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Light trapping in an ensemble of pointlike impurity centers in a Fabry-Perot cavity
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We report the development of quantum microscopic theory of quasiresonant dipole-dipole interaction in the
ensembles of impurity atoms imbedded into transparent dielectric and located in a Fabry-Perot cavity. On the
basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole
interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles.
We analyze this influence depending on the size of the ensemble, its density, as well as on rms deviation of the
transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium.
Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially
modify cooperative polyatomic effects.
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1. INTRODUCTION

Ensembles of impurity centers (atoms) imbedded into a
dielectric matrix are considered as promising objects for a wide
range of problems in modern quantum optics and quantum
electronics. The efficiency of their use, especially for optical
applications, depends to a large measure on optical depth of
the ensembles. Optical thickness can be increased by extension
of the system and/or by decreasing of the mean free path of
photons inside it.

In many cases increasing the size is undesirable or even
impossible. In this situation the simplest and direct way to
increase the optical depth is increasing the density of impuri-
ties. This way enhances the collective effects especially when
the photon mean free path becomes comparable or less than
resonant wavelength. In such a case resonant dipole-dipole
interatomic interaction leads to density-dependent broadening
and shifts of atomic transition as well as distortion of spectral
line shape. Such collective effects were studied in detail in the
case of nondegenerate cold atomic gases both experimentally
[1–4] (see also references therein) and theoretically, to name
a few [5–9].

Besides resonant interatomic interaction the line shape of
impurity centers is transformed due to interaction with the
surrounding dielectric medium (see [10–20]). Even in the case
of a transparent dielectric the internal fields of a medium
cause spectral line shifts which depends mainly on the type
of chemical bond of a dielectric, the symmetry of the internal
fields, and the temperature. These shifts can exceed the natural
linewidth.

Another way to increase efficiency of light interaction with
impurity ensembles is to use optical cavity or waveguide.
A cavity offers an exciting tool to control over the light-
matter interaction. Since the seminal work of Purcell [21]
the peculiarities of atomic radiative properties, in particular,
the enhancement and inhibition of the spontaneous decay
rate inside a cavity or waveguide as well as near its surface
has attracted a considerable attention [22–25]. Light matter
interface in the presence of nanophotonic structures, such
as nanofibers [26–28], photonic crystal cavities [29], and
waveguides [30,31] propose future applications for quantum
metrology, scalable quantum networks, and quantum informa-
tion science [32–34].

Cavity modifies the structure of modes of electromagnetic
field. It causes not only modification of spontaneous decay but
also the nature of photon exchange between different atoms.
In its turn it leads to alteration in dipole-dipole interatomic
interaction [35] as well as associated cooperative effects [36].
As opposed to spontaneous decay the modification of the
dipole-dipole interaction is studied in less detail. By now there
are several works dedicated to the interatomic interaction in the
atomic systems coupled to a nanofiber [37] as well as to phonic
crystals [38–40]. Nevertheless, polyatomic cooperative effects
inside the cavity, including multiple and recurrent scattering,
have not been studied in detail yet.

The main goal of the present work is to analyze theoretically
polyatomic cooperative effects in an ensemble of pointlike im-
purity centers embedded in a solid dielectric in the Fabry-Perot
microcavity. We developed a consistent quantum theoretical
approach based on approximate calculation of wave function
of the joint system consisting of N � 1 motionless centers and
the electromagnetic field. The interaction of impurity atoms
with the dielectric is simulated by introduction inhomogeneous
level shifts of the atomic energy levels.

As an example of a practical implementation of this
approach in the present work we consider spontaneous decay
of the local atomic excitation prepared inside a cavity. We
calculate the transition spectrum of an excited atom and study
radiation trapping in the considered system. We analyze the
role of the cavity depending on the size of impurity ensemble,
its density, as well as on rms deviation of the transition
frequency shifts of the impurities caused by internal fields
of the dielectric medium. Special attention is given to the case
when the distance between two mirrors is less than a half of
the transition wavelength. This case is of particular interest
due to practically complete suppression of spontaneous decay
of some Zeeman sublevels of atomic exited state. Obtained
results are compared with the case when the cavity is absent.

2. BASIC ASSUMPTIONS AND APPROACH

Let us consider an ensemble, which consists of N motion-
less impurity atoms imbedded into transparent dielectric and
placed in a Fabry-Perot cavity. The mirrors of a cavity are
assumed to be perfectly conducting. The longitudinal sizes of
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FIG. 1. Sketch of the cavity and the atomic ensemble.

the mirrors are much larger than resonant transition wavelength
λ0, the distance between the mirrors d and the average distance
between impurity atoms (see Fig. 1). It will allow us to consider
the limit of infinite sizes of the mirrors in the final expressions.

