wavelength depends not only on the differential
polarizability of the clock states, but also on the differential
hyperpolarizability (1) and light intensity I . The scalar
hyperpolarizability γ (ω) is given by [43]

γ (ω) = 1
4 [γ +(ω) + γ −(ω)], (10)

where

γ + = 4

�3

∑′
m,k,n(Dz)gm(Dz)mk(Dz)kn(Dz)ng

×
(

4ωmgωng

ωkg

(
ω2 − ω2

mg

)(
ω2 − ω2

ng

)
+ 1

(ωmg − ω)(ωkg − 2ω)(ωng − ω)

+ 1

(ωmg + ω)(ωkg + 2ω)(ωng + ω)

)
(11)

and

γ − = 8

�3

∑′
m,n|(Dz)mg|2|(Dz)ng|2

× ωmg

(
ω2 + 3ω2

ng

)
(
ω2 − ω2

mg

)(
ω2 − ω2

ng

)2 , (12)

where (Dz)i,j is a matrix element of the z projection of the
dipole moment between levels i and j .

To calculate the hyperpolarizability we used the transition
matrix elements, their signs, and the transition wavelengths
obtained by the COWAN package for all transitions except the
807.1 nm one. For this transition, we used the experimentally
measured wavelength and probability; the sign of the transition
matrix element was taken from the numerical calculations.
This exception is done to improve accuracy of the magic
wavelength prediction.

The light shifts for the clock levels |J = 7/2〉 and |J =
5/2〉 coming from the hyperpolarizabilities in the optical lattice
at λ = 807 nm and I = 50 kW/cm2 is shown in Fig. 5. As
shown in the previous section, the magic wavelength is blue
detuned from the 807.1 nm resonance by more than 0.1 nm,
which makes the hyperpolarizability shift to be less than
0.5 Hz. The corresponding correction to the magic wavelength
is negligible. Still, hyperpolarizability contributes to the clock
frequency uncertainty which is discussed later in Sec. IV.

III. MAGNETIC INTERACTIONS

A. Magnetic dipole-dipole interaction

The magnetic moment of the thulium ground state equals
4μB (μB is the Bohr magneton) which causes a magnetic
dipole-dipole interaction between atoms. The interaction
potential between two atoms is

Ûdd (r) = μ0(gF μB)2
�̂F1 · �̂F2 − 3( �̂F1 · �̂r)( �̂F2 · �̂r)

4πr3
, (13)

where �F1,2 are the total atomic angular momenta, μ0 is the
magnetic permeability of vacuum, �r is the vector pointing
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FIG. 5. Light shifts of the lower |J = 7/2〉 (blue, solid) and
upper |J = 5/2〉 (red, dashed) clock levels caused by the hyper-
polarizability. Vertical red line denotes the position of the resonance.
Calculations are done for an intensity of I = 50 kW/cm2; the
hyperfine interaction is ignored.

from one atom to another, and gF is the Landé g factor of the
ground state. For the Tm ground state gF ≈ 1.

For spatially nonuniform atom distributions over optical lat-
tice sites, the magnetic interaction may lead to inhomogeneous
broadening and frequency shifts of the clock transition, both
of them being of the same order of magnitude. These shifts
correspond to the interaction energy between neighboring
atoms. For two Tm atoms loaded in the adjacent sites of the
optical lattice at 800 nm and prepared in the |m = 4〉 magnetic
state, the interaction energy (13) corresponds to the frequency
shift of

Δfdd ≈ μ0(m μB)2

4πr3h
, (14)

which is of the order of 10 Hz. The shift is large and difficult
to predict due to the randomness of the lattice site occupation.
For the rest of the paper, we will analyze only the transition
|m = 0〉 → |m = 0〉 which is insensitive to this shift.

Magnetic dipole-dipole interactions also limit the interro-
gation time because of spin relaxation: the atomic ensemble
prepared into a pure polarized state will gradually lose its
polarization. To evaluate the corresponding relaxation time,
we solved the Schrödinger equation with the interaction (13)
for two, three, four, and five spatially fixed Tm atoms in
the ground state (F1 = F2 = 4) prepared in the initial |m =
0〉 ⊗ · · · ⊗ |m = 0〉 state at the vanishing external magnetic
field. The spatial separation of a = 400 corresponds to an
800-nm optical lattice. The relative positions of the atoms are
shown in Fig. 6(a). Figure 6(b) shows dynamics of the spin
state for the central atom, marked blue in Fig. 6(a).

