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The noncontact (van der Waals) friction is an interesting physical effect, which has been the subject of
controversial scientific discussion. The direct friction term due to the thermal fluctuations of the electromagnetic
field leads to a friction force proportional to 1/Z5 (where Z is the atom-wall distance). The backaction friction
term takes into account the feedback of thermal fluctuations of the atomic dipole moment onto the motion of the
atom and scales as 1/Z8. We investigate noncontact friction effects for the interactions of hydrogen, ground-state
helium, and metastable helium atoms with α-quartz (SiO2), gold (Au), and calcium difluorite (CaF2). We find
that the backaction term dominates over the direct term induced by the thermal electromagnetic fluctuations
inside the material, over wide distance ranges. The friction coefficients obtained for gold are smaller than those
for SiO2 and CaF2 by several orders of magnitude.
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I. INTRODUCTION

Noncontact friction arises in atom-surface interactions; the
theoretical treatment has given rise to some discussion [1–11].
In a simplified understanding, for an ion flying by a dielectric
surface (wall), the quantum friction effect can be understood
in terms of Ohmic heating of the material by the motion of
the image charge inside the medium. Alternatively, one can
understand it in terms of the thermal fluctuations of the electric
fields in the vicinity of the dielectric, and the back reaction onto
the motion of the ion or atom in the vicinity of the wall.

It has recently been argued that one cannot separate the
van der Waals force, at finite temperature, from the friction
effect [9]. The backaction effect is due to the fluctuations
of the atomic dipole moment [9], which are mirrored by the
wall and react back onto the atom; this leads to an additional
contribution to the friction force. In contrast to the direct term
created by the electromagnetic field fluctuations inside the
medium [5] (proportional to 1/Z5 where Z is the atom-wall
distance), the backaction term leads to a 1/Z8 effect. A
comparison of the magnitude of these two effects, for realistic
dielectric response functions of materials, and using a detailed
model of the atomic polarizability, is the subject of the current
paper. While the 1/Z8 effect is parametrically suppressed for
large atom-wall separations, the numerical coefficients may
still change the hierarchy of the effects.

We should also note that the direct term [5,9] can be
formulated as an integral over the imaginary part of the
polarizability, and of the dielectric response function of the ma-
terial. Recently, we found a conceptually interesting one-loop
dominance for the imaginary part of the polarizability [12,13].
The imaginary part of the polarizability describes a process
where the atom emits radiation at the same frequency as the
incident laser radiation, but in a different direction. Note that,
by contrast, Rabi flopping involves continuous absorption and
emission into the laser mode; the laser-dressed states [14,15]
are superpositions of states |g,nL + 1〉 and |e,nL〉, where nL

is the number of laser photons while |g〉 and |e〉 denote the
atomic ground and excited states. A priori, this Rabi flopping
may proceed off resonance.

By contrast, when the ac Stark shift of an atomic level is
formulated perturbatively and the second-order shift of the

atomic level in the external laser field is evaluated using a
second-quantized formalism (see Sec. III of Ref. [16]), a
resonance condition has to be fulfilled in order for an imaginary
part of the energy shift to be generated. Namely, the final state
of atom+field in the decay process has to have exactly the same
energy as the reference state of atom+field. This is possible
only at exact resonance, when the emitted photon has just
the right frequency to compensate the quantum jump of the
bound electron from an excited state to an energetically lower
state [16–18]. The ac Stark shift is proportional to the atomic
polarizability. Its tree-level imaginary part [12,13] corresponds
to spontaneous emission of the atom at an exact resonance
frequency, still, not necessarily along the same direction as
the incident laser photon. When quantum electrodynamics
is involved, it is seen that due to quantum fluctuations of
the electromagnetic field, spontaneous emission is possible
off resonance. In Refs. [12,13], the imaginary part of the
polarizability was found to be dominated by a self-energy
correction to the ac Stark shift. Physically, the imaginary part
of the polarizability corresponds to a decay rate of the reference
state |φ,nL〉 used in the calculation of the ac Stark shift, to a
state |φ,nL − 1,1�kλ〉, where |φ〉 is the atomic reference state,
the occupation number of the laser mode is nL, and there is
either zero or one photon in the mode �kλ. While the laser
frequency is equal to the frequency of the emitted radiation
(ωL = ω�k), the emission proceeds into a different direction as
compared to the laser wave vector (�k �= �kL). Off resonance,
the quantum electrodynamic one-loop effect calculated in
Refs. [12,13] thus dominates the imaginary part of the po-
larizability, not the tree-level term. This is quite surprising; the
relevant Feynman diagrams are shown in Fig. 1. The peculiar
behavior of the imaginary part of the polarizability suggests
a detailed numerical study of the noncontact friction inte-
gral [5,9], and comparison, of the direct and backaction terms.

This paper is organized as follows. In Sec. II, we attempt
to shed some light on the derivation of the effect. Full SI
mksA units are kept throughout the derivation. The numerical
calculations of noncontact friction for the hydrogen and helium
interactions with α-quartz, gold, and CaF2 are described in
Sec. III, where we shall use atomic units for frequency data
and friction coefficients in Tables I–V. We employ a convenient
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FIG. 1. Feynman diagrams contributing to the imaginary part of
the polarizability. A photon is absorbed from a bath (denoted by the
external crosses), while a second photon of equal frequency (non-
resonant with respect to an atomic transition) is emitted (Cutkosky
rules).

fit to the vibrational and interband excitations of the α-quartz
and CaF2 lattices. Finally, conclusions are drawn in Sec. IV.