We assume that the temperature is low enough to neglect
the electron-phonon interaction. Influence of the dielectric on
impurity atoms is simulated by means of random shift of their
energetic levels. We think that the transition frequency of
impurity atoms in a dielectric ωa differs from the transition
frequency of a free atom ω0 – ωa = ω0 + �a , where �a is the
frequency shift of the atom a (a = 1,...,N ) which depends on
its spatial position due to inhomogeneity of internal fields in
dielectric.

All these assumptions allow us to consider dynamics of the
model system which consists of the set of motionless pointlike
scatterers and electromagnetic field in ideal cavity. We take
into account all modes of the field including modes which are
initially in the vacuum state. During the evolution these modes
can be populated as a result of atomic decay, i.e., as a result
of interaction of the excited atom with the field in the vacuum
state. The photon created in such atomic transitions can be
absorbed by another atom in the ensemble. This atom emits
a secondary photon and so on. Thus, in our theory we deal
with the closed quantum system, which can be described by
the wave function.

In this paper we use the quantum microscopic approach
described first in [41] and developed afterward in [42] for a
description of collective effects in dense and cold nondegener-
ate atomic gases. This approach was earlier successfully used
for analysis of optical properties of dense atomic ensembles
[43–45] as well as for studying light scattering from such
ensembles [46–48].

It is based on the solution of the nonstationary Schrodinger
equation for the wave function ψ of the joint system consisting

of atoms and the electromagnetic field, including vacuum
reservoir,

i�
∂ψ

∂t
= Ĥψ. (2.1)

The Hamiltonian Ĥ of the joint system can be presented as a
sum of Hamiltonian Ĥa of the atoms noninteracting with the
field, the Hamiltonian Ĥf of the free field in a Fabry-Perot
cavity, and the operator V̂ of its interaction,

Ĥ = Ĥ0 + V̂ , (2.2)

Ĥ0 = Ĥf +
∑

a

Ĥa. (2.3)

In the dipole approximation used here, we have

V̂ = −
∑

a

d̂(a)Ê(ra). (2.4)

In this equation d̂(a)is the dipole momentum operator of the
atom a, Ê(ra) is the electric field operator, and ra is the position
of the atom a.

The electric field operator Ê(r) in a microcavity can be
obtained in a standard way by quantization of the classical
field E(r,t). The latter is a solution of Maxwell equations with
corresponding boundary conditions.

Let us consider a coordinate system with the z axis
perpendicular to the mirrors and with reference point z = 0
at one mirror (see Fig. 1). In such a case the boundary
conditions can be written as follows: Ex |z=0 = Ex |z=d =
Ey |z=0 = Ey |z=d = 0. We will use cgs units throughout the
paper. Solving the Maxwell equations, we have

E(r,t) =
∑
k,α

iωk

c
bk,α(t)Ak,α(r) + c.c., (2.5)

bk,α(t) = bk,α exp(−iωkt), (2.6)

Ak,α(r) = A0
k,α exp(ik�r�)

{
exu

x
k,α sin(knz)

+ eyu
y

k,α sin(knz) + ezu
z
k,α cos(knz)

}
. (2.7)

Here ex , ey , and ez are unit vectors of the chosen coordinate
system; r� = xex + yey , k� = kxex + kyey , kn = πn/d, n =
0,1,2, . . . , and uk,α = exu

x
k,α + eyu

y

k,α + ezu
z
k,α is the unit

polarization vector.
From the equation �∇ · E(r,t) = 0 we obtain kxu

x
k,α +

kyu
y

k,α + iknu
z
k,α = 0. The modified polarization vectors

u′
k,α = exu

x
k,α + eyu

y

k,α + eziu
z
k,α are orthogonal to the wave

vector k = k� + ezkn and obeys the following transferability
condition: ∑

α

(u′
k,α)μ(u′

k,α)∗ν = δμν − kμkν

k2
. (2.8)

Here μ and ν denote the vector projection on the coordinate
axes; the sum in (2.8) is over two orthogonal components of
the modified polarization vectors.

To obtain the explicit expression of the Schrodinger electric
field operator we make the standard replacement bk,α(t) →√

�/2ωkâk,α; b∗
k,α(t) → √

�/2ωkâ
†
k,α , where ωk = ck is the

photon frequency, and âk,α and â
†
k,α are the annihilation and
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creation operators. By this means the electric field operator
inside a Fabry-Perot cavity can be presented as follows:

Ê(r) =
∑
k,α

iωk

c

√
�

2ωk

âk,αA0
k,α

×{
exu

x
k,α sin(knz) + eyu

y

k,α sin(knz)

+ ezu
z
k,α cos(knz)

}
exp(ik�r�) + H.c.. (2.9)

Using the standard relation between the electric and magnetic
field, we obtain the magnetic field operator,

Ĥ(r) =
∑
k,α

√
�

2ωk

âk,αA0
k,α

{(
ikyu

z
k,α − knu

y

k,α

)
cos(knz)ex

+ (
knu

x
k,α − ikxu

z
k,α

)
cos(knz)ey

+ (
ikxu

y

k,α − ikyu
x
k,α

)
sin(knz)

}
exp(ik�r�) + H.c.

