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The present paper constitutes a development of our previous work devoted to calculations of the angular
Fock coefficients ψk,p(α,θ ). Explicit analytic representations for the edge components ψ

(0)
k,0 and ψ

(k)
k,0 with

k � 8 are derived. The methods developed enable such a calculation for arbitrary k. The single-series
representation for subcomponent ψ

(2e)
3,0 missed in the author’s previous paper is developed. It is also shown

how to express some of the complicated subcomponents through hypergeometric and elementary functions.
Using the operator FindSequenceFunction of Wolfram’s Mathematica, simple explicit representations for some
complicated mathematical expressions under consideration have been obtained.
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I. INTRODUCTION

As far back as the 1935s Bartlett et al. [1] showed that no
ascending power series in the interparticle coordinates r1, r2,
and r12 can be a formal solution of the Schrödinger equation for
the 1S-state of helium. Later Bartlett [2] argued the existence
of the helium ground state expansion included ln(r2

1 + r2
2 ).

Finally, Fock [3] proposed the expansion

�(r,α,θ ) =
∞∑

k=0

rk

[k/2]∑
p=0

ψk,p(α,θ )(ln r)p, (1)

where r =
√

r2
1 + r2

2 denotes the hyperspherical radius, and
the hyperspherical angles α and θ are defined as

α = 2 arctan (r2/r1), θ = arccos
[(

r2
1 + r2

2 − r2
12

)
/(2r1r2)

]
.

(2)
The convergence of expansion (1) for the ground state of
helium was rigorously studied in Refs. [4,5]. The method
proposed by Fock [3] for investigating the 1S helium wave
functions was generalized [6,7] for arbitrary systems of
charged particles and for states of any symmetry. The Fock
expansion was generalized [8] to be applicable to any S

state, and its first two terms were determined. The most
comprehensive investigation of the methods of derivation and
calculation of the angular Fock coefficients (AFC) ψk,p(α,θ )
was presented in the works of Abbott, Gottschalk, and
Maslen [9–11]. In Ref. [12] a further development of the
methods of calculation of the AFC was presented. Separation
of the AFC by the components, associated with definite powers
of the nucleus charge Z, was introduced. Some of the AFC,
or their components that were not calculated previously, were
derived [12].

A number of variational methods were developed for cal-
culation of the electronic structure of the helium isoelectronic
sequence. It was mentioned in the classic paper of Fock [3]
that the success in application of any variational method is
substantially dependent upon the choice of basis functions,
and that the technique proposed in [3] could be helpful to
make such a choice. However, one should emphasize that this
is the “next step” which was nevertheless realized (used for
beginning the first terms of the Fock expansion), e.g, in the
papers [6,7,13,14]. It is generally accepted that derivations
of the angular functions (Fock coefficients) describing the

Fock expansion constitute an independent problem of great
complexity.

The present paper improves and develops methods and
extends the results obtained in the previous work [12]. We
derive exact expressions for the edge components of the most
complicated AFC ψk,0(α,θ ). We calculate the subcomponent
ψ

(2e)
3,0 missed in [12]. We show how to express some of the

complicated subcomponents through elementary functions.
Using the operator FindSequenceFunction of the Wolfram
Mathematica, we obtain simple explicit representations for
some complicated mathematical objects under consideration.

To solve the problems, we introduce some mathematical
concepts that can serve as a basis for further consideration. It
has been proven that the AFC satisfy (see, e.g., [9] or [12]) the
Fock recurrence relation (FRR)

[�2 − k(k + 4)]ψk,p = hk,p, (3a)

hk,p = 2(k + 2)(p + 1)ψk,p+1 + (p + 1)(p + 2)ψk,p+2

−2V ψk−1,p + 2Eψk−2,p, (3b)

where E is the energy and V = V0 + ZV1 is the dimensionless
Coulomb interaction for the two-electron atom and/or ions.
The electron-electron V0 and the electron-proton V1 interac-
tions are defined as follows

V0 = 1/ξ, V1 = −[csc(α/2) + sec(α/2)], (4)

where the variable

ξ = √
1 − sin α cos θ. (5)

The hyperspherical angular momentum operator, projected on
S states, is

�2 = − 4

sin2 α

(
∂

∂α
sin2 α

∂

∂α
+ 1

sin θ

∂

∂θ
sin θ

∂

∂θ

)
, (6)

and its eigenfunctions are the hyperspherical harmonics (HH)

Ykl(α,θ ) = Nkl sinl αC
(l+1)
k/2−l(cos α)Pl(cos θ ),

k = 0,2,4, . . . ; l = 0,1,2, . . . ,k/2, (7)

where the Cν
n (x) and Pl(z) are Gegenbauer and Legendre

polynomials, respectively. The normalization constant is

Nkl = 2l l!

√
(2l + 1)(k + 2)(k/2 − l)!

2π3(k/2 + l + 1)!
, (8)
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so that ∫
Ykl(α,θ )Yk′l′ (α,θ )d� = δkk′δll′ , (9)

where δmn is the Kronecker δ, and the appropriate volume
element is

d� = π2 sin2 αdα sin θdθ, α ∈ [0,π ],θ ∈ [0,π ]. (10)

It was shown [12] that any AFC ψk,p can be separated into the
independent parts (components)

ψk,p(α,θ ) =
k−p∑
j=p

ψ
(j )
k,p(α,θ )Zj (11)

associated with a definite power of Z, according to the
separation of the right-hand side (rhs) (3b)

hk,p(α,θ ) =
k−p∑
j=p

h
(j )
k,p(α,θ )Zj (12)

of the FRR. Accordingly, each of the FRR (3) can be separated
into the individual equations (IFRR) for each component:

[�2 − k(k + 4)]ψ (j )
k,p(α,θ ) = h

(j )
k,p(α,θ ). (13)

II. THE EDGE COMPONENTS OF THE MOST
COMPLICATED AFC

It is well-known that calculations of the logarithmless AFC
ψk,0(α,θ ) with k = 1,2,3, . . . are the most complicated ones.
However, it is easy to show that the edge components ψ

(0)
k,0 and

ψ
(k)
k,0 of those AFC can be calculated without any problems.

Indeed, for p = 0, Eq. (3b) reduces to the form

hk,0 = 2(k + 2)ψk,1 + 2ψk,2 − 2V ψk−1,0 + 2Eψk−2,0. (14)

Substitution of Eqs. (11) and (12) for the coefficients of powers
of Z into Eq. (14) yields for the right-hand sides of the
IFFR (13) with the mentioned edge components

h
(0)
k,0 = −2V0ψ

(0)
k−1,0 + 2Eψ

(0)
k−2,0, (15)

h
(k)
k,0 = −2V1ψ

(k−1)
k−1,0, (16)

where the angular dependent potentials V0 and V1 are defined
by Eq. (4). It is seen that the rhs (15) and (16) of the order
k are represented by the corresponding edge components of
the order k − 1 and k − 2 (if exists). Moreover, taking into
account that ψ

(1)
1,0 is a function of α {see Eq. (49) [12]}and

ψ
(0)
1,0 is a function of ξ {see Eq. (36) [12]}, one can conclude

that any component ψ
(k)
k,0 (for k � 1) must be a function of a

single angle α, whereas ψ
(0)
k,0 (for k � 1) must be a function of

a single variable ξ defined by Eq. (5). Representation (4) for
the potentials was used to draw the above conclusions.

