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Two-particle atomic coalescences: Boundary conditions for the Fock coefficient components
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The exact values of the presently determined components of the angular Fock coefficients at the two-particle
coalescences were obtained and systematized. The Green’s-function approach was successfully applied to
simplify the most complicated calculations. The boundary conditions for the Fock coefficient components in
hyperspherical angular coordinates, which follow from the Kato cusp conditions for the two-electron wave
function in the natural interparticle coordinates, were derived. The validity of the obtained boundary conditions
was verified with examples of all the presently determined components. The additional boundary conditions not
arising from the Kato cusp conditions were obtained as well. Wolfram’s Mathematica was used extensively to
obtain these results.
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I. INTRODUCTION

Investigation of the wave functions of heliumlike iso-
electronic systems has been the subject of a great number
of articles. However, only a few of them (see, e.g., [1–7])
were devoted to studying these wave functions at two-particle
coalescences, where the two electrons or one of the electrons
and the nucleus occupy the same point of the usual three-
dimensional space. An interest in such specific situations is
caused by the fact that they can serve as effective physical and
mathematical models for the description of various physical
processes, such as, e.g., two-electron photoionization [8].

The analytical treatment of the two-particle coalescences is
based on the Fock expansion [9] for the 1S-state wave functions
of a two-electron atom and/or ion

χ (r1,r2,r12) ≡ �(r,α,θ ) =
∞∑

k=0

rk

[k/2]∑
p=0

ψk,p(α,θ )(ln r)p, (1)

where the hyperspherical angles α and θ and the hyperspherical
radius r are related to the interparticle distances r1,r2 and r12

as follows:

α = 2 arctan(r2/r1), θ = arccos
[(

r2
1 + r2

2 − r2
12

)
/(2r1r2)

]
,

(2)

r =
√

r2
1 + r2

2 . (3)

References [10–18] were devoted to investigating the proper-
ties and to calculating the angular Fock coefficients (AFCs)
ψk,p(α,θ ). It has been proven that the AFCs satisfy (see,
e.g., [15] or [19]) the Fock recurrence relation (FRR)

[�2 − k(k + 4)]ψk,p = hk,p, (4a)

hk,p = 2(k + 2)(p + 1)ψk,p+1

+ (p + 1)(p + 2)ψk,p+2

− 2V ψk−1,p + 2Eψk−2,p, (4b)

where E is the energy and

V ≡ V (α,θ ) = (1 − sin α cos θ )−1/2

−Z

[
csc

(
α

2

)
+ sec

(
α

2

)]
(5)

is the dimensionless Coulomb interaction for the two-electron
atom and/or ion with an infinitely massive nucleus of charge
Z. The well-known hyperspherical harmonics Ykl(α,θ ) (HH)
are the eigenfunctions of the (S-state) hyperspherical angular
momentum operator �2.

It was shown in Ref. [19] that any AFC ψk,p can be
separated into independent parts (components)

ψk,p(α,θ ) =
k−p∑
j=p

ψ
(j )
k,p(α,θ )Zj (6)

associated with definite powers of Z, according to separation
of the right-hand side (rhs) (4b) of the FRR. Accordingly,
each of the FRRs (4) can be separated into the individual FRR
equations (IFRRs) for each component,

[�2 − k(k + 4)]ψ (j )
k,p(α,θ ) = h

(j )
k,p(α,θ ), (7)

where h
(j )
k,p corresponds to the separation of the rhs (4b) in

powers of Z, which is similar to the separation formula (6).

II. THE EXACT VALUES OF THE AFC COMPONENTS AT
THE TWO-PARTICLE COALESCENCES

In Ref. [19] all of the AFC components ψ
(j )
k,p(α,θ )

were presented for k � 2. For k > 2 the components
ψ

(0)
3,0,ψ

(3)
3,0,ψ

(j1)
3,1 ,ψ

(j2)
4,1 , and ψ

(j3)
4,2 with all possible j1,j2, and

j3 and the subcomponents ψ
(1a)
3,0 ,ψ

(1b)
3,0 ,ψ

(1c)
3,0 ,ψ

(2a)
3,0 ,ψ

(2b)
3,0 ,ψ

(2c)
3,0

were presented as well. The edge components ψ
(0)
k,0 and ψ

(k)
k,0

with k � 4 as well as subcomponent ψ (2e)
3,0 were derived in [20].

In Tables I–IV we present the exact values of the presently
determined AFC components at the two-particle coalescences.
By “exact value” we mean representations expressed through
mathematical constants (like π, ln 2, or Catalan’s constant G �
0.915965 . . . ) and rational numbers. The electron-nucleus
coalescence (ENC) corresponds to the hyperspherical angles
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TABLE I. The components of the AFC at the two-particle coalescences.

k p j ψ
(j )
k,p(0, π

2 ) ψ
(j )
k,p( π

2 ,0)

0 0 0 1 1

2 0 1 ln 2−3
6

48G−62+π (5+12 ln 2)
72π

2 1 1 0 2−π

3π

3 1 1 2−π

36π
0

3 1 2 0 π−2
3π

√
2

4 1 1 2−π

576π

(π−2)(32E−15)
960π

4 1 2 (π−2)[424−600G+25π (12 ln 2−7)]
5400π2

(π−2)[11536−8400G+π (2205π−17294+2100 ln 2)]
75600π2

4 1 3 0 3(2−π )
40π

4 2 2 (π−2)(5π−14)
180π2

(π−2)(5π−14)
180π2

α = 0 and θ = π/2, whereas α = π/2 and θ = 0 at the
electron-electron coalescence (EEC).

There is no problem with performing the above-mentioned
calculations in cases where the considered component is
derived in the form of an explicit analytical expression.
However, in cases where the component or subcomponent is
represented by a single series of the form

ψ
(j )
k,p(α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)lω(k,p;j )
l (α), (8)

(e.g., ψ (1)
2,0,ψ

(2c)
3,0 ,ψ

(2e)
3,0 ,ψ

(2d)
4,1 ), the calculation of its exact value,

at least at the EEC, is not a simple problem. Therefore, we
shall consider those calculations in detail.