(2.10)

Note that in this paper we use cgs units and so we apply
the notation H for the microscopic magnetic field in accor-
dance with the standard text book [49]. In (2.9) and (2.10)
A0

k,α is the normalization constant. It can be calculated on the
basis of the standard form of the field Hamiltonian,

Ĥf =
∫

Vq

1

8π
(Ê2 + Ĥ2)dV

=
∑
k,α

�ωk

(
â
†
k,αâk,α + 1

2

)
. (2.11)

Here Vq is the quantization volume, Vq = {0 � z � d} × {0 �
x,y � L}. From Eq. (2.11) we have

A0
k,α =

√
8πc2

L2d
×

{
1, if n ∈ N

1/
√

2, if n = 0.
(2.12)

L is the longitudinal size of the quantization volume.
In accordance with [41] and [42] we will seek the wave

function ψ as an expansion in a set of eigenfunctions ψl of the
operator H0:

ψ =
∑

l

bl(t)ψl. (2.13)

Here, the subscript l defines the state of all atoms and the field.
Using this representation of the wave function we convert the
equation (2.1) to the system of linear differential equations for
the quantum amplitudes,

i�
∂bl(t)

∂t
− Elbl(t) =

∑
j

Vlj bj (t). (2.14)

In this equation El is the energy of the l state of the system,
which consists of noninteracting atoms and electromagnetic
field.

Because of the infinity number of the field states the total
number of equations in the system (2.14) is equal to infinity.

The key simplification of the approach employed is in the
restriction of the total number of states |l〉 taken into account.

We will calculate all radiative correction up to the second order
of the fine structure constant. In this case we can consider only
the following states (see [50]):

(1) Onefold atomic excited states,
ψea

= |g,...,g,e,g,...,g〉 ⊗ |vac〉, Eea
= �ωa .

(2) Resonant single-photon states,
ψg = |g,...,g〉 ⊗ |k,α〉, Eg = �ωk .
(3) Nonresonant states with two excited atoms and one

photon,
ψeaeb

=|g,...,g,e,g,...,g,e,g,...,g〉 ⊗ |k,α〉,Eeaeb
=�(ωa +

ωb) + �ωk .
In the rotating wave approximation it is enough to take into

account only the first and second group of states. Nonresonant
states are necessary for a correct description of the dipole-
dipole interaction at short interatomic distances, comparable
with λ0.

For a description of the coherent external light scattering,
it is necessary to complete the set of quantum states by the
vacuum state without excitation both in the atomic and field
subsystem,

ψg′ = |g,...,g〉 ⊗ |vac〉, Eg′ = 0.
In the framework of the assumptions considered here, the

quantum amplitude of the state ψg′ does not change during the
evolution of the system. It is explained by the fact that any
transitions between ψg′ and the other quantum states taken
into account are impossible. The Lamb shift is considered to
be included in ω0.

Despite the restriction of the total number of quantum states,
the set of equations remains infinite. We can, however, formally
solve it without any additional approximations. For this we
express the amplitudes of quantum states with one photon
via the amplitudes of atomic excitation. Then we put it in the
equations for amplitudes of atomic excitation. Thus, we obtain
a closed finite system of equations for onefold excited states of
atomic subsystem be. For Fourier components be(ω) we have
(at greater length see [42])

∑
e′

[(ω − ωa)δee′ − �ee′(ω)]be′ (ω) = iδe′o. (2.15)

This specific set of equations was obtained under the
assumption that at the initial time only one atom is excited. We
denote it by the subscript o. All other atoms are in the ground
states at t = 0 and electromagnetic field is in the vacuum state.
The system (2.15) with the initial conditions considered here
allows us to analyze both stationary light scattering as well as
nonstationary problems (see [42]).

The size of the system (2.15) is determined by the number of
atoms N and the structure of their energy levels. In this paper
we consider the impurity centers with ground state J = 0.
Total angular momentum of the excited state is J = 1. It
includes three sublevels e = |J,m〉, which differ by the value
of angular momentum projection on the quantization axis
m = −1,0,1. Therefore, the total number of onefold atomic
excited states is 3N . This scheme of levels corresponds to
atoms with two valence electrons such as Sr, Yb, Ca.

The matrix �ee′(ω) describes both spontaneous decay and
excitation exchange between the atoms. This matrix can be
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calculated as follows:

�ee′ (ω) =
∑

g

Ve;gVg;e′ζ (�ω − Eg)

+
∑
ee

Ve;eeVee;e′ζ (�ω − Eee). (2.16)

In this equation ζ (x) is a singular function which is determined
by the relation ζ (x) = lim

k→∞
(1 − exp(ikx))/x.

We will calculate the sum over the field variables in
Eq. (2.16) in the limit L → ∞. This implies summation
over n (kn), the integration over k�, and the polar angle ϕ

as well as summation over polarization types in accordance
with following:

∑
g

or
∑
ee

→ L2

(2π )2

+∞∑
n=0

′
∫ +∞

0
k�dk�

∫ 2π

0
dϕ

∑
α

.