There is a specific difference between derivations of the
edge components ψ

(0)
k,0 and ψ

(k)
k,0 for even and odd k. Therefore,

we shall present such calculations in detail for k = 4 and k =
5, whereas for k = 6,7,8 the corresponding results will be
presented without derivations.

The general IFRR (13) for k = 4,p = 0,j = 0 reduces to
the form

(�2 − 32)ψ (0)
4,0 = h

(0)
4,0, (17)

where

h
(0)
4,0 ≡ −2V0ψ

(0)
3,0 + 2Eψ

(0)
2,0

= − 1

36
[ξ 2(E − 2) + 3(1 − 2E)2] (18)

according to relation (15). The components ψ
(0)
3,0 and ψ

(0)
2,0 are

presented in Table I and Eq. (55) of Ref. [12], respectively. It
is seen that the rhs (18) of the IFRR (17) is a function of the
single variable ξ . It was shown in Ref. [12] that in this case
the solution of the IFRR (13) with the rhs h

(j )
k,p(α,θ ) ≡ h(ξ )

reduces to solving the differential equation

(ξ 2 − 2)
′′
k (ξ ) + 5ξ 2 − 4

ξ

′

k(ξ ) − k(k + 4)
k(ξ ) = h(ξ ),

(19)

where 
k(ξ ) ≡ ψ
(j )
k,p(α,θ ). A particular solution 


(P)
k of

Eq. (19) can be found by the method of variation of parameters
in the form



(P)
k (ξ ) = 1

(k + 2)
√

2

[
uk(ξ )

∫
vk(ξ )f (ξ )dξ

−vk(ξ )
∫

uk(ξ )f (ξ )dξ

]
, (20)

where f (ξ ) = h(ξ )ξ 2
√

2 − ξ 2. The linearly independent solu-
tions of the homogeneous equation associated with Eq. (19)
are defined by

uk(ξ ) = P
1/2
k+3/2(ξ/

√
2)

ξ 4
√

2 − ξ 2
, vk(ξ ) = Q

1/2
k+3/2(ξ/

√
2)

ξ 4
√

2 − ξ 2
, (21)

where P μ
ν (x) and Qμ

ν (x) are the associated Legendre functions
of the first and second kind, respectively. The general solution
of the inhomogeneous equation (19) has the form



(P)
k (ξ ) + c1,kuk(ξ ) + c2,kvk(ξ ), (22)

where the values of coefficients c1,k and c2,k are defined by
requirements of the finiteness and “purity” of the final physical
solution. The first requirement means that any component
ψ

(j )
k,p(α,θ ) of the AFC must be finite at each point of the two-

dimensional angular space described by the hyperspherical
angles α ∈ [0,π ] and θ ∈ [0,π ]. The second requirement is
associated with only even values of k and concerns obtaining
the single-valued solution containing no admixture of the HH
Ykl(α,θ ).

Turning to the component ψ
(0)
4,0, and simplifying the solu-

tions (21) for k = 4, one obtains

u4(ξ ) = 23/4[ξ 2(3 − 2ξ 2)2 − 1]

ξ
√

π (2 − ξ 2)
,

v4(ξ ) = −
√

π

21/4
(4ξ 4 − 8ξ 2 + 3). (23)
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Substitution of the representations (18) and (23) into (20)
yields



(P)
4 (ξ ) = ξ 2

1440
[10(2E − 1)2 − ξ 2(20E2 − 21E + 7)].

(24)
It is seen that the particular solution 


(P)
4 , as well as v4(ξ ),

are regular over the relevant angular space, whereas u4(ξ )
is singular at the points ξ = 0 (α = π/2, θ = 0) and ξ =√

2 (α = π/2, θ = π ). Hence, first of all, one should set
c1,4 = 0 in Eq. (22) to comply with the finiteness condition.
It is clear that the requirement of “purity” reduces to the
orthogonality condition∫

ψ
(0)
4,0(α,θ )Y4l(α,θ )d� = 0. (25)

Given that ψ
(0)
4,0 = 


(P)
4 (ξ ) + c2,4v4(ξ ), one obtains for the

coefficient

c2,4 = −
∫



(P)
4 (ξ )Y40(α,θ )d�

[∫
v4(ξ )Y40(α,θ )d�

]−1

= E(21 − 20E) − 7

2880
√

π23/4
. (26)

Whence the final result for the “pure” component is

ψ
(0)
4,0 = 60E2 − 63E + 21 + 8ξ 2(E − 2)

5760
. (27)

Note that to derive Eq. (26) we put l = 0 in Eq. (25). However,
putting l = 2 one obtains the same result, whereas for l = 1
one obtains identity.

The next step is deriving the solution of the IFRR (13) for
k = 4,p = 0,j = 4, which becomes

(�2 − 32)ψ (4)
4,0 = h

(4)
4,0. (28)

Expression (16) yields for the rhs of Eq. (28)

h
(4)
4,0 ≡ −2V1ψ

(3)
3,0

= − 1

18
(2 + 5 sin α)

[
tan

(α

2

)
+ cot

(α

2

)
+ 2

]
, (29)

where the component ψ
(3)
3,0 is presented in Table I of Ref. [12].

Transforming to the variable

ρ = tan(α/2), (30)

one obtains

h(ρ) ≡ h
(4)
4,0(α,θ ) = − (1 + ρ)2(1 + 5ρ + ρ2)

9ρ(1 + ρ2)
. (31)

It was shown (see Sec. V in Ref. [12]) that in case the rhs
h

(j )
k,p of the IFRR (13) reduces to the function h(α) ≡ h(ρ) of

a single variable α (or ρ), the solution of Eq. (13) represents a
function g(ρ) ≡ ψ

(j )
k,p(α) satisfying the differential equation

(1 + ρ2)2g′′(ρ) + 2ρ−1(1 + ρ2)g′(ρ) + k(k + 4)g(ρ)

= −h(ρ). (32)

The method of variation of parameters enables us to obtain the
particular solution of Eq. (32) in the form

g(ρ) = uk(ρ)
∫

vk(ρ)h(ρ)ρ2

(ρ2 + 1)3
dρ − vk(ρ)

∫
uk(ρ)h(ρ)ρ2

(ρ2 + 1)3
dρ,

(33)
where the linearly independent solutions of the homogeneous
equation associated with Eq. (32) are

uk(ρ) = (1 + ρ2)k/2+2

ρ
2F 1

(
k + 3

2
,
k

2
+ 1;