A. Component ψ
(1)
2,0

There are three representations for the component ψ
(1)P
2,0

containing different admixtures of the unnormalized HH
Y21(α,θ ) = sin α cos θ . A superscript P marks the particular
solution which is not single valued (“pure” [19]) in the general
case. The first representation is the closed analytic expression
presented by Eq. (22) of Ref.[19]. Others are of the form

ψ
(1)P
2,0 = − 1

3 [sin(α/2) + cos(α/2)]
√

1 − sin α cos θ

+χ20(α,θ ), (9)

where the function χ20 can be represented either by the single
series (second representation)

χ20(α,θ ) =
∞∑
l=0

Pl(cos θ )(sin α)lσl(ρ) (10)

of the form (8) or by a double series expansion in HHs. The
variable

ρ = tan(α/2) (11)

was introduced for convenience. Only the first two cases are
of interest to us. For the ENC, both representations give the
same results,

lim
θ→ π

2

lim
α→0

ψ
(1)
2,0(α,θ ) = 1

6 (ln 2 − 3), (12)

because Y21(0,π/2) = 0. One should emphasize that according
to definition (8) of the single-series representation, the values
of the corresponding component or subcomponent at the ENC
(α = 0) equals ω

(k,p;j )
0 (0).

At the EEC, one obtains

lim
θ→0

lim
α→ π

2

ψ
(1)P
2,0 (α,θ ) = 1

6 (1 − ln 2) (13)

for the analytic representation (22) of Ref. [19]. To obtain
the “pure” solution (see Ref. [19]), one needs to subtract the
coefficient C̃

(P)
21 � 0.315837352 from the result (13), taking

into account that Y21(π
2 ,0) = 1. This admixture coefficient was

TABLE II. The lower edge components ψ
(0)
k,0 of the logarithmless AFC at the two-particle coalescences.

k ψ
(0)
k,0(0, π

2 ) ψ
(0)
k,0( π

2 ,0)

1 1
2 0

2 1
12 (1 − 2E) 1

12 (1 − 2E)

3 1−5E

72 0

4 12E2−11E+1
1152

20E2−21E+7
1920

5 160E2−47E−6
43200 0

6 −1260E3+1595E2−189E−62
3628800

−10080E3+16460E2−11361E+3007
29030400

7 −786240E3+261908E2+100023E−27233
7315660800 0

8 16934400E4−26481840E3+3072680E2+2788023E−325061
2341011456000

30481920E4−68266800E3+72613544E2−39544113E+8871475
4213820620800
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TABLE III. The higher edge components ψ
(k)
k,0 of the logarithmless AFC at the two-particle coalescences.

k ψ
(k)
k,0(0, π

2 ) ψ
(k)
k,0( π

2 ,0)

1 −1 −√
2

2 1
3

5
6

3 − 1
18 − 7

√
2

36

4 7
288 + 2

45π

5
96 − 2

135π

5 − 43
4320 − 46

2025π

1√
2

(− 1
180 + 32

2025π

)
6 89

45360 + 28
6075π

− 83
120960 − 47

12150π

7 − 139
635040 − 22

42525π

1√
2

(
377

1016064 + 13
11340π

)
8 25507

390168576 + 2524019
9601804800π

+ 412
1607445π2 − 21871

650280960 − 679193
9601804800π

+ 412
8037225π2

computed by numerical integration with the integrand contain-
ing the complicated analytic expression (22) of Ref. [19]. Then,
making use of expressions (63)–(65) from Ref. [19] for σl(ρ),
one obtains for the subcomponent (10) at the EEC line

χ20

(π

2
,0

)
= s0 + s1, (14)

with

s0 = lim
ρ→1

[σ0(ρ) + σ1(ρ)]

= 48G + π (3π − 19 − 12 ln 2) − 14

72π
, (15)

s1 =
∞∑
l=2

σl(1), (16)

where

σl(1) = 1

2(l2 + l − 2)
− (2l + 1)�

(
l−1

2

)
�

(
l+1

2

)
48�

(
l
2 + 1

)
�

(
l
2 + 2

) (l � 2)

(17)

and G on the rhs of Eq. (15) is Catalan’s constant. Separating
the summation (16) into parts, one obtains

∞∑
l=2

1

2(l2 + l − 2)
= 11

36
, (18)

∞∑
l=2(2)

(2l + 1)�
(

l−1
2

)
�

(
l+1

2

)
48�

(
l
2 + 1

)
�

(
l
2 + 2

) = π

24
, (19)

∞∑
l=3(2)

(2l + 1)�
(

l−1
2

)
�

(
l+1

2

)
48�

(
l
2 + 1

)
�

(
l
2 + 2

) = 2

9π
. (20)

The number in parentheses following the lower limit of
summation denotes the step of summation (by default the step
is 1). Combining results (14)–(20), one obtains

χ20

(π

2
,0

)
= 16G + π (1 − 4 ln 2) − 10

24π
. (21)

The “pure” component can be obtained by subtracting the
admixture coefficient C

(P)
21 = (π + 4)/9π (see the end of

Sec. VI in Ref. [19]) from the rhs of Eq. (21). Thus, the final

TABLE IV. The subcomponents of the AFC with k > 2 at the two-particle coalescences.

k p j ψ
(j )
k,p(0, π

2 ) ψ
(j )
k,p( π

2 ,0)

3 0 1a 5(π−2)
72π

0

3 0 1b 4E−1
36

5E−2
18

√
2

3 0 1c 5(2−π )(20+3π )
1728π

25(π−2)
288

√
2

3 0 2a 1
9 0

3 0 2b 0 (2−π )(36+5π )
144π

√
2

3 0 2c 1
18 (2 − π − 2 ln 2)

√
2

27

3 0 2d 24−48G+π (16−3π )
288

3 0 2e 1
8

5−6G

12
√

2

3 0 2 124−48G−3π2−32 ln 2
288

4 1 2b (π−2)(5π−14)
1080π2

(π−2)(5π−14)
3240π2

4 1 2c 0 − 37(π−2)(5π−14)
8100π2

4 1 2d (π−2)[247−300G+50π (3 ln 2−2)]
2700π2

(π−2)[7028−8400G+3π (735π−5228+700 ln 2)]
75600π2

4 1 2 (π−2)[424−600G+25π (12 ln 2−7)]
5400π2

(π−2)[11536−8400G+π (2205π−17294+2100 ln 2)]
75600π2
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result for the EEC is

ψ
(1)
2,0

(π

2
,0

)
= 48G − 62 + π (5 + 12 ln 2)

72π
. (22)

Comparing the exact EEC value of the above component
derived using the single series and the closed analytic represen-
tations, one obtains the exact value of the admixture coefficient

C̃
(P)
21 = 62 + 17π − 48G

72π
� 0.315837352. (23)

B. Component ψ
(2)
4,1

In Ref. [19] the component ψ (2)
4,1 was separated into the parts

ψ
(2)
4,1 = ψ

(2b)
4,1 + ψ

(2c)
4,1 + ψ

(2d)
4,1 , (24)

where ψ
(2b)
4,1 is presented in Table 1 of Ref. [19] and ψ

(2c)
4,1

is defined by Eq. (92) of Ref. [19]. For the values of these
subcomponents calculated at the two-particle coalescences,
one easily obtains

ψ
(2b)
4,1

(
0,

π

2

)
= (π − 2)(5π − 14)

1080π2
,

ψ
(2b)
4,1

(π

2
,0

)
= (π − 2)(5π − 14)

3240π2
, (25)

ψ
(2c)
4,1

(
0,

π

2

)
= 0, ψ

(2c)
4,1

(π

2
,0

)
= −37(π − 2)(5π − 14)

8100π2
.