II. DERIVATION

Our derivation is in part inspired by Ref. [9]; we supplement
the discussion with some explanatory remarks and simplified
formulas where appropriate. The electric field at the position
of the atomic dipole (i.e., at the position of the atom) is written
as

�E(t) = �E0 e−i ω t + �E1 e−i (ω+ω0) t , (1)

where ω is the angular frequency component of the (thermal)
fluctuation, and ω0 describes a small displacement of the
atom’s position itself. The contribution proportional to �E1

is included as a result of a backaction term, which takes
the variation of the spontaneous and induced fields over the
spatial amplitude of the oscillatory motion of the atom into
account [see Eq. (9)]. Hence, the angular frequency of the
motion (ω0) is added to the thermal frequency, and the term
is proportional to exp[−i(ω + ω0) t]. The displacement of the
atom is of angular frequency ω0,

�u(t) = �u0 e−iω0t , �r(t) = �r0 + �u(t). (2)

The dipole density of the isolated atom is supposed to perform
oscillations of the form

�d(�r,t) = �d0 δ(3)(�r − �r0) e−iωt + �p1(�r,ω) e−i(ω+ω0) t ,

�p1(�r,ω) = �d1 δ(3)(�r − �r0) − �d0 �u0 · �∇δ(3)(�r − �r0). (3)

Here, the second term is generated by the displacement of
the atom, i.e., by the expansion of the Dirac δ function

TABLE I. Coefficients for the first few resonances for α-quartz
according to the fitting formula (21) (ordinary and extraordinary
optical axes). The ωk and γk are measured in atomic units, i.e.,
in units of the Eh/�, where Eh is the Hartree energy. The fitting
parameters have been obtained from data tabulated in Ref. [19] (see
also Ref. [20]).

Vibrational Excitations (Ordinary Axis)

k αk ωk γk

1 1.04 × 10−2 1.83 × 10−3 1.29 × 10−5

2 8.53 × 10−2 2.22 × 10−3 1.83 × 10−5

3 0.16 × 10−2 3.18 × 10−3 3.16 × 10−5

4 1.06 × 10−2 3.67 × 10−3 3.20 × 10−5

5 5.52 × 10−2 5.23 × 10−3 3.61 × 10−5

6 4.55 × 10−2 5.34 × 10−3 3.89 × 10−5

Interband Excitations (Ordinary Axis)

k αk ωk γk

7 1.05 × 10−2 3.89 × 10−1 1.12 × 10−2

8 4.71 × 10−2 4.45 × 10−1 5.28 × 10−2

9 4.98 × 10−2 5.37 × 10−1 7.32 × 10−2

10 1.06 × 10−1 6.58 × 10−1 1.30 × 10−1

11 1.12 × 10−1 8.26 × 10−1 2.40 × 10−1

Vibrational Excitations (Extraordinary Axis)

k αk ωk γk

1 3.63 × 10−2 1.74 × 10−3 2.32 × 10−5

2 8.45 × 10−4 2.31 × 10−3 1.52 × 10−5

3 7.54 × 10−2 2.42 × 10−3 3.00 × 10−5

4 1.08 × 10−2 3.58 × 10−3 3.49 × 10−5

5 1.03 × 10−1 5.31 × 10−3 4.46 × 10−5

Interband Excitations (Extraordinary Axis)

k αk ωk γk

6 1.05 × 10−2 3.89 × 10−1 1.12 × 10−2

7 4.71 × 10−2 4.45 × 10−1 5.28 × 10−2

8 4.98 × 10−2 5.37 × 10−1 7.32 × 10−2

9 1.06 × 10−1 6.58 × 10−1 1.30 × 10−2

10 1.12 × 10−1 8.26 × 10−1 2.40 × 10−2

δ(3)(�r − �r0 − �u(t)) to first order in �u(t). While the atomic dipole
moment is a sum of a fluctuating term �df and an induced term
(by the corresponding frequency component of the electric

TABLE II. Same as Table I but the data are for CaF2. The
fitting parameters are obtained using numerical data compiled in
Refs. [19,21–25] for the optical response function of CaF2.

Vibrational Excitations (CaF2)

k αk ωk γk

1 4.25 × 10−1 1.74 × 10−3 1.49 × 10−4

Interband Excitations (CaF2)

k αk ωk γk

2 9.85 × 10−3 4.12 × 10−1 1.98 × 10−2

3 1.62 × 10−1 5.74 × 10−1 1.72 × 10−1

4 1.57 × 10−1 1.13 × 100 5.58 × 10−1
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TABLE III. Normalized friction coefficients η
(1)
0x and η

(2)
0x , given in atomic units (denoted as a.u.), for a distance of Z = a0 from the α-quartz

surface, obtained using the expression (18) for the imaginary part of the atomic polarizability and using Eqs. (17a) and (17b) for the friction
coefficients. The friction coefficient, in SI mksA units, is obtained from Eqs. (27) and (31a).