1

2
; −ρ2

)
, (34)

vk(ρ) = (1 + ρ2)k/2+2
2F 1

(
k + 3

2
,
k

2
+ 2;

3

2
; −ρ2

)
. (35)

The Gauss hypergeometric function 2F1 was introduced in
Eqs. (34) and (35). The general solution of the inhomogeneous
equation (32) is defined as

g(ρ) + b1,kuk(ρ) + b2,kvk(ρ), (36)

where the coefficients b1,k and b2,k can be determined by the
requirements of finiteness and “purity”, as explained earlier.
Turning to the case of k = 4, one obtains for the independent
solutions of the homogeneous equation:

u4(ρ) = (1 + ρ2)4

ρ
2F 1

(
7

2
,3;

1

2
; −ρ2

)

= (1 − ρ2)(1 − 4ρ + ρ2)(1 + 4ρ + ρ2)

ρ(1 + ρ2)2
, (37)

v4(ρ) = (1 + ρ2)4
2F 1

(
7

2
,4;

3

2
; −ρ2

)
= (ρ2 − 3)(3ρ2 − 1)

3(1 + ρ2)2
.

(38)

Substitution of the representations (37), (38), and (31) into the
rhs of Eq. (33) yields for the particular solution

ψ
(4)P
4,0 = ρ(3 + 7ρ + 3ρ2)

54(1 + ρ2)2
= 1

216
(6 + 7 sin α) sin α. (39)

It is seen that the particular solution g(ρ) and the solution
v4(ρ) of the homogeneous equation are regular over the
relevant angular space, whereas u4(ρ) is singular at the point
ρ = 0 (α = 0). Hence, one should set b1,4 = 0 in Eq. (36)
to comply with the finiteness condition. The requirement of
“purity” can be expressed through the relation∫

ψ
(4)
4,0(α,θ )Y4l(α,θ )d� = 0. (40)

Given that ψ
(4)
4,0 = g(ρ) + b2,4v4(ρ), one obtains for the coef-

ficient

b2,4 = −
∫

g(ρ)Y40(α,θ )d�

[∫
v4(ρ)Y40(α,θ )d�

]−1

= 7

288
+ 2

45π
. (41)

Whence the final result for the “pure” component is

ψ
(4)
4,0 = 120π sin α + 128 cos(2α) + 105π + 64

4320π
. (42)

Note that for l = 1,2 the orthogonality condition (40) is an
identity.
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Putting k = 5,p = 0,j = 0 in Eq. (13), one obtains

(�2 − 45)ψ (0)
5,0 = h

(0)
5,0, (43)

where according to relation (15)

h
(0)
5,0 ≡ −2V0ψ

(0)
4,0 + 2Eψ

(0)
3,0 = 63E − 21 − 60E2 + 8(2 + 29E − 60E2)ξ 2 + 80E(E − 2)ξ 4

2880ξ
. (44)

We used Eq. (27) for the representation of the component ψ
(0)
4,0.

The independent solutions (21) of the homogeneous equation associated with Eq. (19) for k = 5 become

u5(ξ ) = 21/4(8ξ 6 − 28ξ 4 + 28ξ 2 − 7)√
π (2 − ξ 2)

,

v5(ξ ) =
√

π (1 − 12ξ 2 + 20ξ 4 − 8ξ 6)

23/4ξ
. (45)

Substitution of the representations (44) and (45) into the particular solution (20) of the inhomogeneous equation (19) for k = 5
yields



(P)
5 = ξ

172800
[45(7 − 21E + 20E2) − 5(113 − 199E + 60E2)ξ 2 + 2(113 − 119E + 20E2)ξ 4]. (46)

It is seen that the particular solution (46) is regular over the relevant angular space, whereas u5(ξ ) is singular at the point ξ = √
2,

and v5(ξ ) is singular at the point ξ = 0. Hence, the physical solution of Eq. (43) coincides with the particular solution (46), that
is,

ψ
(0)
5,0 = 


(P)
5 . (47)

The general IFRR (13) for k = 5, p = 0, j = 5 reduces to the form

(�2 − 45)ψ (5)
5,0 = h

(5)
5,0, (48)

where according to Eq. (16)

h
(5)
5,0 ≡ −2V1ψ

(4)
4,0 = (1 + ρ)[64(3 − 10ρ2 + 3ρ4) + 15π (1 + ρ2)(7 + 16ρ + 7ρ2)]

2160πρ(1 + ρ2)3/2
, (49)

is expressed through the variable ρ defined by Eq. (30). According to Eqs. (34) and (35) the linearly independent solutions of
the homogeneous equation associated with Eq. (32) for k = 5 can be simplified to the form

u5(ρ) = (1 + ρ2)9/2

ρ
2F 1

(
4,

7

2
;

1

2
; −ρ2

)
= 1 − 7ρ2(3 − 5ρ2 + ρ4)

ρ(1 + ρ2)5/2
, (50)

v5(ρ) = (1 + ρ2)9/2
2F 1

(
4,

9

2
;

3

2
; −ρ2

)
= 7 − 35ρ2 + 21ρ4 − ρ6

7(1 + ρ2)5/2
. (51)

Substituting representations (49)–(51) into the rhs of Eq. (33), one obtains for the particular solution of Eq. (32) with k = 5

ψ
(5)P
5,0 = − 1

453 600πρ(1 + ρ2)5/2
[64(23 + 161ρ − 168ρ2 − 700ρ3 + 105ρ4 + 315ρ5)

+ 15π (43 + 301ρ − 168ρ2 − 700ρ3 + 805ρ4 + 735ρ5)]. (52)

The physical solution ψ
(5)
5,0 of the IFRR (48) must be finite for all values of 0 � α � π and hence for ρ � 0. Therefore, let

us consider the power series expansions of the particular solution ψ
(5)P
5,0 (ρ) and the individual solutions u5(ρ) and v5(ρ) of the

corresponding homogeneous equation about ρ = 0 and ρ = ∞. One obtains

ψ
(5)P
5,0 (ρ) =

ρ→0
− 1

ρ

(
43

30 240
+ 46

14 175π

)
−

(
43

4320
+ 46

2025π

)
+ O(ρ), (53a)

ψ
(5)P
5,0 (ρ) =

ρ→∞ − 1

ρ

(
7

288
+ 2

45π

)
− 1

ρ2

(
23

864
+ 2

135π

)
+ O

(
1

ρ3

)
, (53b)

u5(ρ) =
ρ→0

1

ρ
− 47ρ

2
+ O(ρ3), (54a)

u5(ρ) =
ρ→∞ −7 + 105

2ρ2
+ O

(
1

ρ3

)
, (54b)
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v5(ρ) =
ρ→0

1 − 15ρ2

2
+ O(ρ3), (55a)

v5(ρ) =
ρ→∞ −ρ

7
+ 47

14ρ
+ O

(
1

ρ3

)
. (55b)