For two, three, and four atoms the Schrödinger equation
was solved exactly. For five atoms the Hilbert space is too
large, and we restricted our calculation to the subspace mi =
{−2, − 1,0,1,2}. To estimate validity of this approach we
also solved the Schrödinger equation for two, three, and four
atoms in the restricted subspace. The inset in Fig. 6(b) shows
good agreement between approximate and exact solutions for
the first 50 ms of the evolution. In the steady-state, it is
reasonable to assume that all spin projections are equiprobable.
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FIG. 6. Spin relaxation dynamics. (a) Configurations of atoms
used in the simulation; a = 400 nm is the interatomic separation,
and quantization axes are perpendicular to the plane of the sketch.
(b) Probability to find the central atom (blue) in the state |m = 0〉 for
two, three, four, and five atoms in the 2D-optical lattice. Note, that
the probabilities do not go to zero at longer times because at a steady
state there is almost uniform distribution among magnetic sublevels.
Inset: Difference of the probabilities to find the first atom in the state
|m = 0〉 for exact and approximate solutions for two, three, and four
atoms. The horizontal dashed line represents the difference of the
steady-state probabilities (see the main text).

Consequently, average probability to find the central spin in
the |m = 0〉 state equals 1/9 for the full Hilbert space and 1/5
for the truncated space. This explains the discrepancy between
the exact and approximate solutions at longer times (>50 ms).
The characteristic relaxation time was derived by setting the
probability to find the central spin in the initial |m = 0〉 state
to 0.7. It equals 20, 13, 11, and 10 ms for two, three, four, and
five spins, respectively [Fig. 6(b)].

External magnetic fields reduce spin relaxation because
some spinflip processes require additional energy. A signifi-
cant reduction of the spin relaxation is expected if the Zeeman
splitting becomes larger than the kinetic energy EK of atoms.
At the experimentally achieved temperature of T ∼ 10 μK,
the kinetic energy equals EK = kBT ∼ 100 kHz × h. This
energy corresponds to a magnetic field of B ≈ EK/(hμB) or
approximately 100 mG. We show in the next section that such
a bias magnetic field will cause a significant Zeeman shift and
cannot not be applied during the clock operation. As mentioned
in the Introduction, the temperature can be lowered to a few
microkelvins which will reduce the threshold magnetic field
to a few tens of milligausses which is sufficient for the clock’s
target accuracy.

Assuming that the lattice filling factor is less than unity and
taking into account the influence of a weak magnetic bias field
(10 mG), we conclude that the spin relaxation time should be
larger than 10 ms. This sets the bound for the interrogation
time of the clock transition and, correspondingly, its Fourier-
limited spectral linewidth of < 10 Hz. As a result, the spin
relaxation should not considerably impact the performance of
the proposed optical clock.

B. Interaction with an external magnetic field

To selectively address the |m = 0〉 → |m = 0〉 transition,
an external static magnetic field B0 has to be applied. The
Hamiltonian describing hyperfine interaction for the 169Tm
atom (I = 1/2) in the presence of the external magnetic field
B0 is [44]:

Ĥ = hA �̂I · �̂J − gIμN
�̂I · �̂B0 − gJ μB

�̂J · �̂B0, (15)

where A is the hyperfine constant, gI is the nuclear Landé g

factor, μN is the nuclear magneton, and gJ is the electronic
Landé g factor. The well-known Breit-Rabi formula gives
eigenvalues for the special case of J = 1/2. Making the formal
substitution I ↔ J , gI ↔ gJ , μN ↔ μB in (15), one can use
the Breit-Rabi expression for I = 1/2 [44]. The frequency
shift of the clock transition |m = 0〉 → |m = 0〉 is given by

Δf0→0 = (g5/2μB − gIμN )2B2
0

4h2ΔW5/2

− (g7/2μB − gIμN )2B2
0

4h2ΔW7/2
= β B2

0 (16)

and

β = −257(1) Hz/G2, (17)

where ΔW7/2 = 1496.550(1) and ΔW5/2 = 2114.946(1) MHz
are the hyperfine frequency splittings of the |J = 7/2〉
and |J = 5/2〉 clock levels, respectively [45], g7/2 =
1.141189(3) [44] and g5/2 = 0.855(1) [46] are their Landé
g factors, and gI = 0.462(3) is the nuclei Landé g factor [44].