(26)

The subcomponent ψ
(2d)
4,1 was represented by a single series of

the form (8) with the function ω
(4,1;2d)
l (α) ≡ τl(ρ) defined by

Eqs.(94)– (96) of Ref. [19] for l = 0,1,2. The explicit analytic
expression for τl with l � 3 was calculated in Ref. [20].

According to representation (8) and Eq. (94) of Ref. [19], one
obtains

ψ
(2d)
4,1

(
0,

π

2

)
=τ0(0)= (π−2)[247−300G+50π (3 ln 2−2]

2700π2

(27)

at the ENC and

ψ
(2d)
4,1

(π

2
,0

)
=

∞∑
l=0

τl(1) (28)

at the EEC. The explicit representations (see Sec. VII of
Ref. [19]) for l = 0,1,2 yield

τ0(1) = (2 − π )[247 − 300G + 5π (15 ln 2 − 16)]

8100π2
, (29)

τ1(1) = (π − 2)(735π − 5788)

50400π
, (30)

τ2(1) = (π − 2)[4592 − 16800G + 5π (109 + 840 ln 2)]

113400π2
.

(31)

The most effective way to calculate τl(1) with l > 2 is by use
of the formula

τl(1) = u4,l(1)

2l + 1

∫ 1

0

v4,l(t)hl(t)t2l+2

(1 + t2)2l+3
dt + A2(l)v4,l(1) (32)

of Ref. [19], where

u4,l(ρ) = ρ−2l−1(ρ2 + 1)l+4
2F1

(
7

2
,3 − l;

1

2
− l; −ρ2

)
,

(33a)

v4,l(ρ) = (ρ2 + 1)l+4
2F1

(
7

2
,4 + l; l + 3

2
; −ρ2

)
, (33b)

hl(ρ) = − (π − 2)(ρ + 1)(ρ2 + 1)l−1

3π (2l−1)(2l + 3)2l+1

[
15 − 4l(l + 1)(4l + 11)

(2l−3)(2l + 5)ρ
+ 4l(2l + 3) + 2ρ + 4(l + 1)(2l−1)ρ2 + (2l−1)(4l + 5)ρ3

2l + 5

]
.

(34)

The coefficient A2(l) equals zero for odd l, whereas for even l (see Ref. [20])

A2(l) = (2 − π )

360l(l − 2)�(l + 1
2 )π3/2

{[
l(l + 1)(688l4 + 1376l3 − 2480l2 − 3168l + 465) + 450

]
�

(
l−1

2

)
�

(
l+1

2

)
(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)

− 56

l − 1

(
l

2
!

)2
}

.

(35)

The easiest method of finding a simple representation for τl(1) with l � 3 involves the use of the Mathematica operator
FindSequenceFunction (see examples in [20]). In particular, using Eqs. (32)–(35), we have calculated τl(1) for 2 < l < 30. It
was found that

τl(1) = π − 2

π

{
(al + πbl), for odd l,

(̃al + πb̃l)/π, for even l,
(36)

where al,bl ,̃al ,̃bl are rational numbers. Making use of the calculated sequences for each of the coefficients al,bl ,̃al , and b̃l , the
Mathematica operator FindSequenceFunction enables us to find the general forms of these coefficients as functions of l. Notice
that for a given sequence there is a minimal number of terms needed for Mathematica to find the formula for the general term. In
particular, for the coefficients al and b̃l this minimal number is 16, whereas for ãl and bl it equals 10. Thus, one finally obtains

τl(1) = 2 − π

180π (l + 1)(l + 3)

{
l(l + 1){16l(l + 1)[43l(l + 1) − 198] + 465} + 450

(l − 2)l(2l − 3)(2l − 1)(2l + 3)(2l + 5)
− 7(2l + 1)�

(
l
2 − 1

)
�

(
l
2 + 1

)
�2

(
l+1

2

) }
. (37)
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The summation by Mathematica gives
∞∑
l=3

l(l + 1){16l(l + 1)[43l(l + 1) − 198] + 465} + 450

(l − 2)l(l + 1)(l + 3)(2l − 3)(2l − 1)(2l + 3)(2l + 5)
= 675

35
, (38)

∞∑
l=3(2)

(2l + 1)�
(

l
2 − 1

)
�

(
l
2 + 1

)
(l + 1)(l + 3)�2

(
l+1

2

) = 3π

8
, (39)

∞∑
l=4(2)

(2l + 1)�
(

l
2 − 1

)
�

(
l
2 + 1

)
(l + 1)(l + 3)�2

(
l+1

2

) = 32

15π
. (40)

Recall that (2) following the lower limit of summation denotes
its step. Combining the results (28)–(40), one obtains

ψ
(2d)
4,1

(π

2
,0

)
= π − 2

75 600π2
[7028 − 8400G

+ 3π (735π − 5228 + 700 ln 2)]. (41)

Finally, summation of the individual subcomponents in
Eq. (24) yields

ψ
(2)
4,1

(
0,

π

2

)
= (π − 2)[424 − 600G + 25π (12 ln 2 − 7)]

5400π2

(42)
at the ENC and

ψ
(2)
4,1

(π

2
,0

)
= π − 2

75600π2
[11536 − 8400G

+π (2205π − 17294 + 2100 ln 2)] (43)

at the EEC.

C. Subcomponent ψ
(2c)
3,0

In Ref. [19] the subcomponent ψ
(2c)
3,0 was represented by a

single series of the form (8) with the function ω
(3,0;2c)
l (α) ≡

φl(ρ) defined as follows:

φl(ρ) = φ
(P)
l (ρ) + clv3,l(ρ). (44)

The functions included in the rhs of Eq. (44) are

v3,l(ρ) = (ρ2 + 1)l−
3
2

[
(2l − 3)(2l − 1)

(2l + 3)(2l + 5)
ρ4

+ 2(2l − 3)

2l + 3
ρ2 + 1

]
, (45)

φ
(P)
l (ρ) = 2−l(ρ2 + 1)l−

3
2

3(2l − 3)(2l − 1)(2l + 3)(2l + 5)

×
[

2f1l(ρ) + 2f2l(ρ) + f3l(ρ)

2l + 1

]
, (46)

where

f1l(ρ) = [9 − 4l(l + 2)]ρ + (13 − 4l2)ρ3, (47)

f2l(ρ) = [(2l − 3)(2l − 1)ρ4 + 2(2l − 3)(2l + 5)ρ2

+ (2l + 3)(2l + 5)] arctan(ρ), (48)

f3l(ρ) = −[(2l + 3)(2l + 5)ρ4 + 2(2l − 3)(2l + 5)ρ2

+ (2l − 3)(2l − 1)]
ρ

l + 1
2F1(1,l + 1; l + 2; −ρ2).