It is seen that v5(ρ) is divergent as ρ → ∞, whereas u5(ρ) and ψ
(5)P
5,0 (ρ) are singular at the point ρ = 0. Thus, in order to comply

with the finiteness condition, one should set b2,5 = 0 and

b1,5 = 43

30 240
+ 46

14 175π
(56)

in the general solution

ψ
(5)P
5,0 (ρ) + b1,5u5(ρ) + b2,5v5(ρ). (57)

The final result expressed in terms of the hyperspherical angle α is

ψ
(5)
5,0 = −

[
cos

(
α
2

) + sin
(

α
2

)]
[4(32 + 45π ) + 3(448 + 155π ) cos(2α) + (704 + 465π ) sin α]

64 800π
. (58)

It is clear that using the technique described above, one can subsequently calculate the edge components of any given order k.
Here we present such components up to k = 8. They are

ψ
(0)
6,0 = 1

29 030 400
[3007 − 11 361E + 16 460E2 − 10 080E3 − (4180E2 − 12 705E + 6215)ξ 2

+ 24(113 − 119E + 20E2)ξ 4], (59)

ψ
(0)
7,0 = ξ

36 578 304 000
[630(3007−11 361E + 16 460E2 − 10 080E3) + 105(30 240E3 − 141 700E2 + 164 283E − 60 341)ξ 2

− 14(60 480E3 − 491 860E2 + 873 789E − 430 523)ξ 4 + 4(22 680E3 − 266 950E2 + 660 219E − 430 523)ξ 6], (60)

ψ
(0)
8,0 = 1

21 069 103 104 000
[5(30 481 920E4 − 68 266 800E3 + 72 613 544E2 − 39 544 113E + 8 871 475)

+ 40(3 250 800E3 − 13 370 360E2 + 13 273 113E − 4 324 891)ξ 2 − 420(71 280E3 − 556 120E2 + 934 809E

− 430 523)ξ 4 + 128(22 680E3 − 266 950E2 + 660 219E − 430 523)ξ 6], (61)

ψ
(6)
6,0 = 1

21 772 800π
[80(448 + 255π ) + 144(448 + 155π ) cos(2α) + 315(64 + 55π ) sin α + 7(10 816 + 4335π ) sin(3α)],

(62)

ψ
(7)
7,0 = −

[
cos

(
α
2

) + sin
(

α
2

)]
609 638 400π

[3(585π − 10 304) sin α + 3(58 845π + 142 016) sin(3α)

+8(4485π + 12 992) cos(2α) + 97 560π + 211 456], (63)

ψ
(8)
8,0 = 1

1 843 546 521 600π2
{94 502 912 + 75π (1 946 944 + 626 787π )

+2[94 502 912 + 3π (43 273 408 + 12 251 925π )] cos(2α) + 4096(46 144 + 19 275π ) cos(4α)

+1008π [105(448 + 225π ) sin α + (142 016 + 58 845π ) sin(3α)] }. (64)

III. SINGLE-SERIES REPRESENTATION FOR
THE SUBCOMPONENT ψ

(2e)
3,0

It was shown in Ref. [12] that the AFC component ψ
(2)
3,0

represents the sum of subcomponents ψ
(2x)
3,0 with x = a,b,c,d.

Unfortunately, the extra subcomponent ψ
(2e)
3,0 corresponding to

the rhs

h
(2e)
3,0 = − sin α

ξ
, (65)

of the IFFR

(�2 − 21)ψ (2e)
3,0 = h

(2e)
3,0 (66)
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was missed in Ref. [12]. Using the technique described
in Sec. V of Ref. [12], we have found the mentioned

subcomponent (details can be found in Appendix A) in the
form of the single-series representation

ψ
(2e)
3,0 =

∞∑
l=0

Pl(cos θ )(sin α)lλl(ρ). (67)

For 0 � ρ � 1 the functions λl(ρ) can be written in the form

λl(ρ) = 1

2l + 1
{u3,l(ρ)V3,l(ρ) − v3,l(ρ)[U3,l(ρ) − (2l + 1)sl]}, (68)

where

u3,l(ρ) = (ρ2 + 1)l−
3
2

ρ2l+1

[
(2l + 3)(2l + 5)

(2l − 3)(2l − 1)
ρ4 + 2(2l + 5)

2l − 1
ρ2 + 1

]
, (69)

v3,l(ρ) = (ρ2 + 1)l−
3
2

[
(2l − 3)(2l − 1)

(2l + 3)(2l + 5)
ρ4 + 2(2l − 3)

2l + 3
ρ2 + 1

]
, (70)

U3,l(ρ) = − l(l + 1)
[
(ρ2 + 1)4 arctan(ρ) + ρ7 − ρ

] + (l2 − 7l − 10)ρ5 − (l2 + 9l − 2)ρ3

2l(2l − 3)(2l − 1)(ρ2 + 1)4
, (71)

V3,l(ρ) = −[(−2)l(l − 2)(l − 1)(2l + 3)(2l + 5)]−1{12[B−ρ2 (l + 1, − 3) − B−ρ2 (l + 1, − 4)]

+ (2l − 3)ρ2[2l2 + l − 7 + (l − 2)(2l − 1)ρ2][(3 − l)B−ρ2 (l + 1, − 3) − 4B−ρ2 (l + 1, − 4)]} (72)

Here Bz(a,b) is the Euler beta function. It is seen that expression (72) cannot be applied directly for l = 1,2. For these values of
l, one obtains

V3,1(ρ) = 1

140

[
3 + 10ρ2 + 11ρ4 − 20ρ6

(1 + ρ2)4
+ 2 ln(1 + ρ2)

]
, (73)

V3,2(ρ) = − 1

84

[
5 + 14ρ2 + 9ρ4 − 6ρ6 + 24ρ8 + 6ρ10

6(1 + ρ2)4
+ ln(1 + ρ2)

]
. (74)

Using the Mathematica operator FindSequenceFunction we have found a simple representation (the details can be found in
Appendix A) for the coefficient

sl = 2−l−3

(2l − 3)(2l − 1)(2l + 1)
[2l(l + 1)(Hl+1

2
− H l

2
− π ) + 2l + 3], (75)

in expression (68) for λl(ρ). The functions Hz denote the
harmonic numbers with a primary definition of the form

Hz = γ + ψ(z + 1),

where ψ(z̄) is the digamma function, and γ is the Euler-
Mascheroni constant. Remember that for ρ > 1 one should
replace ρ with 1/ρ in Eqs. (68) to (74).