IV. Tm CLOCK UNCERTAINTY

Here we will discuss the most significant sources of
uncertainty for the proposed Tm clock.

A. Black body radiation

The frequency shift of the clock transition due to the ac-
Stark shift induced by BBR is given by

ΔfBBR =
∫ ∞

ω=0

a3
0ω

3

π2c2

[
αs

gr (ω) − αs
cl(ω)

]
e

�ω
kB T

−1
dω

≈ Δαs
0
a3

0π
2k4

B

15c3�4
T 4 = 1.17 × 10−12 Δαs

0 [a.u.] T 4 [K],

(18)

where Δαs
0 is the differential scalar static polarizability of the

clock levels in atomic units, and T is the temperature in kelvin.
Our calculations (see Sec. II) give Δαs

0 = 2 a.u. which
results in ΔfBBR = 20 mHz at T = 300 K. It corresponds to a
fractional frequency shift of the clock transition of 8 × 10−17

which is much less than for the Sr atom and is comparable
to Al+ clock transition [35]. Uncertainty of the ambient
temperature of 3 K will introduce a frequency uncertainty
of 3 × 10−18 (0.8 mHz). Since there are no strong transitions
from the clock levels in the infrared region, the dynamic BBR
shift is negligibly small [47].
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B. Second order Zeeman shift

According to (16), the frequency shift of the clock transition
in the external magnetic field of B0 = 10 mG corresponds
to −25.7(1) mHz or 10−16 in fractional units. One can
accurately measure the bias field B0 by monitoring the
Zeeman shift of the |m = −4〉 → |m = −3〉 and |m = 4〉 →
|m = 3〉 transitions [48]. The frequency splitting of these
magnetic sensitive transitions in a magnetic field is equal to
ξ = 2(4gJ=7/2,F=4 − 3gJ=5/2,F=3)μB/h = 6.00(2) MHz/G,
where gJ=7/2,F=4 and gJ=5/2,F=3 are the Landé g factors of the
states |J = 7/2,F = 4〉 and |J = 5/2,F = 3〉, respectively.
Given that the linewidths of both transitions are smaller
than δf4→3 = 100 Hz [the broadening due to the magnetic
interaction (18) is included], the bias magnetic field B0 can be
measured in situ with the uncertainty of ΔB0 = δf4→3/ξ �
0.1 mG. Since the magnetic field can be stabilized at the
same level over the interrogation sequence [49], we take
0.1 mG as an upper limit for the bias magnetic field instability
and estimate the quadratic Zeeman shift’s contribution as
2βB0ΔB0 = 0.5 mHz (2 × 10−18 in fractional units) after
correction.

C. Dynamic light shifts

Fluctuations δI of the laser intensity cause shifts and
broadening of the clock transition originated from the nonzero
differential hyperpolarizability Δγ :

ΔfI = −δI

I

(
Δα

4
I + 2

Δγ

64
I 2

)
= −δI

I

Δγ

64
I 2 , (19)

where we take into account that

Δα

4
I + Δγ

64
I 2 = 0 (20)

at the magic wavelength. Previously, we estimated that
Δγ/64 × I 2 is less than 0.5 Hz for the given lattice parameters
(see Sec. II D). Stabilizing the laser intensity at the level
of 10−3 can reduce the uncertainty in the frequency of
the clock transition to 0.5 mHz or 2 × 10−18 in fractional
units.

D. van der Waals and quadrupole interactions

The electrostatic van der Waals interaction be-
tween two neutral atoms shifts the clock frequency by
−(C6a

6
BEH )/(h r6), where C6 is the van der Waals coefficient

in atomic units, aB is the Bohr radius, and EH is the Hartree
energy. Following [50], we estimated C6 ∼ 6000 a.u. for the
|J = 7/2〉 level. For an atomic separation of r = 400 nm
(atoms are placed in the 800-nm optical lattice, less than
one atom per site) the van der Waals frequency shift is less
than 0.1 mHz which corresponds to 4 × 10−19 in fractional
units.