(49)

A simple representation of the coefficient cl was derived in
Ref. [20] in the form

cl =
2(2l + 1) − π − H l

2
+ Hl−1

2

6(2l − 3)(2l − 1)(2l + 1)2l
, (50)

where Hz denote the harmonic numbers with primary defini-
tion of the form

Hz = γ + ψ(z + 1), (51)

where ψ(z̄) is the digamma function and γ is the Euler-
Mascheroni constant.

According to the single-series representation (8) and mak-
ing use of Eqs. (44)–(50), one obtains

ψ
(2c)
3,0

(
0,

π

2

)
= φ0(0) = 1

18
(2 − π − 2 ln 2) (52)

at the ENC and

ψ
(2c)
3,0

(π

2
,0

)
=

∞∑
l=0

φl(1) (53)

at the EEC. To obtain a simple representation for φl(1), we
use again the Mathematica operator FindSequenceFunction
(see the previous section and Ref. [20]). The Mathematica
calculations of φl(1) with l � 0, performed on the expressions
in Eqs. (44)–(50), show that

φl(1) =
√

2(al + bl ln 2), (54)

where al and bl are rational numbers. It is enough to use the
sequence of al with 0 � l � 27 and the sequence of bl with
0 � l � 6 to find

al = 1

3(2l − 3)(2l + 1)(2l + 5)

×
[

8(2l + 1)

4l(l + 1) − 3
+ Hl−1

2
− H l

2
+ (−1)l2 ln 2

]
, (55)

bl = − 2(−1)l

3(2l − 3)(2l + 1)(2l + 5)
; (56)

hence, one easily obtains

φl(1) =
√

2

3(2l − 3)(2l + 1)(2l + 5)

×
[

8(2l + 1)

4l(l + 1) − 3
+ Hl−1

2
− H l

2

]
. (57)

Mathematica summations yield
∞∑
l=0

1

(2l − 3)(2l + 5)[4l(l + 1) − 3]
= 0, (58)

022506-5



EVGENY Z. LIVERTS PHYSICAL REVIEW A 94, 022506 (2016)

∞∑
l=0

1

(2l − 3)(2l + 1)(2l + 5)

(
Hl−1

2
− H l

2

)
= 1

9
. (59)

Thus, finally for the EEC, one obtains

ψ
(2c)
3,0

(π

2
,0

)
=

√
2

27
. (60)

D. Subcomponent ψ
(2e)
3,0

In Ref. [20] the subcomponent ψ
(2e)
3,0 was derived in the form of the single series (8) with the function ω

(3,0;2e)
l (α) ≡ λl(ρ)

defined as

λl(ρ) = 1

2l+1
{u3,l(ρ)V3,l(ρ) − v3,l(ρ)[U3,l(ρ) − (2l+1)sl]}, (61)

where

sl = 2−l−3

(2l − 3)(2l − 1)(2l + 1)

[
2l(l + 1)

(
Hl+1

2
− H l

2
− π

)
+ 2l + 3

]
, (62)

u3,l(ρ) = (ρ2 + 1)l−
3
2

ρ2l+1

[
(2l + 3)(2l + 5)

(2l − 3)(2l − 1)
ρ4 + 2(2l + 5)

2l − 1
ρ2 + 1

]
, (63)

U3,l(ρ) = − l(l + 1)
[
(ρ2 + 1)4 arctan(ρ) + ρ7 − ρ

] + (l2 − 7l − 10)ρ5 − (l2 + 9l − 2)ρ3

2l(2l − 3)(2l − 1)(ρ2 + 1)4
, (64)

V3,l(ρ) = −[
(−2)l(l − 2)(l − 1)(2l + 3)(2l + 5)

]−1{
12

[
B−ρ2 (l + 1, − 3) − B−ρ2 (l + 1, − 4)

]
+ (2l − 3)ρ2

[
2l2 + l − 7 + (l − 2)(2l − 1)ρ2

][
(3 − l)B−ρ2 (l + 1, − 3) − 4B−ρ2 (l + 1, − 4)

]}
. (65)

Here Bz(a,b) is the Euler beta function with the basic definition

Bz(a,b) =
∫ z

0
ta−1(1 − t)b−1dt, Re(a) > 0, Re(b) > 0, |z| � 1. (66)

It is seen that expression (65) cannot be applied directly for l = 1 or 2. For these values of l, we have

V3,1(ρ) = 1

140

[
3 + 10ρ2 + 11ρ4 − 20ρ6

(1 + ρ2)4
+ 2 ln(1 + ρ2)

]
, (67)

V3,2(ρ) = − 1

84

[
5 + 14ρ2 + 9ρ4 − 6ρ6 + 24ρ8 + 6ρ10

6(1 + ρ2)4
+ ln(1 + ρ2)

]
. (68)

The function v3,l(ρ) is defined by Eq. (45).

For the ENC one obtains

ψ
(2e)
3,0

(
0,

π

2

)
= λ0(0) = 1

8
, (69)

whereas for the ENC, the single-series representation (8) yields

ψ
(2e)
3,0

(π

2
,0

)
=

∞∑
l=0

λl(1). (70)

Using formulas (61)–(68), one obtains

λl(1) =
2l(l + 1)

(
Hl+1

2
− H l

2

)
− 6l − 1

2
√

2(2l − 3)(2l + 1)(2l + 5)
. (71)

Then using the integral representation for the harmonic
numbers

Hz =
∫ 1

0

1 − t z

1 − t
dt, Re(z) > −1, (72)

and making use of the change of variable x = √
t , one obtains

∞∑
l=0

λl(1) = 1

2
√

2
(4S1 − S2), (73)

where

S2 =
∞∑
l=0

6l + 1

(2l − 3)(2l + 1)(2l + 5)
= 1

6
, (74)

S1 = 1

2

∞∑
l=0

l(l + 1)
(
Hl+1

2
− H l

2

)
(2l − 3)(2l + 1)(2l + 5)

=
∫ 1

0

( ∞∑
l=0

l(l + 1)xl+1

(2l − 3)(2l + 1)(2l + 5)

)
dx

x + 1

=
∫ 1

0

arctanh(
√

x)(15x4 + 2x2 + 15) − 5
√

x(3x3 + x2 + x + 3)