Friction Coefficients for SiO2 [Ordinary Axis]

Atomic hydrogen (1S) Helium (1S) Helium (23S1)

T [K] η
(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0

273 2.05 × 10−15 1.76 × 10−1 1.94 × 10−16 1.67 × 10−2 1.03 × 10−11 8.75 × 102

298 2.78 × 10−15 2.14 × 10−1 2.63 × 10−16 2.02 × 10−2 1.40 × 10−11 1.06 × 103

300 2.85 × 10−15 2.17 × 10−1 2.69 × 10−16 2.05 × 10−2 1.43 × 10−11 1.08 × 103

Friction Coefficients for SiO2 [Extraordinary Axis]

Atomic hydrogen (1S) Helium (1S) Helium (23S1)

T [K] η
(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0

273 2.00 × 10−15 9.19 × 10−2 1.89 × 10−16 1.67 × 10−2 1.01 × 10−11 4.57 × 102

298 2.70 × 10−15 1.14 × 10−1 2.55 × 10−16 2.02 × 10−2 1.36 × 10−11 5.69 × 102

300 2.76 × 10−15 1.16 × 10−1 2.61 × 10−16 2.05 × 10−2 1.39 × 10−11 5.78 × 102

field at the position of the atom),

d0i = d
f

i + α(ω) E0i , (4)

the frequency component for ω + ω0 only contains an induced
term, �d1 = α(ω + ω0) �E1.

Let Gij (�r,�r0,ω) denote the frequency component of the
Green tensor, which determines the electric field generated
at position �r by a point dipole at �r0. In the nonretardation
approximation [Eq. (1) of Ref. [5]], it reads

g(�r,�r ′,ω) = 1

4πε0

(
1

|�r − �r ′|

− ε(ω) − 1

ε(ω) + 1

1

|�r − �r ′ + 2n̂⊥(�r ′ · n̂⊥)|
)

,

Gij (�r,�r ′,ω) = −∇i∇′
j g(�r,�r ′,ω). (5)

Here, n̂ = êz is the surface normal (the surface of the dielectric
is the xy plane). The result

Gzz(�0,�rZ ,ω) = 2

Z3
+ ε(ω) − 1

ε(ω) + 1

2

Z3
, �rZ = êz Z, (6)

reflects the fact that a dipole oriented in parallel to the z axis
generates a mirror dipole which also is oriented in parallel to
the z axis (not antiparallel, see the dipoles in Fig. 2). Because
of this, the second term on the right-hand side of Eq. (6) has
the same sign as the first term.

Self-consistency dictates that the field �E0 ≡ �E0(�r0) at the
position of the atom is equal to the sum of the field generated by

the dipole moment d0i , and the fluctuating component Es
i (�r0,ω)

of the electric field,

E0i = Gii(�r0,�r0,ω) d0i + Es
i (�r0,ω)

= Gii(�r0,�r0,ω) α(ω)E0i + Gii(�r0,�r0,ω) d
f

i

+Es
i (�r0,ω), (7)

where no summation over i is carried out (one has Gij =
Gii δij at equal spatial coordinates). So,

E0i = Gii(�r0,�r0,ω) d
f

i + Es
i (�r0,ω)

1 − Gii(�r0,�r0,ω) α(ω)
, (8a)

d0i = d
f

i + α(ω) Es
i (�r0,ω)

1 − α(ω) Gii(�r0,�r0,ω)
, (8b)

where in Eq. (8b) we have taken into account Eq. (4). The
electric field �E0 and the dipole moment �d0 are given in terms
of fluctuating terms; the denominators in Eq. (8) take the
backaction into account. For �E1, one observes that the gradient
term in the expression of �p1(�r,ω) [Eq. (3)], in the nonfluctu-
ating contribution

∫
d3r ′ Gij (�r,�r ′,ω + ω0) p1j (�r,ω), needs to

be treated by partial integration. Adding the term due to the
fluctuations of the atom’s position, and due to the spontaneous
fluctations of the electromagnetic field, one obtains

E1i = Gii(�r0,�r0,ω + ω0) α(ω + ω0) E1i

+ �u0 · �∇�r
(
Es

i (�r,ω) + Gij (�r0,�r,ω + ω0) d0j

+Gij (�r,�r0,ω) d0j

)∣∣
�r=�r0

. (9)

TABLE IV. Same as Table III, but for the hydrogen and helium interactions with gold (Au).

Friction Coefficients for Gold (Au)

Atomic hydrogen (1S) Helium (1S) Helium (23S1)

T [K] η
(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0

273 8.67 × 10−19 1.05 × 10−9 8.19 × 10−20 9.91 × 10−11 4.38 × 10−15 5.20 × 10−6

298 1.26 × 10−15 1.27 × 10−9 1.19 × 10−19 1.20 × 10−10 6.41 × 10−15 6.32 × 10−6

300 1.30 × 10−15 1.29 × 10−9 1.23 × 10−19 1.22 × 10−10 6.60 × 10−15 6.41 × 10−6
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TABLE V. Same as Table III, but for the hydrogen and helium interactions with CaF2.