To estimate the contribution from the quadrupole-
quadrupole interaction, we calculated the quadruple moment
for the ground state of the Tm atom using the COWAN package.
The result is D ∼ 0.5 ea2

B (e is the elementary charge). The
corresponding frequency shift is D2/(4πε0r

5h) < 0.1 mHz.

E. Line pulling and geometrical effects

In an external bias magnetic field of B0 = 10 mG, the
|J = 7/2,F = 4〉 → |J = 5/2,F = 3〉 transition will be split
into magnetic components. The line pulling effect [51] can
perturb the magnetic-insensitive clock |m = 0〉 → |m = 0〉
transition. Imperfect coalignment of the magnetic field B0 and
the polarization of the interrogating laser beam (Fig. 2) leads
to excitation of |m = 0〉 → |m = ±1〉 transitions and also can
cause the line pulling effect.

In both cases, the separation from the clock transition to
the nearest transition is not less than 103γ ≈ 20 kHz, where
γ = 20 Hz is the upper bound for the expected transition
linewidth. The corresponding incoherent line pulling is negli-
gible (< 10−8 Hz) and does not impact the clock performance.
For reading the clock transition, absorption spectroscopy is
typically used and we do not expect a contribution from the
coherent line pulling [52].

Another systematic effect related to the geometry can come
from misalignment of the lattice light polarization and the
bias magnetic field (see Fig. 2). The shift results from the
differential tensor polarizability of the clock levels Δαt and
scales as the square of the misalignment angle [53]. It was
shown that the corresponding relative frequency shift can be
reduced to less than 2 × 10−18 by proper alignment [53].

F. Uncertainty budget

The list of dominant frequency shifts and corresponding
uncertainties is presented in Table I. The major line shifts
are the BBR shift and the second-order Zeeman shift. All of
these can be well characterized and corrected to a high degree
using moderate assumptions and established experimental
techniques. Light shift can also be controlled at a low 10−18

level by intensity stabilization of the light field. As a result, the
systematic frequency uncertainty of the proposed Tm optical
clock at 1.14 μm can be reduced to 5 × 10−18 in fractional
units.

For the 10 Hz clock transition (see Sec. III A), an inter-
rogation duty cycle of 1%, and an ensemble of 105 trapped
Tm atoms, we expect the Allan deviation of 10−15/

√
τ (here

τ is the averaging time) [54]. It is only 3 times inferior to
the 87Sr optical clock [12]. To reach the estimated fractional
uncertainty of 5 × 10−18 in Tm, the integration time should be
less than 5 × 104 s.

V. EXPERIMENT

The experimental section describes our measurement of
the |J = 5/2〉 clock level lifetime in a dilute cloud of cold Tm
atoms. Formerly, the decay from this level was studied in Tm
atoms implanted in solid and liquid 4He [55]. Strong shielding
of inner shells and the high symmetry of the perturbing field
of the He matrix give the impressive result of 75(3) ms for the
lifetime of the |J = 5/2〉 clock level. Note that the level was
populated by a cascade decay from highly excited levels.

In contrast to [55], we directly excite the |J = 7/2,F =
4〉 → |J = 5/2,F = 3〉 transition by spectrally narrow laser
radiation at 1.14 μm in an ensemble of Tm atoms trapped in
a 1D-optical lattice and measure the lifetime of the |J = 5/2〉
clock level monitoring its decay to the ground |J = 7/2,
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TABLE I. Uncertainty budget for a Tm optical clock operating at the 1.14 μm magnetic dipole transition. Atoms are trapped in the
2D-optical lattice at the magic wavelength close to 807 nm with the light intensity of 50 kW/cm2.

Contribution Frequency shift Uncertainty after Uncertainty in fractional
(mHz) correction (mHz) units (10−18)

BBR (T = 300 ± 3 K) 20 0.8 3
Zeeman shift (B0 = 10.0 ± 0.1 mG) −26 0.5 2
Light shift due to hyperpolarizability(δI/I = 10−3) 0 0.5 2
Light shift due to tensor polarizability 0.5 0.5 2
van der Waals and quadrupole interaction 0.1 0.1 0.4
Total −6 1.2 < 5

F = 4〉 state. Besides that, we evaluated dynamic polarizabil-
ity of Tm atoms at 532 nm by exciting parametric resonances
in an optical lattice.