128x3/2

(
dx

x + 1

)
= 1 − G

4
. (75)
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G, as before, denotes Catalan’s constant. Inserting the results (73)–(75) into the rhs of Eq. (70), one finally obtains

ψ
(2e)
3,0

(π

2
,0

)
= 5 − 6G

12
√

2
. (76)

III. GREEN’S-FUNCTION APPROACH

The Green’s-function approach to calculating the AFCs
was presented in Refs. [9,21]. It follows from the general
formulas that any component or subcomponent of the AFC
at the electron-nucleus coalescence can be calculated in the
following simple way:

ψ
(j )
k,p

(
0,

π

2

)
= 1

8

∫ π

0
dα sin α cos

[(
k

2
+ 1

)
α

]
ζ (α)

×
∫ π

0
dθ (sin θ )h(j )

k,p(α,θ ), (77)

where

ζ (α) =
{

1, k odd,
1 − α

π
, k even. (78)

For the electron-electron coalescence, one obtains the more
complicated formula

ψ
(j )
k,p

(π

2
,0

)
= 1

8

∫ π

0
dα sin2 α

∫ π

0
dθ (sin θ )h(j )

k,p(α,θ )

× cos

[(
k

2
+ 1

)
γ

]
ζ (γ )

sin γ
, (79)

where the angle γ is defined by the relation

cos γ = sin α cos θ (0 � γ � π ). (80)

It is clear that h
(j )
k,p in Eqs. (77) and (79) represents the rhs

of the corresponding IFRR (7). It is seen that Eq. (77) can
be obtained by changing γ to α in Eq. (79). Notice that
the above formulas with even k are correct only for the so-
called “pure” components or subcomponents (see Ref. [19]).
Using Eqs. (77)–(80), we have recalculated all of the AFCs
(presented in Refs. [19,20]) at the two-particle coalescences.
The results coincide with direct derivations based on the
explicit representations (including single-series ones) of the
AFC.

The component ψ
(2)
3,0(α,θ ) was not obtained previously

because of the difficulties with calculations of the subcom-
ponent ψ

(2d)
3,0 , which represents the physical solution of the

IFRR (
�2 − 21

)
ψ

(2d)
3,0 (α,θ ) = h

(2d)
3,0 (α,θ ), (81)

with the rhs

h
(2d)
3,0 (α,θ ) = 4

sin α

[
sin

(α

2

)
+ cos

(α

2

)]
χ20(α,θ ), (82)

where the function χ20 is defined by the single series (10).
The use of Eq. (77) enables us to obtain the exact value of the
mentioned subcomponent at the ENC as follows:

ψ
(2d)
3,0

(
0,

π

2

)
= 1

8

∫ π

0
dα sin α cos

(
5α

2

)∫ π

0
dθ (sin θ )h(2d)

3,0 (α,θ )

=
∫ π/2

0

[
sin

(α

2

)
+ cos

(α

2

)]
cos

(
5α

2

)
σ0(α)dα +

∫ π

π/2

[
sin

(α

2

)
+ cos

(α

2

)]
cos

(
5α

2

)
σ0(π − α)dα

= 1

288
[24 − 48G + π (16 − 3π )], (83)

where (see Ref. [19])

σ0(α) = 1

12

{(
2 sin α− 1

sin α

)
α+cos α[2 ln(cos α+1) + 1]

− sin α − 2

}
, 0 � α � π/2. (84)

To use σ0(α) in the range π/2 < α � π , one should replace α

by π − α in the rhs of Eq. (84).
On the other hand, the exact value of subcomponent

ψ
(2d)
3,0 at the ENC can be derived by using the single-series

representation

ψ
(2d)
3,0 (α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)lgl(ρ), (85)

which gives

ψ
(2d)
3,0 (0,

π

2
) = g0(0). (86)

We have obtained the exact analytic representation (see the
Appendix) for the function g0(ρ), which at the ENC (ρ → 0)
coincides with the result (83).

Now we can calculate the exact value of the component
ψ

(2)
3,0 at the ENC. Gathering the subcomponents, one obtains

ψ
(2)
3,0

(
0,

π

2

)
=

(
ψ

(2a)
3,0 + ψ

(2b)
3,0 + ψ

(2c)
3,0 + ψ

(2d)
3,0 + ψ

(2e)
3,0

)∣∣∣
α=0

= 124 − 48G − 3π2 − 32 ln 2

288
. (87)
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All the subcomponents along with the resulting compo-
nent (87) at the ENC are presented in Table IV. The exact
calculation of the component ψ

(2)
3,0 at the EEC is still difficult.

IV. THE BOUNDARY CONDITIONS FOR THE AFC
COMPONENTS

The Kato cusp condition (KCC) [1] for the two-electron
atomic wave function (1) at the ENC reads

∂χ (r1,r2,r12)

∂r2

∣∣∣∣
r2=0

= −Zχ (r,0,r), (88)

where, according to definition (3), r = r1 = r12 is the hyper-
spherical radius (3) at the ENC line. The chain-rule relation
yields

∂�(r,α,θ )

∂r2
= ∂�

∂r

∂r

∂r2
+ ∂�

∂α

∂α

∂r2
+ ∂�

∂θ

∂θ

∂r2
, (89)

where, according to Eqs.(2) and (3), one obtains for the ENC

∂r

∂r2

∣∣∣∣
r2=0

= 0, (90a)

∂α

∂r2

∣∣∣∣
r2=0

= 2

r
, (90b)

∂θ

∂r2

∣∣∣∣
r2=0

= − 1

2r
. (90c)

Inserting the Fock expansion (1) into the KCC (88),
transforming to hyperspherical coordinates using Eqs. (89)
and (90), and using the Z-power separation (6), one obtains

∞∑
k=0

rk−1
[k/2]∑
p=0

lnp r

k−p∑
j=p

Zj

×
(

2
∂ψ

(j )
k,p(α,θ )

∂α
− 1

2

∂ψ
(j )
k,p(α,θ )

∂θ

)∣∣∣∣∣
α=0,θ=π/2

= −
∞∑

k=0

rk

[k/2]∑
p=0

lnp r

k−p∑
j=p

Zj+1ψ
(j )
k,p

(
0,

π

2

)
. (91)

Equating coefficients for the same powers of r, ln r , and Z on
both sides of Eq. (91), one obtains the following equation:

ψ
(j )
k,p

(
0,

π

2

)
= 1

2

∂ψ
(j+1)
k+1,p(α,θ )

∂θ

∣∣∣∣∣
α=0,θ=π/2

−2
∂ψ

(j+1)
k+1,p(α,θ )