Friction Coefficients for CaF2

Atomic hydrogen (1S) Helium (1S) Helium (23S1)

T [K] η
(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0 η

(1)
x0 η

(2)
x0

273 3.12 × 10−15 4.79 × 10−1 8.34 × 10−16 4.53 × 10−2 1.54 × 10−11 2.37 × 103

298 3.61 × 10−15 5.09 × 10−1 8.85 × 10−16 4.81 × 10−2 1.78 × 10−11 2.52 × 103

300 3.65 × 10−15 5.11 × 10−1 8.88 × 10−16 4.83 × 10−2 1.80 × 10−11 2.53 × 103

This equation can be trivially solved for �E1. The thermal
fluctuations are described by the following equations [5],

〈
d

f

i d
f

j

〉
ω

= 2 �(ω,T )

ω
δij Im α(ω), (10a)

〈Ei(�r) Ej (�r ′)〉ω = 2 �(ω,T )

ω
Im[Gij (�r,�r ′,ω)]. (10b)

where �(ω,T ) = � ω [ 1
2 + n(ω)] = 1

2 � ω coth ( 1
2 β � ω) is the

Kallen-Welton thermal factor, with n(ω) = [exp(β � ω) −
1]−1, and β = 1/(kB T ) where kB is the Boltzmann constant.
With the help of ρ = −�∇ · �p and �j = ∂t �p, one formulates a
time-dependent force,

�F (t) =
∫

d3r 〈ρ(�r,t) �E∗(�r,t) + �j (�r,t) × �B∗(�r,t)〉

= �Fs(t) + �u0 · ∂

∂r
�Fs(t) + �Ff (ω,ω0) e−iω0 t . (11)

Here, Fs(t) is the static van der Waals force, �u0 · ∂
∂r

�Fs(t)
describes the variation of the van der Waals force with the
oscillating position of the atom, and �Ff (ω,ω0) is a Fourier
component of the friction force. An integration over the
thermal fluctuations of all Fourier components of the friction
force gives the total friction force,

�Ff = 1

2

∫ ∞

0

dω

2π
ω0

∂

∂ω0
〈 �F (ω,ω0)〉

∣∣∣∣
ω0=0

= i ω0[ηx (u0x êx + u0y êy) + ηz uzêz]

= −ηx (vxêx + vyêy) − ηzvzêz. (12)

Here, ηx and ηz are the friction coefficient for motion along the
x and z directions, respectively. The additional assumption of
a small mechanical motion with velocity �v = ∂t �u0e

−iω0t |t=0 =
−iω0 �u0 is made.

The result for ηx is obtained as,

ηx = β�
2

2π

∫ ∞

0

dω

sinh2
(

1
2 β � ω

)
⎡
⎣ ∑

�=x,y,z

∂2

∂x ∂x ′ ImG��(�r,�r ′,ω) Im

(
α(ω)

1 − α(ω) G��(�rZ ,�rZ ,ω)

)

− 2|α(ω)|2 Re

(
1

[1 − α∗(ω) D∗
zz(�rZ ,�rZ ,ω)][1 − α(ω) Gzz(�rZ ,�rZ ,ω)]

)(
∂

∂x
Gxz(�r,�rZ ,ω)

)2
⎤
⎦

∣∣∣∣∣∣
�r,�r ′=�rZ

≈ β�
2

2π

∫ ∞

0

dω

sinh2
(

1
2 β � ω

)
⎡
⎣ ∑

�=x,y,z

∂2

∂x ∂x ′ Im[G��(�r,�r ′,ω)] Im[α(ω)] + α(ω)2

×
⎧⎨
⎩

∑
�=x,y,z

{
∂2

∂x ∂x ′ Im[G��(�r,�r ′,ω)] Im[G��(�rZ ,�rZ ,ω)]

}
− 2

(
∂

∂x
Im[Gxz(�r,�rZ ,ω)]

)2
⎫⎬
⎭

⎤
⎦

∣∣∣∣∣∣
�r,�r ′=�rZ

. (13)

This result can be written as ηx = η(1)
x + η(2)

x , where η(2)
x is generated by the term in curly brackets in the integrand. With the help

of
∑

�
∂2

∂x ∂x ′ Im G��(�r,�r ′) = Im( ε(ω)−1
ε(ω)+1 ) 3

16πε0 Z5 , one verifies that the leading-order, linear term in the polarizability (see Ref. [5]),
from Eq. (13), is given as

η(1)
x = β�

2

2π

∫ ∞

0

dω

sinh2
(

1
2 β � ω

) ∑
�=x,y,z

∂2

∂x ∂x ′ ImG��(�r,�r ′) Im[α(ω)] = 3β�
2

32π2ε0Z5

∫ ∞

0

dω Im[α(ω)]

sinh2
(

1
2 β � ω

) Im

(
ε(ω) − 1

ε(ω) + 1

)
. (14)

In Eq. (13), the term of second order in the polarizability is given as follows,

η(2)
x = β�

2

8π

∫ ∞

0

dω α(ω)2

sinh2
(

1
2 β � ω

) [{
∂2

∂z2
Im Gzz(�r,�rZ ,ω)

}
Im Gzz(�rZ ,�rZ ,ω) − 2

(
∂

∂z
Im Gzz(�r,�rZ ,ω)

)2]∣∣∣∣∣
�r,�r ′=�rZ

= 9β�
2

4096 π3 ε2
0 Z8

∫ ∞

0
dω

α(ω)2

sinh2
(

1
2 β � ω

)[
Im

(
ε(ω) − 1

ε(ω) + 1

)]2

. (15)
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FIG. 2. Mirroring a dipole in the xy plane. A dipole aligned along
the x axis gives rise to an antiparallel mirror dipole, whereas a dipole
aligned along the z axis gives rise to a parallel mirror dipole. Recall
that mirror charges have the opposite sign as compared to the original
ones.