The prime sign here denotes an additional coefficient 1/2 in the
sum over n for n = 0. This coefficient appears from Eq. (2.12).

When calculating matrix elements of the operator V̂ in
(2.16) we will denote by index a those atoms which transit

from excited state to ground one and by index b atoms which
perform reverse transition. With Eqs. (2.9) and (2.12) we have

Ve;g = 〈e|V̂ |g〉 = −deb ;gb
i

√
4π�ωk

L2d

×{
exu

x
k,α sin(knzb) + eyu

y

k,α sin(knzb)

+ ezu
z
k,α cos(knzb)

}
exp(ik�r�b), (2.17)

Vg;e′ = 〈g|V̂ |e′〉 = dga ;ea
i

√
4π�ωk

L2d

×{
ex

(
ux

k,α

)∗
sin(knza) + ey

(
u

y

k,α

)∗
sin(knza)

+ ez

(
uz

k,α

)∗
cos(knza)

}
exp(−ik�r�a). (2.18)

The calculation of Ve;ee Vee;e′ , which can be performed in the
same way, gives Ve;ee = Ve;g , Vee;e′ = Vg;e′ .

For arbitrary ω, the explicit expression of the matrix
�ee′ (ω) is very complicated. We can, however, simplify it
essentially under so-called pole approximation when its value
for frequency ω is replaced by its value for frequency ω0 of the
atomic resonance. This approximation was studied in detail in
[51], where it was shown that it can be applied in systems
where retardation effects are insignificant. This condition can
be satisfied in the real experiment with a good accuracy even
for dense atomic ensembles. In the pole approximation we get

�ee′ (ω0) = L2

4π2

+∞∑
n=0

′
∫ +∞

0
k�dk�

∫ 2π

0
dϕ

4π�ωk

L2d

{
dx

eb ;gb
dx

ga ;ea
sin(knzb) sin(knza)

(
k2
y + k2

n

k2

)

+ dx
eb ;gb

dy
ga ;ea

sin(knzb) sin(knza)

(
−kxky

k2

)
+ dx

eb ;gb
dz

ga ;ea
sin(knzb) cos(knza)

(
−i

kxkn

k2

)
+ dy

eb ;gb
dx

ga ;ea
sin(knzb) sin(knza)

(
−kxky

k2

)
+ dy

eb ;gb
dy

ga ;ea
sin(knzb) sin(knza)

(
k2
x + k2

n

k2

)
+ dy

eb ;gb
dz

ga ;ea
sin(knzb) cos(knza)

(
−i

kykn

k2

)
+ dz

eb ;gb
dx

ga ;ea
cos(knzb) sin(knza)

(
i
kxkn

k2

)

+ dz
eb ;gb

dy
ga ;ea

cos(knzb) sin(knza)

(
i
kykn

k2

)
+ dz

eb ;gb
dz

ga ;ea
cos(knzb) cos(knza)

(
k2
x + k2

y

k2

)}
× exp(ik�r�ab)

[
−iπδ(�ω0 − �ωk) − iπδ(−�ω0 − �ωk) + v.p.

(
1

�ω0 − �ωk

+ 1

−�ω0 − �ωk

)]
. (2.19)

In this equation r�ab = r�b − r�a , the sum over polarization types was calculated using the relation (2.8). The singular ζ function
is represented as follows ζ (x) = −iπδ(x) + v.p./x, where v.p. means the principal value of the integral which contains the ζ

function.
The diagonal element of the matrix (2.19) describes the Lamb shift and the natural linewidth of an atom inside a cavity. The

dipole approximation used here does not allow us to calculate the Lamb shift correctly. This manifests itself in the infinity real
part of the diagonal element. We can, however, consider that the Lamb shift is included into ω0. Hereafter we will associate ω0

with the resonant transition frequency taking into account the Lamb shift.
The imaginary part of the diagonal element determining the natural linewidth can be calculated as follows:

�ee′(ω0)

∣∣∣∣
e=e′

= − iπ

d
dz

ea ;ga
dz

ga ;ea

ω2
0

c2
− iπ

d

[[
ω0 d

πc
]]∑

n=1

{(
ω2

0

c2
+ k2

n

)
sin2(knza)

(
dx

ea ;ga
dx

ga ;ea
+ dy

ea ;ga
dy

ga ;ea

)
+ 2

(
ω2

0

c2
− k2

n

)
cos2(knza)dz

ea ;ga
dz

ga ;ea

}
. (2.20)
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Double brackets here means the integer part. The natural
linewidth γ can be obtained using the relation �ee′ (ω0)|

e=e′=
−iγ /2; see [42] for detail.

