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Effect of higher-order multipole moments on the Stark line shape
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Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of
laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation
of the radiator’s energy structure due to the Coulomb interaction with the surrounding charged particles. Solving
this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However,
most models include only up to the second term of the expansion (the dipole term). While there have been studies
on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes
the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole
terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms
consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the
line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary
to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing
models include only up to the dipole terms, the densities inferred with such models are in question. We find that
the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large
as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.
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I. INTRODUCTION

In a dense plasma, the bound electron of every ion and/or
atom is perturbed by its nearby charged particles, which affect
its line transition energies and widths. The ensemble effect of
this random perturbation is observed as the spectral line broad-
ening. As density increases, the perturbations become stronger,
and the spectral line shape broadens in a complex way,
making detailed line-shape modeling a challenging enterprize.
Nevertheless, the line shape remains a powerful and precise
tool to diagnose laboratory and astrophysical plasmas [1–3].

In a dense plasma, the Hamiltonian of a hydrogen atom
can be expressed (with the nucleus at �r = 0; atomic units
throughout: � = 1,e = 1,me = 1) as

H (t) = H0 + Vext(�r,t), (1)

H0 = −1

2
∇2 − 1

|�r| , (2)

where H0 is the Hamiltonian for the unperturbed hydrogen
atom and �r is the position operator of the radiator electron.
Vext(�r,t) is the time-dependent perturbing Coulomb potential
due to the surrounding charged particles (protons and
electrons):

Vext(�r,t) =
N∑
j

[
qj

| �Rj (t)| − qj

|�r − �Rj (t)|

]
, (3)

where the first and second terms in the summation are
the Coulomb potential energies due to the perturber j on the
nucleus (at origin) and the bound electron, respectively; the
sum is over the N particles interacting with the radiator (bound
electron plus nucleus). The origin is chosen to be the nucleus
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of the radiator. The charge and time-dependent position of
perturber j are denoted as qj and �Rj (t), respectively. In
general, Eq. (3) is not exactly solvable due to complexities
[4] of the many-body problem and therefore must be treated
approximately.

One common approach to handle this many-body problem
is to use multipole expansion of Eq. (3) about the nucleus
of the radiator [4,5]; this expands the contribution from each
perturber j , assuming the perturbing particles are outside the
radiating atom:1

qj

| �Rj (t)| − qj

|�r − �Rj (t)| = qj

Rj (t)
−

[
qj

Rj (t)

+ qj r

R2
j (t)

cos γj (t) + qj r
2

R3
j (t)

[3 cos2 γ (t) − 1] · · ·
]

= −
∞∑

k=1

qj

rk

Rk+1
j (t)

Pk( cos γj (t)), (4)

where the brackets contain the Taylor expansion of the bound-
electron term; r ≡ |�r|, Rj (t) ≡ | �Rj (t)|, γj (t) is the angle
between �r and �Rj (t), and Pk(x) are Legendre polynomials
[4]. The first (k = 0), second (k = 1), and third (k = 2) terms
are called monopole, dipole, and quadrupole, respectively,
and correspond to the electric potential, the electric field,
and the gradient of the electric field at the nucleus of the
radiator produced by perturber j . While we derive Eq. (4)
only for neutral hydrogen for our application, the perturbation
potential due to nearby charged particles can always be
expressed in multipole expansion for any radiator (i.e., neutral
or charged, single or multiple bound electrons). Thus, the

1Replace rk/Rk+1
j (t) with min[r,Rj (t)]k/max[r,Rj (t)]k+1 for a

more general expression [5].
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concern associated with the use of multipole expansion is
general to any line-shape model.

Most line-shape broadening calculations evaluate Eq. (4)
out to only the dipole term [6–9], which produces the Stark
effect. There have been only a limited number of studies that
have included terms higher than the dipole term. Moreover,
those studies investigated the effect of the higher-order terms
only due to either ions [10–12] or electrons [13,14]. Our
calculations simultaneously include higher-order terms from
both ions and electrons.

In this paper, we investigate the impact of terms beyond the
dipole term from both ions and electrons using a particle-
simulation method. We are particularly interested in the
hydrogen Balmer-β (Hβ) line shape due to its application for
white dwarf star and laboratory diagnostics [3]. In Sec. II, we
describe the simulation-based line-shape model used in this
article. We include the higher-order multipole terms from both
ions and electrons simultaneously. In Sec. III, we find that the
electron quadrupole term is as important as the ion quadrupole
term to accurately model asymmetry near the Hβ line center.
We perform a line-shape convergence study in Sec. IV that
includes up to the sedecapole (k = 4) term and study how
many terms are necessary to accurately model Hβ. We find
that the quadrupole term becomes important at densities
as low as one order of magnitude below the Inglis-Teller
limit [15]. Since Hβ is often used as a plasma diagnostic,
Sec. V further investigates its impact on the inferred electron
density ne. At low density (ne � 1017 electrons per cubic
centimeter; e/cm3), the line shape calculated only up to the
dipole term is sufficiently accurate. However, at higher density
(ne ∼ 1018e/cm3), the inferred density is underestimated by
12%. Section VI summarizes our conclusions.