∂α

∣∣∣∣∣
α=0,θ=π/2

(92)

for the AFC components at the ENC line.
In its turn, the KCC for the two-electron atomic wave

function (1) at the EEC is

∂χ (r1,r2,r12)

∂r12

∣∣∣∣
r12=0

= 1

2
χ

(
r√
2
,

r√
2
,0

)
, (93)

where r1 = r2 = r/
√

2. Transforming to hyperspherical coor-
dinates, one obtains

∂�(r,α,θ )

∂r12
= ∂�

∂r

∂r

∂r12
+ ∂�

∂α

∂α

∂r12
+ ∂�

∂θ

∂θ

∂r12
, (94)

where according to Eqs. (2) and (3), we have for the EEC line

∂r

∂r12

∣∣∣∣
r12=0

= 0, (95a)

∂α

∂r12

∣∣∣∣
r12=0

= 0, (95b)

∂θ

∂r12

∣∣∣∣
r12=0

=
√

2

r
. (95c)

Inserting the Fock expansion (1) into the KCC (93), trans-
forming to hyperspherical coordinates by Eqs. (94) and (95),
and using the Z-power separation (6), one obtains

√
2

∞∑
k=0

rk−1
[k/2]∑
p=0

lnp r

k−p∑
j=p

Zj
∂ψ

(j )
k,p(α,θ )

∂θ

∣∣∣∣∣
α=π/2,θ=0

= 1

2

∞∑
k=0

rk

[k/2]∑
p=0

lnp r

k−p∑
j=p

Zjψ
(j )
k,p

(π

2
,0

)
. (96)

Equating coefficients for the same powers of r, ln r , and Z on
both sides of Eq. (96), one obtains the relation

ψ
(j )
k,p

(π

2
,0

)
= 2

√
2

∂ψ
(j )
k+1,p(α,θ )

∂θ

∣∣∣∣∣
α=π/2,θ=0

(97)

for the AFC components at the EEC line.
The important features of the limits under consideration

have to be reported. It can be verified that any subcomponent
ψ(α,θ ) ≡ ψ

(j )
k,p(α,θ ) can be represented in the form (8), where

some of the functions ω
(k,p;j )
l (α) can be constants, including

zero. For example, using representation (19) of Ref. [19] for
ψ4,2(α,θ ), one can write

ω
(4,2;2)
l (α) = (π − 2)(5π − 14)

180π2

[(
1− 4

3
sin2 α

)
δl,0+ 4

3
δl,2

]
,

where δl,m is the Kronecker delta. It follows from the form
of the rhs of Eq. (8) that the partial derivative of the function
represented by Eq. (8) possesses the property

∂ψ(α,θ )

∂θ

∣∣∣∣
α=α0,θ=θ0

= lim
θ→θ0

dψ(α0,θ )

dθ
. (98)

It is clear that equations like (98) for the partial derivatives
(but not mixed) of the higher orders can be written. Therefore,
one can conclude that the AFC components or subcomponents
possess the property (98). Consequently, since the hyperspher-
ical angle θ is nonnegative, the relation (98) for θ0 = 0 reduces
to the form

∂ψ(α,θ )

∂θ

∣∣∣∣
α=α0,θ=0

= lim
θ→0+

dψ(α0,θ )

dθ
. (99)

It will be shown that the right-hand-side limit on the rhs of
Eq. (99) is of special importance for the single series (8).
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It is well known that the two-electron wave function (1)
and at least its first and second partial derivatives with respect
to the interparticle coordinates r1,r2, and r12 must be finite.
Considering the relation (94) at the ENC, one obtains

∂r

∂r12

∣∣∣∣
r2=0

= 0,
∂α

∂r12

∣∣∣∣
r2=0

= 0,
∂θ

∂r12

∣∣∣∣
r2=0

= ∞. (100)

It follows from Eqs. (94) and (100) that one should set

∂�

∂θ

∣∣∣∣
α=0,θ=π/2

= 0 (101)

in order to preserve the finiteness of the partial derivative
∂�/∂r12 at the ENC. Using the Fock expansion (1), the
property (98), and the Z-power separation (6), one obtains
for the AFC components

lim
θ→π/2

dψ
(j )
k,p(0,θ )

dθ
= 0. (102)

Making use of Eqs. (99) and (102), one can rewrite the specific
conditions (92) and (97) in the final form

lim
θ→π/2

lim
α→0

∂

∂α
ψ

(j+1)
k+1,p(α,θ ) = −1

2
ψ

(j )
k,p

(
0,

π

2

)
, (103)

lim
θ→0+

d

dθ
ψ

(j )
k+1,p

(π

2
,θ

)
= 1

2
√

2
ψ

(j )
k,p

(π

2
,0

)
. (104)

Note that we did not use dψ
(j+1)
k+1,p(α,π/2)/dα instead of

limθ→π/2 ∂ψ
(j+1)
k+1,p(α,θ )/∂α in the left-hand side (lhs) of

Eq. (103) because, in general, the limit of the angle α must be
taken first.

One should emphasize that Eqs. (103) and (104) have
been derived for the first time and represent the specific
boundary conditions for the AFC components at the two-
particle coalescences.

A number of the AFC components derived in Ref. [19],
refined and derived in Ref. [20], and supplemented here are
at our disposal. We have verified the validity of Eqs. (103)
and (104) for examples of all the presently determined com-
ponents. Notice that the presently calculated subcomponents
at the two-particle coalescences are presented in Table IV,
whereas the presently determined components (at the two-
particle coalescences) on the right-hand sides of Eqs. (103)
and (104) are presented in Tables I–III. In all cases where
we could provide verification, the correctness of the boundary
conditions (103) and (104) was certified.

Note that there are the components or subcomponents that
can be placed to the lhs of Eqs. (103) and (104), while the
corresponding AFC components or subcomponents in the rhs
do not exist. However, when we say that they do not exist, we
indeed mean the components ψ

(j )
k,p ≡ 0 for k < 0 or p > [k/2]

or j < p or j > k − p. We have verified that in all those cases
Eqs. (103) and (104) remain correct.

To verify the correctness of the conditions (103) and (104),
we need to calculate the AFC components or subcomponents
and their partial derivatives with respect to the hyperspherical
angles α and θ at the two-particle coalescences. There is no
problem with performing such calculations for the component
or subcomponent represented by explicit analytic functions of

FIG. 1. Partial derivative ∂ψ/∂θ for ψ ≡ ψ
(1)
2,0(α,θ ), with α =

0.499π (dashed line) and α = 0.49999π (solid line).