If e′ and e correspond to excited states of different atoms,
for example, atoms a and b, matrix element �ee′ (ω) describes
excitation exchange between these atoms. As it is known
this exchange is responsible for interatomic dipole-dipole
interaction. The matrix element �ee′ (ω) is easy to calculate
in the coordinate frame with the X axis along the vector
r�ab. In this frame kx = k� cos ϕ, ky = k� sin ϕ, and k�r�ab =
k�r�ab cos ϕ. The double integral in Eq. (2.19) can be simplified

by the following relations:

kx exp(ik�r�ab) = −i
∂

∂xab

exp(ik�r�ab),

k2
x exp(ik�r�ab) = − ∂2

∂x2
ab

exp(ik�r�ab),

kxky exp(ik�r�ab) = − ∂2

∂xabyab

exp(ik�r�ab).

Here xab = xb − xa , yab = yb − ya . For the other items in
(2.19) we have similar relations, and we have

�ee′ (ω0)
∣∣∣
a �=b

=
+∞∑
n=0

′Ân

∫ +∞

0
k�dk�

∫ 2π

0
dϕ

c

πd

1

k

× exp(ik�r�ab cos ϕ)

[
− iπδ(ω0 − ck) + 2ck

ω2
0 − c2k2

]
. (2.21)

The differential operator Ân is determined as follows:

Ân = dx
eb ;gb

dy
ga ;ea

sin(knzb) sin(knza)

(
∂2

∂x∂y

)
+ dx

eb ;gb
dx

ga ;ea
sin(knzb) sin(knza)

(
k2
n − ∂2

∂y2

)
+ dx

eb ;gb
dz

ga ;ea
sin(knzb) cos(knza)

(
− kn

∂

∂x

)
+ dy

eb ;gb
dx

ga ;ea
sin(knzb) sin(knza)

(
∂2

∂x∂y

)
+ dy

eb ;gb
dy

ga ;ea
sin(knzb) sin(knza)

(
− ∂2

∂x2
+ k2

n

)
+ dy

eb ;gb
dz

ga ;ea
sin(knzb) cos(knza)

(
− kn

∂

∂y

)
+ dz

eb ;gb
dx

ga ;ea
cos(knzb) sin(knza)

(
kn

∂

∂x

)
− dz

eb ;gb
dz

ga ;ea
cos(knzb) cos(knza)

(
∂2

∂x2
+ ∂2

∂y2

)
+ dz

eb ;gb
dy

ga ;ea
cos(knzb) sin(knza)

(
kn

∂

∂y

)
. (2.22)

Here x = xb − xa , y = yb − ya .
The calculation of the double integral in Eq. (2.21) produces Bessel functions J0, K0, and N0. Thus, we have

�ee′ (ω0)
∣∣∣
a �=b

= 2π

d

[[ ω0d

πc
]]∑

n=0

′Ân

×
[
N0

(
r�ab

√
ω2

0

c2
− k2

n

)
− iJ0

(
r�ab

√
ω2

0

c2
− k2

n

)]
− 4

d

+∞∑
n=[[ ω0d

πc
]]+1

ÂnK0

(
r�ab

√
k2
n − ω2

0

c2

)
. (2.23)

The differential operator Ân yields bulky expressions which
we do not show here.

The explicit expressions (2.20) and (2.23) for the matrix
�ee′(ω0) obtained in this section allows us to solve the set of
equations (2.15) numerically and obtain, on this background,
the Fourier amplitudes of atomic states be(ω). Using be(ω) we
can obtain the amplitudes of all states taken into account in our
calculations (see [42]) and, consequently, the wave function
of the considered system. Note that expressions (2.20) and
(2.23) describing spontaneous decay and excitation exchange
between impurity centers inside the cavity essentially differ
from those for atomic ensemble in free space. These dif-
ferences lead to some peculiarities of collective polyatomic
effects in dense atomic systems located into cavity.

In the next section, we will use the obtained general
equations to calculate the transition spectrum of an excited
atom and the time dependence of the total excitation of atomic
ensemble. On this basis, we will analyze radiation trapping in
the considered system.

3. RESULTS AND DISCUSSION

The influence of the dipole-dipole interaction on the
properties of atomic ensemble is determined not only by the
atomic density. The shifts of the energy levels caused by the
internal fields of a dielectric are also very important. The value
of these shifts depends on a number of factors, first of all, on
the nature of the dielectric and its temperature. As it was
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mentioned above in the present paper we will assume that
the temperature is low enough to neglect the electron-phonon
interaction. So the spectral lines of impurity centers are zero
phonon.

The shift of the transition line can be presented as a
sum of its average value � and some random contribution
connected with the inhomogeneity of the internal fields of the
dielectric. We consider this random contribution to be normally
distributed with rms deviation δ. The ratio of δ to natural line
width of the atoms γ0 characterizes the degree of resonance
between impurity atoms. This is one of the key parameters of
the considered system in our theory.