II. CALCULATIONAL CONSIDERATIONS

The line shape is defined as the Fourier transform of the
average dipole autocorrelation function [16],

L(ω) =
∫ ∞

0
eiωt

∑
αβ

ρα
�Dβα · 〈U (t) �DαβU †(t)〉avdt, (5)

where initial and final states of the transition are denoted by
α and β, respectively; 〈〉av denotes an ensemble average over
perturber configurations; ρα is the population of the initial
state; �Dαβ is the dipole moment that connects the initial state
to the final state; and U (t) is the time-evolution operator, which
is the solution to the time-dependent Schrödinger equation,

i
d

dt
U (t) = H (t)U (t), (6)

where the Hamiltonian includes a time-dependent interac-
tion potential due to the perturbing particles as shown in
Eqs. (1)–(4). This line-shape formula, Eq. (5), can be evaluated
using two primary approaches: (i) the analytic approach,
known as standard theory [6,7], and (ii) the particle-simulation
approach [8,9]. While the analytic approach is quite fast, it in-
troduces approximations that are not needed in the simulation
approach. Also, while it is more straightforward to include
electron and ion higher-order terms in the simulation, the
importance of higher-order terms has never been investigated

with the simulation approach. Thus, we use a simulation-based
line-shape model throughout this article.

In the simulation approach, H (t) is computed with
Eqs. (1)–(4) by simulating the motions of all the perturbers
around the radiator. Then, U (t) is solved with Eq. (6), which is
used to compute the time development of the dipole operator,
U (t) �DαβU †(t). This calculation is repeated with different
randomness in the perturber motions, and its configurational
average 〈U (t) �DαβU †(t)〉av is simulated. Finally, the line shape
is computed by numerically integrating Eq. (5), which is
explained in detail in [17,18].

We treat perturbing particles classically. This assumption is
commonly made in simulation line-shape calculations and is
valid when the average interparticle distance is much greater
than the thermal de Broglie wavelength [19]. All the cases we
explore in this article have characteristic interparticle distances
greater than four de Broglie wavelengths.

For our study, we approximate the perturber motions with
straight-path trajectories.2 This approximation neglects the
Coulomb forces of the perturbers on each other. Stambulchik
et al. [20] showed that the effect of the perturber-perturber
interaction can be approximated with the Debye-screened
Coulomb potential for weakly coupled plasmas. To take this
into account, we introduce a Debye screening factor to Eq. (3):

Vext(�r,t) =
∑

j

qij

[
qj

| �Rj (t)|e
−| �Rj (t)|/λD

− qj

|�r − �Rj (t)|e
−|�r− �Rj (t)|/λD

]
, (7)

where λD = √
kBT /4πne is the electron Debye length; kB is

the Boltzmann constant and T is the temperature of the plasma.
The resulting Taylor expansion of the screened Coulomb
potential is Eq. (4) multiplied by the exponential screening
factor and a polynomial Sk:3

Vext(�r,t) = −
∑

j

∞∑
k=1

qj

rk

Rk+1
j (t)

Pk( cos γj (t))

× Sk(Rj (t)/λD)e−Rj (t)/λD , (8)

where Sk(x) comes from the Debye screening factor:

S0(x) = 1, S1(x) = 1 + x,

S2(x) = 1 + x + 1

3
x2, S3(x) = 1 + x + 2

5
x2 + 1

15
x3,

S4(x) = 1 + x + 1

9
x2 + 4

81
x3 + 1

81
x4,

.... (9)

2If the net charge of the radiator were nonzero, the perturbing
particles would follow hyperbolic trajectories around a Coulomb
potential of charge (Z − Nb) where Z is the charge of the nucleus
and Nb is the number of bound electrons.