IV. ELABORATION OF SOME RESULTS
OBTAINED PREVIOUSLY

In Ref. [12] the various components of the AFC were
derived in the form of a one-dimensional series with fast
convergence. In particular, the solution of the IFRR

(�2 − 32)ψ (2d)
4,1 = h

(2d)
4,1 , (76)

with the rather complicated rhs,

h
(2d)
4,1 = π − 2

3π

[
sin

(α

2

)
+ cos

(α

2

)]

×
[

5

3 sin α
ξ 3 +

(
1 − 2

sin α

)
ξ − 1

ξ

]
, (77)

was represented by a single series of the form

ψ
(2d)
4,1 =

∞∑
l=0

Pl(cos θ )(sin α)lτl(ρ), (78)

where the variables ξ and ρ are defined by Eqs. (5) and (30),
respectively. It was shown that for l > 2 the function τl(ρ) can
be expressed by the formula

τl(ρ) = τ
(P)
l (ρ) + A2(l)v4,l(ρ), (79)

where

τ
(P)
l (ρ) = 1

2l + 1
[u4,l(ρ)V4,l(ρ) − v4,l(ρ)U4,l(ρ)], (80)

u4,l(ρ) = ρ−2l−1(ρ2 + 1)l+4
2 F1

(
7

2
,3 − l;

1

2
− l; −ρ2

)
,

(81a)

v4,l(ρ) = (ρ2 + 1)l+4
2 F1

(
7

2
,4 + l; l + 3

2
; −ρ2

)
. (81b)
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However, the function τ
(P)
l (ρ) as well as the coefficient A2(l) were represented in the closed form (see Eq. (C14) of Ref. [12])

only for l � 10.
Here, we present the functions mentioned above in a few general closed forms which are applicable for any l � 3. In particular,

it is shown in Appendix B that the functions U4,l and V4,l included in the rhs of expression (80) can be represented in the form:

U4,l(ρ) = a0l

8(l − 3)!

15
√

π�(l + 1/2)

l−3∑
m=0

�(m + 7/2)�(l − m + 1/2)(−1)m

m!(l − m − 3)!

5∑
n=1

anl

(
ρ2m+n − 1

2m + n
+ ρ2m+n+1 − 1

2m + n + 1

)
, (82)

V4,l(ρ) = 4a0l�(l + 3/2)

15
√

π
ρ2l+3

2∑
m=0

m!(
1 + ρ2

)5−m

m∑
k=0

�(k + 7/2)

k!(m − k)!�(k + l + 3/2)

(
− ρ2

1 + ρ2

)k

×
[

(k + l + 3)!�(l + m + 3/2)

(l + 3)!�(k + l + m + 5/2)
b2m+1,lρ

2m
2F 1

(
l + m − 1,m − 3

2
; k + l + m + 5

2
; −ρ2

)

+ b2(2−m),l

k + l − m + 3
ρ3−2m

2F 1

(
l − 2,m − 3

2
; k + l + 3

2
; −ρ2

)]
, (83)

where

a0l = − (π − 2)2−l−1

3π (2l − 1)(2l + 3)
, a1l = 15 − 4l(l + 1)(4l + 11)

(2l − 3)(2l + 5)
, a2l = 4l(2l + 3),

a3l = 2, a4l = 4(l + 1)(2l − 1), a5l = (2l − 1)(4l + 5)

2l + 5
, (84)

b0,l = a1l , b5,l = a5l , bs,l = asl + as+1l (s = 1,2,3,4). (85)

Moreover, it is shown in Appendix B that all of the Gauss hypergeometric functions in Eqs. (81) and (83) can be expressed as
elementary functions. A simple representation of the function V4,l(ρ) through the generalized hypergeometric functions 3F2 is
also derived.

Making use of the Mathematica operator FindSequenceFunction, the following representation was derived (see the details in
Appendix C) for the factor A2(l) in the rhs of Eq. (79):

A2(l)= (2 − π )π−3/2

360l(l − 2)�(l + 1
2 )

{
[l(l + 1)(688l4 + 1376l3 − 2480l2 − 3168l + 465) + 450]�

(
l−1

2

)
�

(
l+1

2

)
(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)

− 56

l − 1

(
l

2
!

)2
}

. (86)

Note that Eq. (86) is correct only for even l > 2, whereas
A2(l) ≡ 0 for odd values of l.

The last subcomponent derived in Ref. [12] in the form of
a single-series representation was

ψ
(2c)
3,0 (α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)lφl(ρ). (87)

It is the physical solution of the IFFR

(�2 − 21)ψ (2c)
3,0 = h

(2c)
3,0 , (88)

with the rhs

h
(2c)
3,0 = − 4ξ

3 sin α
. (89)

The function φl(ρ) was obtained [12] in the form

φl(ρ) = φ
(P)
l (ρ) + clv3,l(ρ), (90)

where closed-form expressions for the functions φ
(P)
l (ρ) were

derived in [12] (see also Appendix D), and the function v3,l(ρ)
is defined by Eq. (70). The problem is that the coefficient cl

was obtained in a very complicated integral form. A simple
form of this coefficient can be written as follows:

cl =
2(2l + 1) − π − H l

2
+ Hl−1

2

6(2l − 3)(2l − 1)(2l + 1)2l
, (91)

where Hz are the harmonic numbers. The details can be found
in Appendix D.

V. CONCLUSIONS

The individual Fock recurrence relations introduced in [12]
were used to derive explicit expressions for the components
ψ

(0)
k,0 and ψ

(k)
k,0 of the AFC ψk,0. Using the methods described

in [12], the above-mentioned edge components were calculated
and presented for 4 � k � 8. However, since the IFRR for
the edge components of the order k contain only the edge
components of the lower order, there is no problem to calculate
the edge components with arbitrary k. Moreover, it was stated
that the components ψ

(k)
k,0 for k � 1 are functions of the

hyperspherical angle α only, whereas the components ψ
(0)
k,0

are functions of the single variable ξ defined by Eq. (5).
The single-series representation [see Eq. (67)] was derived

for the subcomponent ψ (2e)
3,0 missed in [12]. This subcomponent

is the physical solution of the IFRR (66) with its rhs of the
form (65). The specific coefficient sl , which is a part of the
mentioned representation, was found in a simple explicit form.
This coefficient was derived by an application of the Mathe-
matica operator FindSequenceFunction. The same method was
applied to find simple expressions for the coefficients cl and
A2(l) in the single-series representations of the subcomponents
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ψ
(2c)
3,0 and ψ

(2d)
4,1 , respectively. For the latter subcomponent

we also derived closed explicit representations in terms of
hypergeometric functions and elementary functions.
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APPENDIX A

In this Appendix we describe the details of deriving the subcomponent ψ
(2e)
3,0 representing the solution of the IFRR (66) with

its rhs of the form (65). The physical solution of Eq. (66) we shall seek in the form of the single-series (67). First, using the Sack
representation for ξ−1 (see, e.g., [9] or [12]), let us represent the rhs of the IFRR (66) in the form

h
(2e)
3,0 =

∞∑
l=0

Pl(cos θ )(sin α)lhl(α), (A1)

where

hl(α) = −2−l(sin α)2F1

(
l

2
+ 1

4
,
l

2
+ 3

4
; l + 3

2
; sin2 α

)
= −2−l sin α

{
sec2l+1

(
α
2

)
, 0 � α � π

2

csc2l+1
(

α
2

)
. π

2 � α � π.
(A2)