α and θ , that is, when only a limited number of the functions
ωl(ρ) ≡ ω

(k,p;j )
l (α) are different from zero. However, in the

case of representation by an infinite single series of the
form (8), special consideration is required. For such cases,
it is easy to verify the correctness of the following relations:

ψ
(

0,
π

2

)
= ω0(0), (105)

ψ
(π

2
,0

)
=

∞∑
l=0

ωl(1), (106)

∂ψ(α,θ )

∂α

∣∣∣∣
α=0,θ=π/2

= dω0(ρ)

dα

∣∣∣∣
α=0

, (107)

∂ψ(α,θ )

∂θ

∣∣∣∣
α=0,θ=π/2

= 0, (108)

where ρ is defined by Eq. (11). Note that Eq. (108) derived
for the single-series or HH representations coincides with
the general equation (102). The problem is to calculate
(performing term-by-term differentiation) the derivative with
respect to θ :

g(θ ) ≡ d

dθ
ψ

(π

2
,θ

)
= 1

sin θ

∞∑
l=1

ωl

(π

2

)
(l + 1)[Pl+1(cos θ )

− cos θPl(cos θ )], (109)

which, at first sight, equals zero at the EEC (θ = 0). However,
it is not correct in general. Figure 1 (a and b) demonstrates
the reason for the possible wrong result. In Fig. 1, we depict
the plots of the partial derivative ∂ψ

(1)
2,0(α,θ )/∂θ in the vicinity

of the EEC angle point α = π/2,θ = 0. To build the plots we
used the analytic representation (22) of Ref. [19]. It is seen
that the mentioned derivative has a cusp (singularity) at the
EEC point of the hyperspherical angular space. For θ � 0 we
need to calculate the right-hand-side limit.

It can be shown that for the components or subcomponents
represented by series of the form (8) the two-sided limits of the
partial derivative with respect to θ at the EEC can be calculated
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using the equation

lim
θ→0±

d

dθ
ψ

(π

2
,θ

)
= lim

l→∞
{∓ωl(1)l2

}
. (110)

Notice that relation (110) remains correct in the absence of
the cusp for the derivative g(θ ) at the point θ = 0, that is, in
the case where the function g(θ ) is continuous at θ = 0 and
the left-hand-side and right-hand-side limits coincide.

Only four subcomponents represented by a single series
of the form (8) were considered in the previous section and
in Refs. [19,20]. These are χ20,ψ

(2d)
4,1 ,ψ

(2e)
3,0 , and ψ

(2c)
3,0 . Using

the representation (109) with the increasing (but finite) upper
limits, we can build the sequence of plots for the derivatives
g(θ ) to ensure that the corresponding limits are

lim
l→∞

{−σl(1)l2
} = − 1

6 , lim
l→∞

{−τl(1)l2
} = π − 2

12π
,

lim
l→∞

{−φl(1)l2
} = 0, (111)

where σl(1),τl(1), and φl(1) are defined by Eqs. (17), (37),
and (57), respectively. It is easy to verify that the results (111)
confirm the validity of the conditions

lim
θ→0+

d

dθ
ψ

(1)
2,0

(π

2
,θ

)
= 1

2
√

2
ψ

(1)
1,0

(π

2
,0

)
= −1

2
, (112)

lim
θ→0+

d

dθ
ψ

(2)
4,1

(π

2
,θ

)
= 1

2
√

2
ψ

(2)
3,1

(π

2
,0

)
= π − 2

12π
, (113)

corresponding to the general formula (104) for the EEC. The
rhs of Eq. (112) can also be obtained directly using the analytic
representation (22) of Ref. [19] for the function ψ

(1)
2,0 on the

lhs. Moreover, using Eq.(107) and the results in the Appendix,
one easily obtains the boundary condition

lim
θ→π/2

lim
α→0

dψ
(2)
3,0(α,θ )

dα
= −1

2
ψ

(1)
2,0

(
0,

π

2

)
= 3 − ln 2

12
(114)

at the ENC.
In analogy to Eqs. (94), (100), and (101) it is easy to

write down the chain-rule relation for the second derivative
∂2�/∂r2

12. This relation, taken at the ENC line, enables us to
obtain the condition

lim
θ→π/2

d2ψ
(j )
k,p(0,θ )

dθ2
= 0. (115)

The relation

2
∂χ (r1,r2,r12)

∂r2

∣∣∣∣
r1=r2=R

= ∂χ (R,R,r12)

∂R
(116)

was obtained previously [see Eq. (40) of Ref. [7]]. Considering
the relation (89) at the EEC, one obtains

∂r

∂r2

∣∣∣∣
r12=0

= 1√
2
,

∂α

∂r2

∣∣∣∣
r12=0

=
√

2

r
,

∂θ

∂r2

∣∣∣∣
r12=0

= 0. (117)

Substituting Eq. (89) taken at the EEC and Eq. (117) into

Eq. (116) with r12 = 0 and R = r/
√

2 yields

(
∂�

∂r
+ 2

r

∂�

∂α

)∣∣∣∣
α=π/2,θ=0

= d

dr
�

(
r,

π

2
,0

)
, (118)

from which one obtains the condition

∂�

∂α

∣∣∣∣
α=π/2,θ=0

= 0. (119)

Substituting the Fock expansion (1) and the relation (6) into
Eq. (119) yields, for the derivative of the AFC components at
the EEC,

lim
θ→0

lim
α→π/2

∂

∂α
ψ

(j )
k,p(α,θ ) = 0. (120)

The correctness of the relations (102), (115), and (120) was
verified with examples of the presently determined AFC
components.

V. CONCLUSIONS

The exact values of all the presently determined AFC
components at the two-particle coalescences have been derived
and presented in Tables I–IV. The corresponding results for the
edge components ψ

(0)
k,0 and ψ

(k)
k,0 with 1 � k � 8 are displayed

in Tables II and III, respectively. The infinite series summation
by Mathematica and the use of the Mathematica operator
FindSequenceFunction enabled us to obtain the exact results
at the EEC even for the components and/or subcomponents
represented by infinite single series of the form (8). As a
side result, the exact “pure” analytical representation of the
subcomponent χ20(α,θ ) was obtained by using the exact
admixture coefficient defined by Eq. (23). The Green’s-
function approach has proven to be useful as an additional
method for calculating the AFC components at the two-particle
coalescences.