Depending on the symmetry of the internal fields of a
dielectric, the average shift � can be both the same for
all Zeeman sublevels of the excited state and different. In
general, the theory allows us to analyze both cases. Only for
specifics, in this section we limit ourselves to the first case.
This corresponds to the cubic symmetry of internal fields of
a medium, for instance. Hereafter we will consider � to be
included in the resonant transition frequency ω0.

In the framework of the general approach we can consider
an arbitrary distance between the mirrors of a Fabry-Perot
cavity. However, the most exciting case is d < λ0/2 due to the
suppression of the spontaneous decay of the states m = ±1 in
the cavity. So we focus our attention on this case. Taking k−1

0
as a unit of length, hereafter we consider d = 3.

In this paper we assume spatially localized initial excitation
of the ensemble. Such initial condition can be prepared
by a two-photon resonance method. In the framework of
this method the sample is illuminated by two narrow and
off-resonant orthogonally propagated light beams (both beams
parallel to the mirrors of a cavity). Each beam does not cause
single-photon excitation, but their simultaneous interaction
with atoms in the crossing region cause two-photon excitation
from the ground S to the high-energy excited D state if
conditions of two-photon resonance are satisfied. If the
transition frequency from the high-energy D state to the
studied P state is high enough so that its resonant wavelength
λD→P < 2d, this spontaneous transition leads to population of
the P state. Note that the cascade transition from D to S state
can be forbidden, in particular, due to the spontaneous decay
suppression in each step of the cascade. So the registration of
the photon resonant to the transition D −→ P means the P

state population.
The thereby described method allows obtaining a small

cluster of excited atoms in the middle of the sample. For
simplicity thereafter in the paper we will consider that at the
initial time only one atom located in the center of a sample
is excited. Note that the possibilities of two-photon excitation
5s S–2(1/2) −→ 5p P –2(j ) −→ 5d D–2(j )′ of rubidium
atoms have been already studied in Ref. [52].

Equation (2.20) shows that the natural linewidth of the
excited atom inside the cavity depends on its z position
even in the case of a single atom. So all the results must
depend on this parameter. In the framework of the general
theory we can consider an arbitrary position of all the atoms,
including the excited initially atom. From the experimental
point of view the position of the excited atom is determined
by the crossing region of two beams. Further we will consider
zexc = d/2.

Note that the matrix �ee′ and subsequently any physical
observable depends on the positions of all impurity atoms. In
this paper we analyze spatially disordered atomic ensembles
with uniform (on average) distribution of atomic density. So we
average all the results over random spatial configurations of the
ensemble as well as over random shifts of energy levels caused
by the inhomogeneity of the internal fields of a dielectric. This
averaging is performed by a Monte Carlo method.

A. Atomic transition spectrum

Figure 2 shows the transition spectrum of the central atom,
which is initially excited. The calculations were made for
δ = 0. In this case all the atoms are resonant to each other, so
the role of the dipole-dipole interaction is maximal. Ensembles
with two densities n = 0.01 and n = 0.05 are considered.

Density n = 0.01 is small and in this case cooperative
effects in the free space manifest themselves slightly; see [53]
for detail. Difference between transition spectrum of the free
atom and atom excited in the ensemble when the cavity is
absent is very small. However, in a cavity the dipole-dipole

FIG. 2. Transition spectrum of an atom inside a microcavity.
d = 3, δ = 0. (a) Real part; (b) imaginary part. 1, n = 0.01, m = ±1;
2, n = 0.01, m = 0; 3, n = 0.05, m = ±1; 4, n = 0.05, m = 0.
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interaction transforms the transition spectrum significantly.
First of all, in Fig. 2 we see that the transition spectrum
in a cavity for Zeeman sublevels m = ±1 extremely differs
from one for m = 0. Despite the strong cavity suppression
of the spontaneous decay from sublevels m = ±1 [22], we
observe that in the ensemble of the density n = 0.01 the width
of the transition spectrum is approximately equal to 0.6γ0.
This broadening is determined completely by the polyatomic
cooperative effect. Also we observe some blue shift as well
as an essential discrepancy between the spectrum shape and
a typical Lorentz profile. For m = 0 the modification of the
spectrum shape is considerably less than for m = ±1. It can
be explained by the fact that for m = 0 the spontaneous decay
of a single atom in a cavity is not suppressed unlike sublevels
m = ±1. However, a noticeable red shift is observed even in
this case.

In the case of essentially higher density n = 0.05 the
dipole-dipole interaction plays an important role for the atomic
ensembles in free space, without cavity [8]. Nevertheless,
Fig. 1 shows that the microcavity modifies the transition
spectrum additionally. In Fig. 2 one can see a blue shift
comparable with γ0 for m = ±1 and approximately the same
red one for m = 0. The shape of the transition spectrum signif-
icantly differs from a Lorentz profile for any Zeeman sublevel
due to an essential role of the dipole-dipole interaction. This
interaction causes also broadening of the spectrum as density
increases.