A. Lifetime of the |J = 5/2〉 clock level

The lifetime of the |J = 5/2〉 clock level is measured
by excitation of the magnetic dipole transition at 1.14 μm
in a 1D-optical lattice. About 106 thulium atoms are laser
cooled down to 20 μK in a narrow-line MOT operating at
530.7 nm [22] and then are recaptured by the 1D-optical
lattice. The lattice is formed by a retroreflected focused 532 nm
cw laser beam (waist radius is 50 μm, laser power is 3 W)
and superimposed with the atomic cloud. The trap depth is
calculated to be 400 μK for the ground |J = 7/2,F = 4〉 state
which provides a recapture efficiency of 40% [22].

After recapture (pulse 1 in Fig. 7), we switch the MOT off
and wait for 20 ms to let uncaptured atoms escape. Then, a
resonant 1.14 μm laser pulse of 30 ms (pulse 2) is applied to
excite atoms to the |J = 5/2,F = 3〉 level [30]. The laser
is actively stabilized to a high-finesse ultra-low expansion
cavity [23] which narrows the laser spectral linewidth down to
∼ 10 Hz. After the interrogation pulse, a resonant 410.6 nm
laser pulse of 1 ms (pulse 3) is applied to remove atoms
from the |J = 7/2〉 ground state (Fig. 1). Atoms exited to the
|J = 5/2,F = 3〉 decay back to the |J = 7/2,F = 4〉 ground
state, whose population is monitored by a fluorescence signal
induced by a delayed 410.6 nm probe pulse (pulse 4).

t (ms)

N
(t

)/N
( t

)
0

= 112 ms

FIG. 7. Measurement of the lifetime of the |J = 5/2〉 level. Red
dots are the normalized number of atoms decayed to the ground
|J = 7/2,F = 4〉 level. The solid curve is a fit by (21). The inset
shows the pulse sequence described in the text.

The increase of the population of the |J = 7/2,F = 4〉
ground state is described by the exponential function

N (t) = N0[1 − exp(−t/τ )], (21)

where τ is the lifetime of the the excited |J = 5/2,F = 3〉
state and N0 is the initial number of atoms in this state. By
fitting the experimental data presented in Fig. 7, we measure
τ = 112(4) ms. It is the lower bound for the |J = 5/2〉 level
natural lifetime since the measured lifetime can be reduced by
additional weak losses from the |J = 5/2〉 level in the optical
lattice. These losses may be related to optical or magnetic
Feshbach resonances [56].

Thus, the natural linewidth of the clock transition |J =
7/2〉 → |J = 5/2〉 is expected to be not broader than 1.4 Hz
which is consistent with the previous measurement in 4He
matrix [55] and the theoretical prediction of 1.14 Hz [57].
The natural linewidth of the transition does not limit the
performance of the proposed optical clock (see Sec. IV),
because for most routinely operating optical clocks the
Fourier-limited spectral linewidth of the clock transition is
on the order of 10 Hz.

In the current experimental arrangement we observed the
spectral linewidth of the |J = 7/2,F = 4〉 → |J = 5/2,F =
3〉 transition of 1 MHz at the low power limit [25]. The line
was broadened by the Zeeman effect in the uncompensated
laboratory field (∼ 0.5 MHz) and by an inhomogeneous ac-
Stark shift caused by a large differential dynamic polarizability
of the clock levels at 532 nm (∼ 0.4 MHz).

B. Parametric resonances

The dynamic polarizability of the |J = 7/2〉 ground state
at the lattice wavelength can be evaluated by the excitation
of parametric resonances in the lattice and by monitoring the
corresponding losses [58]. This method is very sensitive to
the laser beam parameters (waist size, astigmatism) and does
not allow accurate comparison to our calculations. Still, it
gives the proper order of magnitude for the polarizability and
provides unambiguous proof that Tm atoms are localized in
the 1D-optical lattice.