For 0 � ρ � 1 [see definition (30)] Eq. (A2) reduces to {see Eq. (B3) in Ref. [12]}
hl(ρ) ≡ hl(α) = −21−lρ(1 + ρ2)l−1/2. (A3)

To derive the function λl(ρ) one needs to solve Eq. (44) of Ref. [12] for k = 3, which is

(1 + ρ2)2λ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]λ′

l(ρ) + (3 − 2l)(2l + 7)λl(ρ) = −hl(ρ). (A4)

Using the method of variation of parameters, a particular solution of Eq. (A4) can be obtained in the form

λ
(P)
l (ρ) = 1

2l + 1
[u3,l(ρ)V3,l(ρ) − v3,l(ρ)U3,l(ρ)], (A5)

where the individual solutions u3,l(ρ) and v3,l(ρ) of the homogeneous equation associated with Eq. (A4) are represented by
Eqs. (69) and (70) {see also Eqs. (D6) and (D7) of Ref. [12]}, whereas for the integral factors one obtains

U3,l(ρ) ≡
∫

u3,l(ρ)hl(ρ)ρ2l+2

(ρ2 + 1)2l+3
dρ = − l(l + 1)[(ρ2 + 1)4 arctan(ρ) + ρ7 − ρ] + (l2 − 7l − 10)ρ5 − (l2 + 9l − 2)ρ3

2l(2l − 3)(2l − 1)(ρ2 + 1)4
, (A6)

V3,l(ρ) ≡
∫

v3,l(ρ)hl(ρ)ρ2l+2

(ρ2 + 1)2l+3
dρ = −[(−2)l(l − 2)(l − 1)(2l + 3)(2l + 5)]−1{12[B−ρ2 (l + 1, − 3) − B−ρ2 (l + 1, − 4)]

+ (2l − 3)ρ2[2l2 + l − 7 + (l − 2)(2l − 1)ρ2][(3 − l)B−ρ2 (l + 1, − 3) − 4B−ρ2 (l + 1, − 4)]}. (A7)

It is seen that expression (A7) cannot be applied directly for l = 1 or 2. For these values of l, one easily obtains the expressions (73)
and (74).

It can be verified that u3,l(ρ) is singular, whereas v3,l(ρ) and the particular solution λ
(P)
l (ρ) are regular at the point ρ = 0 (α = 0)

for any l � 0. Hence, the physical solution is of the form

λl(ρ) = λ
(P)
l (ρ) + slv3,l(ρ), (A8)

where the coefficient sl can be found by the coupling equation (61) of Ref. [12], which for this case becomes

Q2l,l = 22(l+2)(l + 1)!√
π�

(
l + 3

2

) ∫ 1

0

[
λ

(P)
l (ρ) + slv3,l(ρ)

] ρ2l+2

(ρ2 + 1)2l+3
dρ. (A9)

Here, Qn,l denotes the unnormalized HH expansion coefficients for subcomponent

ψ
(2e)
3,0 (α,θ ) =

∑
nl

Qn,lYnl(α,θ ). (A10)

To derive the closed-form expression for Qn,l , we first obtain the unnormalized HH expansion

h
(2e)
3,0 (α,θ ) =

∑
nl

Hn,lYnl(α,θ ) (A11)

for the rhs of Eq. (66), where by definition

Hn,l = N2
nl

∫
h

(2e)
3,0 (α,θ )Ynl(α,θ )d� (A12)
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with the normalization constant defined by Eq. (8). Inserting Eqs. (A1) and (A2) and the HH definition (7) into the rhs of
Eq. (A12), one obtains

Hn,l = −2l+2N2
nlπ

2

2l + 1

[∫ π/2

0
sin2l+1

(α

2

)
sin2 αC

(l+1)
n/2−l(cos α)dα +

∫ π

π/2
cos2l+1

(α

2

)
sin2 αC

(l+1)
n/2−l(cos α)dα

]
, (A13)

where the orthogonality of the Legendre polynomials was used. On the other hand, substitution of expansion (A10) into the
left-hand side of Eq. (66) yields

(�2 − 21)ψ (2e)
3,0 =

∑
nl

Qn,l(n − 3)(n + 7)Ynl(α,θ ). (A14)

According to Eq. (66), the right-hand sides of Eqs. (A14) and (A11) can be equated, which yields

Qn,l = Hn,l

(n − 3)(n + 7)
. (A15)

Thus, making use of the relation (A13) for n = 2l, one obtains

Q2l,l ≡ H2l,l

(2l − 3)(2l + 7)
= − 2l+4(l + 1)!√

π (2l − 3)(2l + 7)�(l + 3/2)
B 1

2

(
l + 2,

3

2

)
. (A16)

Equating the rhs of Eqs. (A9) and (A16), we find the required coefficient in the form

sl = [I1(l) − I2(l)]I−1
3 (l), (A17)

where

I1(l) = − 2−l

(2l − 3)(2l + 7)
B 1

2

(
l + 2,

3

2

)
, (A18)

I2(l) =
∫ 1

0
λ

(P)
l (ρ)

ρ2l+2

(ρ2 + 1)2l+3
dρ, (A19)

I3(l) =
∫ 1

0
v3,l(ρ)

ρ2l+2

(ρ2 + 1)2l+3
dρ = 2−l−3/2(2l + 1)

(2l + 3)(2l + 7)
. (A20)

It is seen that Eqs. (A17) to (A20) yield a very complicated expression for the coefficient sl included [see Eq. (A8)] in
representation (68) for λl(ρ). The easiest method of finding the simplest representation for sl is the use of the Mathematica
operator FindSequenceFunction. In particular, using Eqs. (A17) to (A20) we have calculated the coefficient sl for 3 � l � 30,
and found that it has the form

sl = al + blπ + cl ln 2, (A21)

where al, bl , and cl are rational numbers. Making use of the calculated sequences for each of the coefficients al, bl , and cl , the
Mathematica operator FindSequenceFunction enables us to find the general forms of these coefficients as functions of l. Notice
that for a given sequence there is a minimal number of terms needed for Mathematica to find the formula for the general term.
In particular, for the coefficients bl and cl , this minimal number is 8, whereas for al it is 22. Finally, one obtains

sl = 2−l−3

(2l − 3)(2l − 1)(2l + 1)
[2l(l + 1)(Hl+1

2
− H l

2
− π ) + 2l + 3], (A22)

where Hz are the harmonic numbers.

APPENDIX B

To solve the IFRR (76) with the rhs of the form (77), we used the single-series representation (78) for the subcomponent ψ
(2d)
4,1 .