For friction in the z direction, one derives ηz = η(1)
z + η(2)

z ,
with η(1)

z = 2 η(2)
z and η(2)

z = 7 η(2)
x , confirming Ref. [9]. The

term η(2) is generated by the backaction denominators from
Eqs. (8a) and (8b). For the numerical evaluation of the term
η(1), the following result

Im[α(ω)] = Im[αR(ω)] + ω3

6πε0c3
[α(ω)]2, (16a)

Im[αR(ω)] = Im[αr (ω)] − Im[αr (−ω)], (16b)

Im[αr (ω)] = π

2

∑
m

fm0

Em − E
δ(Em − E + � ω), (16c)

has recently been derived in Ref. [12]. Here, fm0 are the
oscillator strengths [26,27] for the dipole transitions from the
ground state of the atom with energy E to the excited states |m〉
with energy Em. The one-loop term in the result for Im[α(ω)],
proportional to α(ω)2, implies that the numerical evaluation
of both η(1) and η(2) is related; because typical thermal wave
vectors (inversely related to the thermal wavelengths) are much
smaller than typical atomic transition frequencies, η(2) is the
dominant term. The resonant, tree-level contribution to the
atomic polarizability is denoted as Im[αr (ω)].

The expression for Im[αr (ω)] takes into account only
resonant processes, with Dirac-δ peaks near the resonant
transitions. However, this concept ignores the possibility of
off-resonant driving of an atomic transition, where the atom
would absorb an off-resonant photon and emit a photon of
the same frequency as the absorbed, off-resonant one, but
in a different spatial direction. Indeed, it has been argued in
Ref. [28] that the off-resonant driving of an atomic transition
mediates the dominant mechanism in the determination of
the quantum friction force. The same argument applies to the
atom-surface quantum friction force mediated by the dragging
of the image dipole inside the medium, which is the subject
of the current investigation. We have recently considered (see
Ref. [13]) the Feynman diagrams in Fig. 1, where the grounded
external photon lines (those anchored by the external crosses)
represent the absorption of an off-resonant photon from the
quantized radiation field (e.g., a laser field or a bath of thermal
photons), the vertical internal lines denote the cutting of the
diagram at the point where the photon is emitted, and the
photon loop denotes the self-interaction of the atomic electron
(the imaginary of the corresponding energy shift is directly

proportional to the imaginary part of the polarizability [29]).
The overall result is obtained by adding the (in this case
dominant) one-loop “correction” to the resonant imaginary
part of the polarizability.

III. NUMERICAL EVALUATION

The structure of Eqs. (14) and (15), which we recall for
convenience,

η(1)
x = 3β�

2

32π2ε0Z5

∫ ∞

0

dω Im[α(ω)]

sinh2
(

1
2 β � ω

) Im

(
ε(ω) − 1

ε(ω) + 1

)
,

(17a)

η(2)
x = 9β�

2

4096 π3 ε2
0 Z8

×
∫ ∞

0
dω

α(ω)2

sinh2
(

1
2β� ω

)[
Im

(
ε(ω) − 1

ε(ω) + 1

)]2

, (17b)

implies that, for the evaluation of the quantum friction
coefficient in the vicinity of a dielectric, we need to have
reliable data for both the imaginary part of the polarizability
of the atom, Im[α(ω)], as well as the imaginary part of the
dielectric response function, which is given as Im{[ε(ω) −
1]/[ε(ω) + 1)]}. A related problem, namely, the calculation of
black-body friction for an atom immersed in a thermal bath of
photons, has recently been considered in Ref. [28]. It has been
argued that the inclusion of the width �n of the virtual states
in the expression for the polarizability is crucial for obtaining
reliable predictions. The imaginary part of the polarizability is
given in Eq. (16).

In the SI mksA unit system [30], the atomic dipole
polarizability describes the dynamically induced dipole, which
is created when the atom is irradiated with a light field (electric
field). Thus, the physical dimension of the polarizability, in SI
mksA units, is determined by the requirement that one should
obtain a dipole moment upon multiplying the polarizability
α(ω) by an electric field. In atomic units (a.u.) with � = 1,
c = 1/α, and ε0 = 1/(4π ), one has

Im[α(ω)]|a.u. = Im[αR(ω)]|a.u. + 2α3

3
{ω3[α(ω)]2}|a.u.. (18)

In natural as well as atomic units [19], physical quantities
are identified with the corresponding reduced quantities, i.e.,
with the numbers that multiply the fundamental units in the
respective unit systems. In order to convert the relation (16c)
into atomic units, we recall that the atomic units for charge
(e), length (Bohr radius a0), and energy (Hartree Eh) are as
follows,

|e| = 1.60218 × 10−19 C, (19a)

a0 = �

α me c
= 5.29177 × 10−11 m, (19b)

Eh = me (α c)2 = 4.35974 × 10−18 J ≈ 27.2 eV. (19c)

Here, |e| is the modulus of the elementary charge (we reserve
the symbol e for the electron charge, see Ref. [31]), α is
Sommerfeld’s fine-structure constant, while me is the electron
mass and c denotes the speed of light. The fundamental atomic
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unit of energy is obtained by multiplying the fundamental
atomic mass unit by the fundamental atomic unit of velocity,
which is α c. In atomic units, then, the reduced quantities
fulfill the relations c = 1/α and e = � = me = 1, while ε0 =
1/(4π ).