At low temperatures, atomic motion in the optical lattice
becomes quantized and the corresponding axial fa and radial
fr oscillation frequencies at the center of the lattice are

022512-8



INNER-SHELL MAGNETIC DIPOLE TRANSITION IN Tm . . . PHYSICAL REVIEW A 94, 022512 (2016)

Modulation frequency (Hz)

N
um

be
r o

f a
to

m
s Radial resonances

Axial resonances

210 310 510
610

0

1

2

3

4

5

6

7

48×10

FIG. 8. Excitation of the parametric resonances in the 532 nm
1D-optical lattice. Green triangles are axial resonances; red circles
are radial ones; and dashed curves are guides to the eyes.

given by

fa = 4

w0λ

√
2a3

0α
sP

cm0
,

fr = 4

πw2
0

√
a3

0α
sP

cm0
,

(22)

where P = 4 W is the optical power of the laser beam forming
the 1D lattice, m0 is the Tm atomic mass, w0 is the beam
waist radius (at 1/e2 intensity level), λ = 532 nm is the lattice
wavelength, and αs is the scalar polarizability at λ = 532 nm of
the |J = 7/2,F = 4〉 level in atomic units. According to [59],
harmonic modulation of the trap depth at frequencies 2f/n

[here f is one of the eigenfrequencies (22) and n is an
integer] will cause parametric excitation of the resonances
and corresponding trap losses.

To excite parametric resonances in the 532 nm optical
lattice, we harmonically modulated the laser power and, cor-
respondingly, the trap depth by an acousto-optical modulator
(AOM) at the level of 10%. The number of atoms remaining
in the optical lattice after 100 ms of parametric excitation
was monitored by resonance fluorescence at 410.6 nm. The
corresponding spectrum is shown in Fig. 8. The low frequency
parametric resonances at 400(40) and 900(150) Hz correspond
to the radial oscillations at fr and 2fr frequencies. The high
frequency resonances at 230(40) and 420(50) kHz are related
to axial oscillations at fa and 2fa in the tight potential wells
of the lattice. Higher order parametric resonances are much
weaker and broader [59] and were not observed.

The scalar polarizability can be deduced from (22) by
excluding w0:

αs = f 4
a λ4cm0

64f 2
r a3

0π
2P

. (23)

From the measured frequencies we estimate this value to be
360+300

−200 which agrees with the calculated polarizability of
600 a.u. within error bars. The main sources of uncertainty are
astigmatism in the lattice beams, axial and radial misalignment

of the waist positions of the lattice beams, and error in our
determination of the parametric resonance frequency.

In conclusion, the experimental results for the scalar
dynamic polarizability αs at 532 nm in the optical lattice
and in the dipole trap are consistent with the calculated value
of 600 a.u. Although the experiment does not allow us to
test the accuracy of our calculations, it unambiguously proves
trapping Tm atoms in the optical lattice at 532 nm.

VI. SUMMARY

We considered the possibility to use the inner-
shell transition [Xe]4f 136s2(J = 7/2, F = 4,m = 0) →
[Xe]4f 136s2(J = 5/2, F = 3,m = 0) in the Tm atom at
λ = 1.14 μm as a candidate for an optical lattice clock. The
transition wavelengths and probabilities for two clock levels
|J = 7/2〉 and |J = 5/2〉 in the spectral range 250–1200 nm
are calculated using the COWAN package. We calculate the
differential dynamic polarizability and predict the magic
wavelength at 807 nm with an attractive optical potential.
Our results show a reasonable correspondence with existing
experimental data and significantly extend it to the UV and IR
spectral ranges.

The suggested clock transition demonstrates a low sen-
sitivity to the BBR shift which provides a clock frequency
accuracy at the low 10−18 level competing with the best known
optical clocks. We also evaluated other feasible contributions
to clock performance (magnetic interactions, light shifts, van
der Waals, and quadrupole shifts) which, after reasonable as-
sumptions, can be lowered to the 10−18 level. Together with the
relative simplicity of laser cooling and trapping of Tm atoms,
our results demonstrate that Tm is a promising candidate for
optical clock applications. One of the disadvantages is the
relatively low carrier frequency of only 2.6 × 1014 Hz which
requires longer integration time to reach the same instability
as Sr and Yb lattice clocks.