3Additional terms that are of lower-order angular dependence
are ignored. For example, the Taylor expansion for k = 2 is
[P2(cos γ )r2S2(R/λD)/R3 + r2(R/λD)2/6R3] exp(−R/λD), and we
are ignoring the second term in brackets, which is the divergence
term; this is commonly assumed to be zero inside the radiator wave
function [12].
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At higher coupling parameters, the trajectories of classical
particles are no longer accurately described by the Debye-
screened straight paths and perturber motions need to be
computed in detail taking into account Coulomb interactions.
Stambulchik et al. [20] demonstrated how this alters the
effective screening length of the electrons, increasing it beyond
what is predicted by the Debye theory. However, the errors
in the effective screening length mostly influence long-range
interaction, which is dominated by the lowest-order terms
(e.g., dipole term). Thus, we expect that detailed treatment
of perturber motions would mostly impact the accuracy of the
dipole term and not our conclusions on the importance of the
higher-order terms.

One advantage in using the screened Coulomb potential
is that particles beyond a few Debye lengths are completely
screened and do not contribute to the line shape. Therefore,
the total number of particles in our simulation [Eq. (3)] is
determined by the conditions of our plasma. We performed a
sensitivity study and chose the simulation box to be at least
five Debye lengths. The number of the particles used in the
simulation is based on the box size and the particle number
density. If, however, we perform a fully interacting simulation
(as opposed to the noninteracting simulation), then we may
require several thousand particles in a much bigger box.

Finally, we make a note on the basis set (number of elements
of the state vector) required for accurate quantum-mechanical
calculation. We perform the U (t) �DαβU †(t) calculation with a
matrix representation of operators and states; accuracy of the
perturbed atomic structure depends on the choice of the basis
set included in this representation. Most previous calculations
include only the states in the same shell as the upper and lower
states of the transition. For example, for Hβ, only 2s, 2p, 4s,
4p, 4d, and 4f are included. When the perturbation is small,
a linear combination of these states accurately represents the
perturbed states. However, as ne increases, n = 4 states start
to mix with n = 5 states, and the next manifold (i.e., 5s, 5p,
5d, 5f , and 5g) needs to be added to the basis set to accurately
compute the Hβ line shape. The importance of this extended
basis set has been confirmed previously [10,20,21], and we
use this extended basis set for the rest of the article.

III. THE ELECTRON QUADRUPOLE MOMENT AND THE
Hβ ASYMMETRY

Griem [22] considered the quadrupole term due to the ions
(denoted as Qi and often referred to as the ion quadrupole in
the literature) as a primary source of asymmetry in Hβ. More
recent studies have shown that the mixing of state n with state
n + 1 (i.e., an extended basis) is also a source of asymmetry
[10,20]. Djurović et al. [21] studied extensively the effects
of asymmetry in the Hβ line by introducing the extended
basis set to the simulation-based line-shape model and by
introducing the ion quadrupole effect to the semianalytic
theory. The simulation model was able to reproduce the
measured asymmetry for densities below a few 1017 e/cm3,
but overpredicted the asymmetry above this threshold. The
semianalytic model was able to match the measurements above
this same threshold, but not below. No single calculation was
able to match the data over the entire density range presented
in Djurović et al. (1 × 1016–1.2 × 1018 e/cm3).
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FIG. 1. The double-peaked Hβ line shape. The asymmetry of the
core is defined as the fractional difference of the intensity between
the blue peak and red peak, (Ib − Ir )/Ib, where the subscripts b and r

denote the blue (	E > 0) and the red peaks (	E < 0), respectively.

Here, we revisit this study of Hβ asymmetry with the
simulation-based model developed in Sec. II. We include not
only the extended basis set and the ion quadrupole term but also
the electron quadrupole term Qe. We focus our attention on a
smaller range of densities, ne = 1 × 1017–1.2 × 1018 e/cm3,
where there is a discrepancy with the simulation calculation
of Djurović et al. [21]. We compute the Hβ line shapes with
three different descriptions of higher-order terms: (1) dipole
terms only for both ions and electrons, denoted as Di + De,
(2) up to quadrupole terms for ions but dipole terms only
for the electrons, denoted as Qi + Di + De, and (3) up to
quadrupole terms for both ions and electrons, denoted as
Qi + Qe + Di + De. Note that the extended basis set is used
for all the three cases. The asymmetry of the calculated line
shape is defined in the same way as Djurović et al. [21], which
is the ratio of the difference between the blue- (	E > 0, where
	E = 0 is the unshifted Hβ photon energy) and the red-peaks
(	E < 0) intensities, (Ib − Ir )/Ib (Fig. 1).

Figure 2 includes several measurements of the Hβ asym-
metry including Carlhoff et al. [23], Halenka [24], Djurović
et al. [21], and Uhlenbusch and Vioel [25]; we then compare
asymmetry simulated with different degrees of completeness
in the higher-order terms (i.e., De + Di , De + Di + Qi , and
De + Di + Qe + Qi) against the measured asymmetry.