B. Time dependence of the total excitation of atomic system

The inverse Fourier transform of be(ω) allows us to obtain
the time dependence of the quantum amplitudes of the onefold
atomic excited states,

be(t) =
∫ +∞

−∞

idω

2π
exp(−iωt)Reo(ω). (3.1)

Here matrix Reo(ω) is the resolvent of the considered system
projected on the onefold atomic excited states [42]. It is
determined from Eq. (2.15) as follows:

Ree′ (ω) = [(ω − ωa)δee′ − �ee′ (ω0)]−1. (3.2)

The total excited state population Psum(t) is given by a sum
of |be(t)|2 over all atoms in the ensemble. Besides Psum(t) we
calculate the time-dependent collective decay rate:

γ (t) = − 1

Psum(t)

dPsum(t)

dt
. (3.3)

Figure 3 shows the time dependence of the total excited
state population and the collective decay rate in the case δ = 0
both for the ensemble in free space and in the cavity. The
results are presented for the atomic density n = 0.1 and for
the size a sample R = 14. R means the radius of the spherical
sample in the case of free space and the radius of a cylindrical
sample in the case of a cavity. First of all, we observe that
the total excited state population in the case of a microcavity
decreases slower than one in the case of free space. Besides
that, the decay rate of sublevels m = ±1 in a cavity is less than
of the Zeeman sublevel m = 0. It is connected with mentioned
features of the field modes structure in the microcavity.

FIG. 3. Time dependence of the total excited state population (a)
and collective decay rate (b). n = 0.1, δ = 0, R = 14. 1, free space;
2, microcavity, d = 3, m = ±1; 3, microcavity, d = 3, m = 0.

For the time interval t � γ −1
0 the time dependence of the

total excited state population in the semilogarithmic scale is
close to linear, and subsequently the collective decay rate
depends on time weakly. This case is similar to a Holstein mode
decay. For t ∼ γ −1

0 the time dependence of the total excited
state population is more complex because both superradiant
and subradiant collective states influence it. For the atomic
ensemble in free space we observe that the collective decay
rate decreases with time here. It can be explained by the
fact that the influence of superradiant states decreases with
time whereas the influence of subradiant states increases
[8]. The same holds true for the microcavity in the case
of sublevel m = 0 decay. However, the time dependence of
the collective decay rate of Zeeman sublevels m = ±1 in the
microcavity is not a monotonic function, and it has a maximum
at t = 1.2γ −1

0 for considered parameters. To understand this
effect we studied the spectral distribution of the density
of collective states. The performed analysis shows that the
frequency distribution of the density of states with proper
lifetimes has two peaks. It causes the quantum beats which
manifest themselves in the excited state population. Generally,
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FIG. 4. The time of radiation trapping in the microcavity. n = 0.1,
d = 3, m = ±1.

quantum beats influence the collective decay rate both for
m = ±1 and m = 0. However, for m = ±1 the role of the
described mechanism is more significant, which is connected
with the suppression of the spontaneous decay of a single atom
in the microcavity.

C. The time of radiation trapping

We will estimate the typical time of radiation trapping
τ from the relation Psum(τ ) = 1/e. In this section we will
concentrate our attention on the case of Zeeman sublevels
m = ±1 initial excitation in view of the fact that it provides
radiation trapping longer than that corresponding to m = 0. In
addition, we point out that the time of radiation trapping in the
microcavity is usually bigger than in the case of the atomic
ensemble with the same density in free space. For example, in
the case n = 0.1, R = 14, δ = 0 we have τ = 60τ0 in a cavity
(m = ±1), whereas τ = 25τ0 in a free space. Here τ0 = 1/γ0

is the natural lifetime of excited states of the free atom.
Figure 4(a) shows τ depending on the size of a sample. The

atomic density is chosen n = 0.1. The results are presented
for different values of the rms deviation of the inhomogeneous

shifts of the resonant transition frequency. The dependence
τ (R) is complex but as the size of the system increases it
approaches to parabola. In the case of mutually resonance
impurities δ = 0 we observe dependence close to quadratic
τ/τ0 ∝ R2 starting approximately with R ≈ 15. It corresponds
to the case when the size of the system is much greater than
photon mean free path lph. The latter can be estimated on the
basis of calculation [43–44] as lph ∼ 1.6. Observed quadratic
dependence is typical for diffuse radiation transfer.

As δ increases, the mean free path of the photon also
increases. In the case δ �= 0 the regime close to diffuse radia-
tion transfer is achieved for bigger systems. The dependence
τ (δ) for R = 14 is shown in Fig. 4(b). The character of this
dependence is determined by two different factors. On the
one hand, radiation trapping is connected with the cooperative
multiple scattering. The influence of this mechanism decreases
with increasing in δ. On the other hand, trapping time depends
on the spontaneous decay suppression, which manifests itself
more noticeably as δ increases. For small δ the first mechanism
is more significant, so τ (δ) decreases. In the case of large δ

decay suppression dominates; this leads to increasing in τ .
Generally, the dependence τ (δ) has a minimum.