The boundary conditions (103) and (104) for the AFC
components, expressed through the hyperspherical angles α

and θ , were derived as a result of application of the Kato
cusp conditions for the two-electron (S-state) wave function
expressed in the interparticle distances r1,r2, and r12. The
additional boundary conditions, which have nothing to do with
the Kato cusp conditions, were also obtained. The correctness
of the obtained boundary conditions was verified for all the
presently determined AFC components.
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APPENDIX

It was shown in [19] that to derive the physical solution of the IFRR (81) in the form of the single series (85), one should, first
of all, represent the rhs (82) in the similar form

h
(2d)
3,0 =

∞∑
l=0

Pl(cos θ )(sin α)lhl(ρ). (A1)

Then, the basis functions gl(ρ) of the single-series representation (85) can be found as the physical solution of the equation

(1 + ρ2)2g′′
l (ρ) + 2ρ−1

[
1 + ρ2 + l(1 − ρ4)

]
g′

l(ρ) + (3 − 2l)(2l + 7)gl(ρ) = −hl(ρ). (A2)

The individual solutions u3,l(ρ) and v3,l(ρ) of the homogeneous equation associated with Eq. (A2) are represented by Eqs. (63)
and (45), respectively. Using the method of variation of parameters, the particular solution [marked by a superscript (P)] of the
inhomogeneous equation (A2) can be found in the form (see Ref. [19])

g
(P)
l (ρ) = 1

2l + 1

[
u3,l(ρ)

∫
v3,l(ρ)hl(ρ)ρ2l+2

(ρ2 + 1)2l+3
dρ − v3,l(ρ)

∫
u3,l(ρ)hl(ρ)ρ2l+2

(ρ2 + 1)2l+3
dρ

]
. (A3)

We shall find only the function g0(ρ) used in the main text of this paper. Making use of the definition (82), one obtains [see also
Eq. (63) of Ref. [19]] the expression for the rhs,

h0(ρ) = 1 + ρ

3ρ
√

1 + ρ2

[
(1 − ρ2) ln

(
2

1 + ρ2

)
− (ρ4 − 6ρ2 + 1) arctan(ρ)

2ρ
− 1

2
(3ρ2 + 2ρ + 1)

]
, (A4)

which is correct for 0 � ρ � 1. For ρ > 1 one should replace ρ by 1/ρ on the rhs of Eq. (A4). The formula (A3) gives one of
the particular solutions [marked by a superscript (P1)] in the following rather complicated form:

g
(P1)
0 (ρ) = (ρ2 + 1)−3/2

360ρ

{
− 6i

[
(5ρ4 − 10ρ2 + 1)Li2

(−e2i arctan ρ
) + ρ(ρ4 − 10ρ2 + 5)Li2

(
e2i arctan ρ

)]
+ 20ρ(3ρ2 + ρ − 2) ln

(
2

1 + ρ2

)
+ 8 ln(1 + ρ2) + arctan(ρ)

[
12(5ρ4 − 10ρ2 + 1) ln

(
2i

ρ + i

)
+ 12ρ(ρ4 − 10ρ2 + 5) ln

(
2ρ

ρ + i

)
− ρ(7ρ4 − 77ρ3 − 46ρ2 + 114ρ + 3) + 6(1 − i)(ρ − i)5 arctan(ρ) + 9

]
− ρ(7ρ3 − 11ρ2 − 81ρ − 31) − 8(1 + ln 2)

}
, (A5)

where Li2(z) is the dilogarithm function and i = √−1. The problem is that the particular solution (A5) is singular and complex
in the vicinity of the point ρ = 0; in particular,

g
(P1)
0 (ρ) =

ρ→0

1

720ρ

[
iπ2 − 16(1 + ln 2)

] − 1

72

[
iπ2 + 8(1 − ln 2)

] − ρ

1440
(23iπ2 − 608 − 128 ln 2) + O(ρ2). (A6)

It is more convenient to use the real and finite particular solution [marked by s superscript (P2)] that can be obtained by the
transformation

g
(P2)
0 (ρ) = g

(P1)
0 (ρ) + iπ2

72
v3,0(ρ) + 16(1 + ln 2) − iπ2

720
u3,0(ρ). (A7)

The power-series expansion for the latter particular solution reads

g
(P2)
0 (ρ) =

ρ→0

1

9
(1 − ln 2) + ρ

6
(1 − ln 2) + ρ2

18
(6 ln 2 − 5) + O(ρ3). (A8)

The physical solution of Eq. (A2) with l = 0 can be calculated in the form [19]

g0(ρ) = g
(P2)
0 (ρ) + c0v3,0(ρ). (A9)

To find the coefficient c0, we apply the coupling equation (61) of Ref. [19], which for this case becomes

F0,0 = 32

π

∫ 1

0
g0(ρ)

ρ2

(ρ2 + 1)3
dρ, (A10)

where Fn,l represents the unnormalized HH expansion coefficient for the subcomponent

ψ
(2d)
3,0 (α,θ ) =

∞∑
l=0

Fn,lYnl(α,θ ). (A11)
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It was shown (see Appendix D of Ref. [19]) that for the AFC ψ
(j )
k,p with k = 3, the following relation is valid:

Fn,l = Hn,l

(n − 3)(n + 7)
, (A12)

where

Hn,l = N2
nl

∫
h

(2d)
3,0 (α,θ )Ynl(α,θ )d� (A13)

represents the coefficient of the HH expansion on the rhs h
(2d)
3,0 defined by Eqs. (82) and (A1). The normalization coefficient Nnl and

the volume element d� are defined in Ref. [19]. Thus, inserting Eq. (A13) into the rhs of Eq. (A12) with n = l = 0, one obtains

F0,0 = −2N2
00π

2

21

∫ π

0
h0(ρ) sin2 αdα = −32[2

√
2 + ln(6 − 4

√
2) − 5]

945π
. (A14)

Equating the right-hand sides of Eqs. (A10) and (A14) and using Eq. (A9), one finds the required coefficient in the form

c0 = −
(∫ 1

0
v3,0(ρ)

ρ2

(ρ2 + 1)3
dρ

)−1
[

2
√

2 + ln(6 − 4
√

2) − 5

945
+

∫ 1

0
g

(P2)
0 (ρ)

ρ2

(ρ2 + 1)3
dρ

]
� −0.0316978107237. (A15)

It is seen from the complicated representation (A5) that it is very difficult to derive the exact value of c0 using Eq. (A15).
However, there is no problem with calculating its numerical value. Thus, substitution of the results of this Appendix into Eq. (86)
yields the following numerical value for the component ψ

(2d)
3,0 at the ENC:

ψ
(2d)
3,0

(
0,

π

2

)
= g

(P2)
0 (0) + c0v3,0(0) = 1 − ln 2

9
+ c0 = 0.002396946991882. (A16)

It is easy to verify that the numerical value of the exact representation (87) obtained in Sec. III coincides with the numerical
result (A16), as expected. This enables us, among other things, to establish the exact value of the coefficient

c0 = π (16 − 3π ) − 48G − 8 + 32 ln 2

288
. (A17)
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les états S de HeI et de sa séquence isoélectronique, J. Phys.
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