For completeness, we also indicate the explicit overall
conversion from natural (n.u.) and atomic (a.u.) units to SI
mksA for the polarizability, which reads as

α(ω)]|SI = ε0 �
3

m3 c3
α(ω)]|n.u.

= 4πε0 �
3

α3 m3 c3
α(ω)]|a.u.. (20)

Judicious unit conversion helps to eliminate conceivable
sources of numerical error in the final results for the friction
coefficients. The hydrogen and helium polarizabilities, in the
natural and atomic unit systems, are well known [32–38]. From
now on, for the remainder of the current section, we switch to
atomic units.

In our numerical calculations, we concentrate on the
evaluation of dielectric response function of α-quartz (SiO2),
gold (Au), and calcium difluorite (CaF2). Indeed, a collection
of references on optical properties of solids has been given
in Refs. [19,21–25]. Following Ref. [20], we employ the
following functional form for SiO2 and CaF2, which leads
to a satisfactory fit of the available data (see Tables I and II),

ρ(ω) = ε(ω) − 1

ε(ω) + 2
= [n(ω) + i k(ω)]2 − 1

[n(ω) + i k(ω)]2 + 2

≈
n∑

k=1

αk

ω2
k

ω2
k − i γk ω − ω2

. (21)

We have applied a model of this functional form to α-quartz
(ordinary and extraordinary axis), Au and CaF2. The form
of ρ is inspired by the Clausius-Mossotti equation, which
suggests that the expression {[ε(ω) − 1]/[ε(ω) + 2]} should
be identified as a kind of polarizability function of the
underlying medium. This function, in turn, exactly has the
functional form indicated on the right-hand side of Eq. (21).
The dimensionless permittivity ε(ω) is obtained as ε(ω) =
(1 + 2 ρ)/(1 − ρ). Also, it is useful to point out that the
response function [ε(ω) − 1]/[ε(ω) + 1], whose imaginary
part enters the integrand in Eq. (17a), can be reproduced as
follows,

ε(ω) − 1

ε(ω) + 1
= 3ρ(ω)

ρ(ω) + 2
. (22)

Formula (21) leads to a satisfactory representation of the data
for both infrared and ultraviolet absorption bands of SiO2.

In order to model the dielectric response function of gold
(Au), we proceed in two steps. First, we employ a Drude
model,

ε(ω) = 1 − ω2
p

ω(ω + iγp)
+ �ε(ω) (23)

with ωp = 0.3330 Eh/h and γp = 1.164 × 10−3 Eh/h (the
specification in terms of Eh/h is equivalent to the use of
atomic units). For the remainder function �ε(ω), we find the

following representation,

�ε(ω) − 1

�ε(ω) + 2
= �ρ(ω) ≈ 1 − a + a ω2

0

ω2
0 − iγ0ω − ω2

(24)

with a = 1.5373, ω0 = 1.462 Eh/h, and γ0 = 4.550 Eh/h. In
view of the asymptotics

�ρ(ω) = 1 + i a γ0

ω2
0

ω, ω → 0, (25)

the functional form (24) ensures that the dielectric permittivity
of gold, as modeled by the leading Drude model term (23), for
ω → 0, retains its form of a leading term, equal to unity, plus an
imaginary part which models the (nearly perfect) conductivity
of gold for small driving frequencies.

Our discussion of atomic units provides us with an excellent
opportunity to discuss the natural unit of the normalized
friction coefficient η. In order to convert η from atomic to SI
mksA units, one needs to examine the functional relationship
Fx = −η vx , where vx is the particle’s velocity. The atomic unit
of velocity is α c, while the atomic unit of force is equal to the
force experienced by two elementary charges, which are apart
from each other by a Bohr radius. Denoting the atomic unit
of force, for which we have not found a commonly accepted
symbol in the literature, as Fa.u., we have

Fa.u. = e2

4πε0 a2
0

= 8.23872 × 10−8 N. (26)

The atomic unit ηa.u. for the friction coefficient thus converts
to SI mksA units as follows,

ηa.u. = Fa.u.
α c

= 3.76594 × 10−14 kg

s
. (27)

For completeness, we also note the atomic units ωa.u. and νa.u.
of angular frequency and the cycles per second, respectively,

ωa.u. = Eh

�
= 4.13414 1016 rad

s
, (28)

νa.u. = Eh

h
= 6.57968 1015 Hz. (29)

The data published in the reference volume of Palik [19] for
the optical properties of solids relates to measurements at room
temperature. The integral (17a) carries an explicit temperature
dependence in view of the Boltzmann factor, which appears in
disguised form (hyperbolic sine function in the denominator),
but there is also an implicit temperature dependence of the
dielectric response function [ε(ω) − 1]/[ε(ω) + 1], which has
been analyzed (for CaF2) in Refs. [23–25].