It was shown in Ref. [12] that the function τl(ρ) in Eq. (78) represents the physical solution of the equation

(1 + ρ2)2τ ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]τ ′

l (ρ) + 4(2 − l)(l + 4)τl(ρ) = −hl(ρ), (B1)

where {see Eq. (C6) of Ref. [12]}

hl(ρ) = − (π − 2)(ρ + 1)(ρ2 + 1)l−1

3π (2l − 1)(2l + 3)2l+1

[
15 − 4l(l + 1)(4l + 11)

(2l − 3)(2l + 5)ρ
+ 4l(2l + 3) + 2ρ + 4(l + 1)(2l − 1)ρ2

+ (2l − 1)(4l + 5)ρ3

2l + 5

]
(B2)
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for 0 � ρ � 1. The method of variation of parameters enables us to obtain the particular solution of Eq. (B1) in the form (80),
where

V4,l(ρ) =
∫ ρ

0
v4,l(t)hl(t)t

2l+2(1 + t2)−2l−3dt, (B3)

U4,l(ρ) =
∫ ρ

1
u4,l(t)hl(t)t

2l+2(1 + t2)−2l−3dt, (B4)

and the individual solutions u4,l and v4,l of the homogeneous equation associated with (B1) are defined by (81) according to
formulas (46) of Ref. [12] for k = 4.

Our aim is to find closed-form representations for the integrals (B3) and (B4) through special and elementary functions. To
this end, it would be useful, first of all, to express the solutions u4,l(ρ) and v4,l(ρ) through elementary functions. It is seen from
Eq. (81a) that for l � 3, we can write

u4,l(ρ) = 8(l − 3)!(1 + ρ2)l+4

15
√

π�(l + 1/2)ρ2l+1

l−3∑
m=0

(−1)m�(m + 7/2)�(l − m + 1/2)

m!(l − m − 3)!
ρ2m. (B5)

The well-known formula (7.3.1.140) of Ref. [15] was applied. Notice that the explicit expressions for the particular solutions
τ

(P)
l (ρ) with l = 0,1,2 were presented in Eqs. (C9) to (C11) of Ref. [12].

The solution of the problem for v4,l(ρ), defined by Eq. (81b), is more complicated. The use of the relation (7.3.1.9) of Ref. [15]
for m = l − 3 and subsequent application of the transformation (7.3.1.3) of Ref. [15] yield

2F1

(
7

2
,l + 4; l + 3

2
; −ρ2

)
= 16�(l + 3/2)

105
√

πρ2(l−3)(1 + ρ2)7

l−3∑
p=0

(−1)p

p!(l − p − 3)! 2
F1

(
1,l − p + 4;

9

2
;

ρ2

1 + ρ2

)
. (B6)

The next step is the application of the relation (7.3.1.132) of Ref. [15] to the Gauss hypergeometric functions in the rhs of
Eq. (B6). This gives

2F1

(
1,l − p + 4;

9

2
;

ρ2

1 + ρ2

)
= 7�(l − p + 1/2)

2(l − p + 3)!

{
15(1 + ρ2)l−p+4

8ρ8

[
2ρ√
π

arctan(ρ) −
3∑

m=1

(m − 1)!

�(m + 1/2)

(
ρ2

1 + ρ2

)m
]

+
l−p−1∑
m=0

(l − p − m + 2)!

�(l − p − m + 1/2)
(1 + ρ2)m+1

}
. (B7)

Inserting Eqs. (B6) and (B7) into Eq. (81b), one obtains the following representation for the second solution of the homogeneous
equation:

v4,l(ρ) = �(l + 3/2)√
π

(
1 + ρ2

ρ2

)l−3 l−3∑
p=0

(−1)p�(l − p + 1/2)

p!(l − p − 3)!(l − p + 3)!

{
(1 + ρ2)l−p+4

ρ8

×
[

2ρ√
π

arctan(ρ) −
3∑

m=1

(m − 1)!

�(m + 1/2)

(
ρ2

1 + ρ2

)m
]

+ 8

15

l−p−1∑
m=0

(l − p − m + 2)!

�(l − p − m + 1/2)
(1 + ρ2)m+1

}
. (B8)

To find analytic representations for the integrals (B3) and (B4), it is convenient to represent the rhs of (B2) in the compact form

hl(ρ) = a0l(ρ + 1)(ρ2 + 1)l−1
5∑

n=1

anlρ
n−2, (B9)

where the coefficients anl are defined by Eq. (84). Inserting representations (B5) and (B9) into the rhs of Eq. (B4), and performing
the trivial integration, one obtains

U4,l(ρ) = a0l

8(l − 3)!

15
√

π�(l + 1/2)

l−3∑
m=0

�(m + 7/2)�(l − m + 1/2)(−1)m

m!(l − m − 3)!

5∑
n=1

anl

(
ρ2m+n − 1

2m + n
+ ρ2m+n+1 − 1

2m + n + 1

)
. (B10)

Using Eqs. (81b) and (B9) one can write Eq. (B3) in the form

V4,l(ρ) = a0l

5∑
n=0

bn,l

∫ ρ

0
t2l+n+1

2F 1

(
7

2
,l + 4; l + 3

2
; −t2

)
dt, (B11)
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where the coefficients bn,l are defined by Eq. (85). The use of the relation (1.16.1) of Ref. [15] yields

V4,l(ρ) = a0l

5∑
n=0

(
bn,l

2l + n + 2

)
ρ2l+n+2

3F 2

(
7

2
,l + 4,l + 1 + n

2
; l + 3

2
,l + 2 + n

2
; −ρ2

)
. (B12)

This last relation gives the representation of the integral (B3) through generalized hypergeometric functions. To derive
representation of the integral (B3) through the Gauss hypergeometric functions, one should first apply the relation (7.4.1.2)
of Ref. [15]. A subsequent reorganization of summation along with application of the linear transformation (7.3.1.4) of Ref. [15]
gives the required expression (83).

Now we shall show that the Gauss hypergeometric functions included into Eq. (83) can be expressed as elementary functions.
The use of the relation (7.3.1.10) of Ref. [15] and subsequent application of the linear transformation (7.3.1.3) of Ref. [15] give

2F1

(
l − 2,m − 3

2
; k + l + 3

2
; −ρ2

)
= (−ρ2)3−l

(
k + 9

2

)
l−3

1 + ρ2

l−3∑
p=0

(−1)p

p!(l − p − 3)!

×2F 1

(
1,k + p + 6 − m; k + 9

2
;

ρ2

1 + ρ2

)
. (B13)

In turn, using (7.3.1.10) of Ref. [15], and then applying (7.3.1.3) of Ref. [15], one obtains

2F1

(
l + m − 1,m − 3

2
; k + l + m + 5

2
; −ρ2

)
=

(
k + 9

2

)
l+m−2

(1 + ρ2)
(−ρ2

)l+m−2

l+m−2∑
p=0

(−1)p

p!(l + m − p − 2)!