Our experiments with direct excitation of the clock transi-
tion by spectrally narrow laser radiation at λ = 1.14 μm set a
lower limit for the upper clock level lifetime of 112 ms which
corresponds to the natural linewidth of < 1.4 Hz. Experiments
are done in a 1D-optical lattice at 532 nm. Modulating the trap
depth and analyzing the corresponding parametric resonances
frequencies, we deduce the scalar polarizability of the Tm
ground state at 532 nm which shows reasonable agreement
with our calculations.

To experimentally study the magic wavelength and analyze
systematic shifts, we plan to change the trapping wavelength
to 806 to 807 nm using a tunable Ti:sapphire laser. This will
also simplify our study of Feshbach resonances and may open
a way to study and control dipole-dipole interactions using
narrow band excitation of the clock transition at 1.14 μm.
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FIG. 9. Comparison between the calculated and measured data.
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ones are shown. (a) Relative error of calculated energy levels.
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APPENDIX: TRANSITION PROBABILITIES

Calculation of dynamic polarizabilities Eqs. (3)–(5) re-
quires knowledge of electrical dipole transition rates from the
lower |J = 7/2〉 and the upper |J = 5/2〉 clock levels in Tm.
A number of transitions rates were experimentally measured
and the results are summarized in [37]. We completed this
list calculating energy levels in the range up to 40 000 cm−1

and corresponding transition-dipole matrix elements using the
COWAN package [39] taking into account the low lying odd
(4f 136s2, 4f 135d16s1, 4f 126s26p1, 4f 136p2, and 4f 135d2)
and even (4f 125d16s2 and 4f 136s16p1) configurations.

As follows from Fig. 9(a), the accuracy of the calculated
level energies is better than 20%. Together with the known
leading configuration percentage it is sufficient to identify
the low lying levels with the energies E < 20 000 cm−1 (λ >

500 nm) and compare them with the experimentally measured
ones [60]. Table II shows calculated probabilities of the
transitions with experimentally unknown probabilities from

TABLE II. Calculated transition probabilities (experimentally
unknown) from the |J = 7/2〉 and |J = 5/2〉 clock levels. E and J are
experimentally measured energies and electronic angular momenta
of the upper levels of the transitions, respectively.

E (103 cm−1) J λ (nm) A (s−1)

|J = 7/2〉 level
13 119.6 9/2 762.22 3.2
16 742.2 7/2 597.29 1.9 × 105

19 748.5 9/2 506.37 1.2 × 106

|J = 5/2〉 level
16 742.2 7/2 1254.55 14.1
16 957.0 7/2 1221.63 1.2
17 343.4 7/2 1166.57 171.2
17 752.6 5/2 1113.41 27.5
19 132.2 3/2 965.16 150
19 548.8 5/2 927.85 100
19 753.8 7/2 910.53 209
21 120.8 7/2 809.74 640
22 791.2 7/2 713.27 27 400
22 929.7 5/2 706.29 58 900
23 873.2 7/2 662.17 1 × 106

23 882.4 3/2 661.76 2.13 × 106

24 418.4 5/2 639.11 1.79 × 107

the clock levels [Xe]4f 136s2(J = 7/2) and [Xe]4f 136s2(J =
5/2). Figure 9(b) compares experimentally measured and
calculated probabilities for identified transitions in the range
400–1200 nm. Taking into account difficulties with the
simulation of the hollow-shell atomic potentials [34], the
discrepancy between the calculated and the experimental data
seems to be reasonable.

As mentioned in the main text, the most self-consistent
approach for deriving differential polarizability of the clock
levels is to use the calculated data for the transition probabili-
ties; otherwise we meet difficulties with level identification
in the wavelength range λ < 500 nm and with matching
the calculated and the experimental data. In turn, transitions
to the highly excited Rydberg states (λ < 250 nm) become
extremely dense and the COWAN package cannot be used. To
calculate their contribution, one typically uses a semianalytical
approach [61]. In our case, the strong similarity of spectra
starting from two inner-shell fine structure sublevels—clock
levels (|J = 7/2〉 and |J = 5/2〉)—results in a very small
differential polarizability of 0.1 a.u. if one takes into account
all transitions in the spectral range 250–1200 nm. Transitions
to the Rydberg states may slightly influence the absolute values
of the polarizability of the clock states (at the level of a few
a.u.), but we do not expect a significant contribution to the
differential polarizability Δα.
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