For the SiO2, gold and CaF2 interactions investigated here,
we perform the calculations for temperatures around room
temperature, i.e., within the range 273 K � T � 300 K. We
use the spectroscopic data from Tables I–II, and employ the
formula for the imaginary part of the polarizability given in
Eq. (18), and the representation of the dielectric response
function in Eq. (21). Because of the narrow temperature range
under study, this procedure is sufficient for α-quartz and CaF2.
For gold, we take into account the Drude model, as given in
Eq. (23). The uncertainty of our theoretical predictions should
be estimated to be on the level of 10–20 %, in view of the
necessarily somewhat incomplete character of any global fit to
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discrete data on the dielectric constant and dielectric response
function, which persists even if care is taken to harvest all
available data from [19].

A priori, the data in Palik’s book [19] pertain to room tem-
perature. For CaF2, we may enhance the theoretical treatment
somewhat because the temperature dependence of the dielec-
tric response function has been studied in Refs. [21,22,24,25].
The dominant effect on the temperature dependence of the
dielectric response function of CaF2 is due to the shift of
the large-amplitude vibrational excitation at ω1 = 1.74 ×
10−3 a.u. given in Table II. We find that the temperature-
dependent data for the response function [ε(ω) − 1]/[ε(ω) +
1] given in Fig. 10 of Ref. [25] can be fitted satisfactorily
by introducing a single temperature-dependent parameter in
our fit function, namely, a temperature-dependent width. The
replacement in terms of the parameters listed in Table II is

γ1 → γ1 + a (T − T0), a = 4.97 × 10−7 Eh

h K
, (30)

(4.97 × 10−7 a.u./K), where T0 = 300 K is the room-
temperature reference point.

We finally obtain the friction coefficients given in Ta-
bles III–V. The normalized friction coefficient η0 given in
Tables III–V is indicated in atomic units, for a distance of
one Bohr radius from the surface. The Z dependence and the
conversion to SI mksA units is accomplished as follows: One
takes the respective entry for η0 from Tables III–V, multiplies
it by the atomic unit of the friction coefficient given in Eq. (27)
and corrects for the 1/Z5 and 1/Z8 dependences,

η(1)
∣∣
SI = η

(1)
0

∣∣
a.u.

(a0

Z
)5

3.76594 × 10−14 kg

s
, (31a)

η(2)|SI = η
(2)
0

∣∣
a.u.

(a0

Z
)8

3.76594 × 10−14 kg

s
. (31b)

This consideration should be supplemented by an example.
The backaction friction coefficients η(2)

x given in Tables III–V
are found to be numerically larger than the coefficients η(1)

x

by several orders of magnitude, but they are suppressed, for
larger atom-wall distances, by the functional form of the effect
(1/Z8 versus 1/Z5). Let us consider the case of a helium atom
(mass mHe = 6.695 × 10−27 kg), at a distance

Z20 = 20 a0 (32)

away from the α-quartz surface (extraordinary axis). We em-
ploy the normalized friction coefficients η

(1)
0 = 8.81 × 10−16

and η
(2)
0 = 4.80 × 10−2 from Table III, for a temperature

T = 298 K. With

u0 = 3.76594 × 10−14 kg s−1 (33)

being the atomic units of the friction coefficient, the attenuation
equation Fx = −η vx is solved by

dvx

dt
= −γ vx, vx(t) = vx(0) exp(−γ t), (34a)

γ =
[

η
(1)
0x u0

mHe

(
a0

Z20

)5
]

+
[

η
(2)
0x u0

mHe

(
a0

Z20

)8
]

= (1.55 × 10−9 s−1) + (10.55 s−1)

≈ 10.55 s−1, (34b)

for ground-state helium atoms. This corresponds to an at-
tenuation time of τ = 0.0948 s, in the functional relationship
dvx/dt = vx/τ .

IV. CONCLUSIONS

In this paper, we have performed the analysis of the direct
and backaction friction coefficients in Sec. II, to arrive at a
unified formula for the quantum friction coefficient of a neutral
atom, in Eqs. (17a) and (17b). The numerical evaluation for
the interactions of atomic hydrogen and helium with α-quartz
and calcium difluorite are described in Sec. III. The results
in Tables III–V are indicated in atomic units, i.e., in terms of
the atomic unit of the friction coefficient, which is equal to
the atomic force unit (electrostatic force on two elementary
charges a Bohr radius apart), divided by the atomic unit of
velocity [equal to the speed of light multiplied by the fine-
structure constant, see Eq. (27)]. The conversion of the entries
given in Tables III–V to SI units is governed by Eq. (31a). The
friction coefficients indicated in Table IV for gold are smaller
by several orders of magnitude than those for SiO2 (Table III)
and CaF2 (Table V).

Finally, in Appendix A, we illustrate the result on the
basis of a calculation of the Maxwell stress tensor, and
verify that the zero-temperature contribution to the quantum
friction is suppressed in comparison to the main term given in
Eq. (17a). In Appendix A, we refer to the zero-point (quantum)
fluctuations as opposed to the thermal fluctuations of the
electromagnetic field.