Nonresonant impurity centers (δ � γ0)

In a range of solid dielectrics the shifts of resonant transition
frequency of impurity centers δ are relatively large. For
instance, it is typical for NV centers in a diamond. If δ � γ0

the average cross section associated with an individual atom is
much less than λ2

0. In such a case the dipole-dipole interaction
can be significant only for high density of impurities, when the
average distance between mutually resonant atoms (nγ0/δ)−1/3

is less or comparable with wavelength λ0 or to put it differently
when mean free path of photon lph = (nσ0γ0/δ)−1 satisfies the
inequality lph � λ0. Here σ0 = 3λ2

0/2π is the resonant cross
section concerning the free atom.

Assuming the random inhomogeneous shifts of the transi-
tion frequency to be normally distributed, we have

dn

d�
= nf

δ
√

2π
exp

(
− �2

2δ2

)
. (3.4)

In this equation nf means the total density of impurity atoms.
In the considered case δ � γ0 not all the atoms in the

ensemble essentially influence on the radiative processes but
only those which have the inhomogeneous shifts close to that
of the initially excited atom. We will denote the latter as �e.
In our calculation we take into consideration only atoms with
inhomogeneous shifts � ∈ [�e − �1; �e + �1], where �1 is
some computational cutoff frequency. We choose �1 so big
that the obtained results do not change with further increasing
of this parameter.

Figure 5 shows the dependence of the time of radiation
trapping on the size of a sample for two different densities
nf = 5 and nf = 2. The rms deviation of the inhomogeneous
shifts is δ = 103γ0. The mean free path of a photon can be
estimated as lph = 10.6 and lph = 26.5 for nf = 5 and nf = 2,
respectively. In these cases the investigation of the dependence
τ (R) in the regime of diffuse radiation transfer R � lph is
connected with essential computational difficulties. We limit
ourselves by the case R � lph.
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FIG. 5. The time of radiation trapping in the microcavity in the
case of nonresonant impurity centers. δ = 103γ0, d = 3, m = ±1.

Figure 5 demonstrates very weak dependence of the time
of radiation trapping on the size of the sample. It is explained
by competition of two effects. The first one is spontaneous
decay suppression and the second is trapping under multiple
scattering. The role of multiple scattering increases with size,
whereas the spontaneous decay is substantially suppressed for
small R. This suppression explains also increasing of trapping
time with density decreasing. As we approach the single atom
limit the time of radiation trapping increases up to infinity.

4. CONCLUSION

We have developed a consistent quantum mechanical theory
of cooperative effects in ensembles of pointlike impurity
centers imbedded into transparent dielectric and located in
a Fabry-Perot cavity with perfectly conducting plates. Our
approach is based on the solution of the non-steady-state
Schrodinger equation for the wave function of the joint system
consisting of an ensemble of motionless atoms and a weak
electromagnetic field. The interaction of impurity atoms with
the dielectric is simulated by introduction inhomogeneous
shifts of the atomic energy levels. The general approach allows
us to analyze atomic ensembles with arbitrary shape and spatial
distribution of impurities.

As an example of a practical implementation of this
approach in the present work we study the simultaneous
influence of the cavity and resonant dipole-dipole inter-
action on the shape of the line of atomic transition as

well as on light trapping in dense impurity ensembles. We
analyze this influence depending on the size of the ensembles,
its density, as well as on the rms deviation of the transition
frequency shifts caused by the symmetry disturbance of the
internal fields of the dielectric medium. The special attention
is given to the case when the distance between two mirrors is
less than a half of the transition wavelength. This case is of
particular interest due to practically complete suppression of
spontaneous decay of some Zeeman sublevels of the atomic
exited state.

In our opinion, the theory described in the present paper can
be further used for the investigation of Anderson localization
of light in the ensembles of impurity centers. It can be done on
the basis of the spectral analysis of the collective states in such
ensembles [54,55]. A special attention here should be paid to
the case when the average shift of the transition frequency of
impurity atoms caused by the internal fields of a dielectric �

is different for different Zeeman sublevels. In this case the
excited state is not degenerate, which promotes the Anderson
localization [55].

The developed theory can be generalized to the case of
the real susceptibility of the dielectric. In addition, it can be
further generalized to the atomic ensembles in the waveguide.
The case when the resonant frequency of atomic transition
is less than the cutoff frequency of the waveguide attracts
particular interest due to spontaneous decay suppression of all
the Zeeman sublevels. Moreover, the analysis of the atomic
systems in a waveguide can be useful for the investigation of
Anderson localization, because in quasi-1D systems all the
collective states are localized [56,57].

In the present work we restrict our consideration by the
case of a very weak electromagnetic field. We assume that
the field is so weak that we can take into account the states
with no more than one photon. Under this approximation we
neglect all the nonlinear effects. One more way to generalize
the described theory is to consider more than one photon
in the field subsystem. It will allow us to analyze the influence
of the dipole-dipole interaction on the statistics of light as well
as the atomic excitation blockade.
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