×2F 1

(
1,k + p + 6 − m; k + 9

2
;

ρ2

1 + ρ2

)
. (B14)

Finally, application of the relation (7.3.1.132) of Ref. [15] yields

2F1

(
1,k + p + 6 − m; k + 9

2
;

ρ2

1 + ρ2

)
= �(k + 9/2)�(p − m + 5/2)(1 + ρ2)k−m+p+6

π (k − m + p + 5)!ρ2(k+4)

×
[

2ρ arctan(ρ) − √
π

k+3∑
s=1

(s − 1)!

�(s + 1/2)

(
ρ2

1 + ρ2

)s
]

+ 2k + 7

2(k − m + p + 5)

p−m+1∑
s=0

(−1)s
(
m − p − 3

2

)
s
(1 + ρ2)s+1

(k − m + p − s + 5)s
, (B15)

where (a)n is the Pochhammer symbol. Thus, Eqs. (B13) to (B15) together with Eq. (83) give a representation of the integral (B3)
through rational functions and the arctangent of ρ. The latter result, together with Eqs. (B5), (B8), and (B10), gives the particular
solution τ

(P)
l (ρ) in terms of elementary functions.

APPENDIX C

In Ref. [12] the coefficient A2(l) in the physical solution (79) was derived in a general but very complicated (integral) form.
In particular (see Appendix C of Ref. [12]),

A2(l) = 1

P2(l)

[
(π − 2)2−3(l+2)

3π (2l − 1)(l − 2)(l + 4)
P3(l) − P1(l)

]
, (C1)

where

P1(l) =
∫ 1

0
τ

(P)
l (ρ)

ρ2l+2

(1 + ρ2)2l+3
dρ, (C2)

P2(l) =
∫ 1

0
v4,l(ρ)

ρ2l+2

(1 + ρ2)2l+3
dρ =

√
π2−2(l+2)�(l + 3/2)

�(l/2 + 3)�(l/2)
, (C3)

P3(l) = − 2l+1

(l + 3)(2l − 3)(2l + 3)(2l + 5)

{
30

l + 1
− 26

l + 2
+ 13 − 4l[47 − 2l(2l(l + 3) − 9)] + 2l+1

×
[

(l + 1)[4l(l(4l + 3) − 17) + 45]B 1
2

(
l + 3

2
,
1

2

)
+ 8l[l(l(4l(l + 4) + 3) − 56) − 62]B 1

2

(
l + 3

2
,
3

2

)]}
. (C4)
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The Mathematica calculation of the coefficients A2(l) for any integer l � 3 shows that
(1) for odd values of l the coefficients A2(l) equal zero;
(2) for even values of l the coefficients A2(l) are reduced to the form

A2(l) = 2 − π

π2
A(l), (C5)

with A(l) = (al + πbl) where al and bl are rational numbers. Using the effective Mathematica code, we have calculated the
rational numbers al and bl for l = 4 up to l = 60 (in steps of 2). Making use of the Mathematica operator FindSequenceFunction,
it is possible to find a general simple form of the coefficients al and bl . Remember that for a given sequence there is a minimal
number of terms needed for Mathematica to find the formula for the general term. In particular, for the coefficients al and bl

these minimal numbers are 10 and 26, corresponding to l = 4,6,8, . . . ,22 and l = 4,6,8, . . . ,54, respectively. Thus, application
of the Mathematica operator FindSequenceFunction to the sequences mentioned above yields

A(l) =
√

π

360l(l − 2)�
(
l + 1

2

)
{

[l(l + 1)(688l4 + 1376l3 − 2480l2 − 3168l + 465) + 450]�
(

l−1
2

)
�

(
l+1

2

)
(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)

− 56

l − 1

(
l

2
!

)2
}

.

(C6)

APPENDIX D

It was derived in Ref. [12] that the function φl(ρ) defined by Eq. (90) represents the physical solution of the inhomogeneous
differential equation

(1 + ρ2)2φ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]φ′

l(ρ) + (3 − 2l)(7 + 2l)φl(ρ) = −hl(ρ), (D1)

with

hl(ρ) = 21−l(ρ2 + 1)l+
1
2 [(1 − 2l)ρ2 + 2l + 3]

3(2l − 1)(2l + 3)ρ
. (D2)

The particular solution φ
(P)
l of the equation (D1) was represented in the form {see Eqs. (101) to (104) of Ref. [12]}

φ
(P)
l (ρ) = 2−l(ρ2 + 1)l−

3
2

3(2l − 3)(2l − 1)(2l + 3)(2l + 5)

[
2f1l(ρ) + 2f2l(ρ) + f3l(ρ)

2l + 1

]
, (D3)

where

f1l(ρ) = [9 − 4l(l + 2)]ρ + (13 − 4l2)ρ3, (D4)

f2l(ρ) = [(2l − 3)(2l − 1)ρ4 + 2(2l − 3)(2l + 5)ρ2 + (2l + 3)(2l + 5)] arctan(ρ), (D5)

f3l(ρ) = −[(2l + 3)(2l + 5)ρ4 + 2(2l − 3)(2l + 5)ρ2 + (2l − 3)(2l − 1)]
ρ

l + 1
2F 1(1,l + 1; l + 2; −ρ2). (D6)

It was shown that the coefficient cl in solution (90) can be expressed as:

cl = M1(l) − M2(l)

M3(l)
, (D7)

where

M1(l) = 2−3l−2l!
√

π

3(2l − 3)(2l − 1)(2l + 7)�(l + 3/2)
3F 2

(
2l − 1

4
,
2l + 1

4
,l + 1; l + 3

2
,l + 3

2
; 1

)
, (D8)

M3(l) ≡
∫ 1

0
v3,l(ρ)

ρ2l+2

(ρ2 + 1)2l+3
dρ = 2−l− 3

2 (2l + 1)

(2l + 3)(2l + 7)
, (D9)

M2(l) ≡
∫ 1

0
φ

(P)
l (ρ)

ρ2l+2

(ρ2 + 1)2l+3
dρ. (D10)

It is seen that according to Eqs. (D3) to (D10) the coefficient cl is represented by a very complicated function of l. However,
Mathematica calculations with any given integer l � 0 show that the parameter cl has the form c0,l + c1,lπ + c2,l ln 2, where
ci,l (i = 0,1,2) are rational numbers. Using the Mathematica operator FindSequenceFunction, one obtains the following simple
result

cl = 2l + 1 − (π/2) − 
(−1,1,l + 1)

3(2l − 3)(2l − 1)(2l + 1)2l
, (D11)
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where 
(z,s,a) is the Lerch transcendent. Note that for the case under consideration we have


(−1,1,l + 1) = 1

2

[
ψ

(
l

2
+ 1

)
− ψ

(
l

2
+ 1

2

)]
= 1

2

(
H l

2
− Hl−1

2

)
, (D12)

where ψ(z) and Hz are the digamma function and harmonic numbers, respectively. The minimal lengths of sequences needed for
Mathematica to find simple representations for c0,l , c1,l , and c2,l are 22, 6, and 6 (repeatedly), respectively.
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