For a discussion of experimental possibilities to study
the calculated effects discussed here, we refer to Ref. [12].
An alternative experimental possibility would involve a laser
interferometer [39]. An interferometric apparatus has recently
been proposed for the study of gravitational interactions of
antihydrogen atoms (see Refs. [40,41]); the tiny gravitational
shift of the interference pattern from atoms, after passing
through a grating, should enable a test of Einstein’s equiv-
alence principle for antimatter (this is the main conceptual
idea of the AGE Collaboration, see Ref. [41]). Adapted
to a conceivable quantum friction measurement, one might
envisage the installation of a hot single crystal in one arm of
a laser atomic beam interferometer, with a variable distance
from the beam, in order to measure the predicted Z−8 scaling
of the effect.
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APPENDIX: QUANTUM FRICTION FOR T = 0

We start from the zero-temperature result for the quantum
friction of two semi-infinite solids, which is derived indepen-
dently in Ref. [42]. Indeed, from Eqs. (15), (25), and (54) of
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Ref. [42], we have

Fx = � S

π3

∫ ∞

0
dk‖ k‖

∫ ∞

0
dk⊥ e−2k Z

×
∫ vx k‖

0
dω Im

[
ε1(ω) − 1

ε1(ω) + 1

]
Im

[
ε2(k‖ vx − ω) − 1

ε2(k‖ vx − ω) + 1

]
.

(A1)

The quantum friction force for an atom can be obtained from
the above formula by a matching procedure. Namely, for a
dilute gas of atoms, which we assume to model the slab with
subscript 1, the relative permittivity can be written as follows,

ε1(ω) = 1 + NV

ε0
α(ω), (A2)

where α(ω) is the (dipole) polarizability, and NV is the
(volume) density of atoms. Here, ε1(ω) is assumed to deviate
from unity only slightly. We can then substitute

ε1(ω) − 1

ε1(ω) + 1
→ NV

2ε0
α(ω). (A3)

Here, NV = S−1 dN/dz is equal to the increase dN in the
number of atoms as we shift one of the plates by a distance dz

from the other. The factor dN/dz can then be brought to the
left-hand side where it reads as F‖(v)dz/dN . Differentiating
with respect to dz, one obtains [dF‖(v)/dz] (dz/dN) =
dF‖(v)/dN , i.e., the force on the added atom. The net result
is that we have to differentiate F‖ over z, and divide the result
by S NV , to obtain the force on the atom,

Fx = − �

π3 ε0

∫ ∞

0
dk‖ k‖

∫ ∞

−∞
dk⊥ k e−2k Z

×
∫ vk‖

0
dω Im[α(ω)] Im

[
ε(k‖vx − ω) − 1

ε(k‖vx − ω) + 1

]
. (A4)

In the limit of small velocities, i.e., vx � Z ω0, where ω0

is the first resonance frequency of either the atom α(ω), we
can replace both the polarizability of the atom as well as the
dielectric function of the solid by their limiting forms for
small argument, i.e., small ω and small ω′ = k‖ vx − ω, can be
replaced by their low-frequency limits. We assume an atomic
polarizability of the functional form

α(ω) =
∑

n

fn0

E2
n0 − i �n (�ω) − (�ω)2

, (A5)

where the oscillator strengths are denoted as fn0 and the
En0 are the excitation frequencies of the atom. For the

zero-temperature quantum friction, the relevant limit is the
limit of small angular frequency ω � E10/�, and we assume
that the first resonance dominates, with �1 � E10. Under these
assumptions, we can approximate

Im[α(ω)] =
∑

n

fn0

E4
n0

�n � ω ≈ �1 (�ω)

E2
10

α0. (A6)

We have written α0 = α(0) for the static polarizability, and we
assume that the sum is dominated by the lowest resonance
corresponding to the first excited state with n = 1. If the
assumptions are not fulfilled, then the relationship

α0 = E2
10

�1

∑
n

fn0

E4
n0

�n (A7)

may serve as the definition of the quantity α0. For the solid,
we assume the functional form of a dielectric constant of
a conductor, which contains a term with zero resonance
frequency in the decomposition of the dielectric function. We
then have (see also Ref. [31]),

ε(ω) ∼ 1 − ω2
p

ω(ω + iγ )
, (A8a)

Im

[
ε(ω) − 1

ε(ω) + 1

]
∼ 2ω γ

ω2
p

= 2ω ε0

σT (0)
, (A8b)

where σT (0) is the temperature-dependent direct-current con-
ductivity (for zero frequency). Substituting the results obtained
in Eqs. (A6) and (A8) in Eq. (A1) gives

Fx = − �

π3ε0

�1 α0

E2
10

2γ

ω2
p

∫ ∞

0
dk‖ k‖

×
∫ ∞

−∞
dk⊥ k e−2k z

∫ vx k‖

0
dω ω (k‖vx − ω)

= − 45�

26 π2

�1 α0 γ

ε0 E2
10 ω2

p

v3
x

z7
= − 45�

26 π2

�1

E2
10

v3
x

Z7

α0

σT (0)
,

(A9)

with a Z−7 dependence. The ε0 factors cancel between
the polarizability and the conductivity. The result vanishes
in the limit σT (0) → ∞, where many materials become
superconducting [σ (0) = σT (0) → ∞ for T → 0].
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