The dipole-only calculation (Di + De) compares well
with the measured asymmetry at the density below ∼ 3 ×
1017 e/cm3 but overpredicts the asymmetry above this thresh-
old, reproducing the results of the simulation-based line-shape
models presented in Djurović et al. [21]. The calculation
that includes Qi increases the asymmetry compared with
dipole-only calculation, showing less agreement with the data.
When we include both Qi and Qe, the calculated asymmetry
improved and successfully reproduced the measured asymme-
try throughout the available ne data.

We repeated this calculation at 2 eV because the experi-
ments [21,23–25] have reported temperatures between 1 and 2
eV. All of the calculated asymmetries based on the listed app-
roximations (De + Di , De+Di +Qi , and De + Di +Qe+Qi)
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FIG. 2. Asymmetry calculations (lines) with different approx-
imations: dipole only interaction (black); dipole + ion-quadrupole
(blue); dipole + electron- and ion-quadrupole moments (red). Dipole
only calculation becomes too asymmetric above 3 × 1017 e/cm3;
including Qi further increases the asymmetry and does not agree
well with data; including both Qi and Qe reduces the asymmetry
above 3 × 1017 e/cm3 and agrees well with data.

systematically increase with temperature. Thus, the calculation
with De + Di + Qe + Qi at 2-eV temperature still more
accurately reproduces the trend seen in the measurements.

This improvement can be explained by the fact that the
shape around the line center is more susceptible to rapid
microfield fluctuations [26]. Since electrons move much faster
than ions, the inclusion of Qe changes the width of the various
Stark components. Thus, to model the line shape accurately
throughout the line profile, it is important to consistently
include higher-order terms from both ions (Qi) and electrons
(Qe).

IV. CONVERGENCE OF THE MULTIPOLE EXPANSION

We include multipole terms consistently from both ions
and electrons and study how the Hβ line shape converges with
higher-order terms. We only explore the line shapes at 1 eV
because the relative importance of the higher-order multipole
terms is not sensitive to temperature.

In Fig. 3, we compare the Hβ line shapes calculated
with different multipole terms at (a) 1017, (b) 1018, and
(c) 1019 e/cm3. The green, blue, orange, and red represent
Hβ line shapes computed with the terms up to the dipole
(k � 1), the quadrupole (k � 2), the octupole (k � 3), and
the sedecapole (k � 4), respectively. Figure 3(a) shows all
profiles having nearly identical shapes, indicating that the line
shape computed with the dipole term is sufficiently accurate
at this lower density. In Fig. 3(b), the dipole line shape is
systematically wider and shorter than the line shape with more-
complete calculations. Figure 3(c) shows the opposite trend:
the dipole line shape is systematically narrower and taller
and shows larger asymmetry. In either case, the quadrupole
line shape is consistent with the more-complete octupole and
sedecapole line shapes.

To quantify the goodness of the dipole and quadrupole
line shapes, we compute the average percent error in the line
shapes, assuming that the sedecapole profile is the correct one:

Percent Error = 1

n

n∑
i=1

|φ(Ei) − ψ(Ei)|
ψ(Ei)

× 100%, (10)

where ψ is the sedecapole profile, φ is either the dipole
or quadrupole profile, and the sum of i is only over points
within the energy range of interest. We compare the line-shape
accuracy over two energy ranges: the core and wings. The core
is defined as the photon-energy range inside the full width at
half maximum (|	E| < FWHM), and the wings are defined
to have the energy ranges between that and twice the full width
at half maximum (FWHM < |	E| < 2 × FWHM).
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FIG. 3. Area-normalized Hβ profiles at various levels of approximation over several different conditions. Profiles calculated at electron
densities of 1017, 1018, and 1019 e/cm3 are shown (all at 1-eV temperature). All moments include contributions from both ions and electrons.
The green line shows the dipole approximation of Eq. (4); the blue line shows up to the quadrupole term; the orange line shows up to the
octupole term; and lastly, the red line shows up to the sedecapole (k � 4) term, indistinguishable from the octupole profile. The profiles that
include up to the quadrupole term match reasonably well to the sedecapole profile.
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TABLE I. Percent error in line shapes.

ne (e/cm3) Dipole Quadrupole Octupole Region

1017 0.53 0.52 0.40
1018 5.20 0.88 0.58 Core
1019 8.68 2.10 0.89

1017 0.78 0.80 0.81
1018 9.2 1.1 0.81 Wings
1019 5.05 1.7 0.80

Table I summarizes the percent errors of the dipole,
quadrupole, and octupole line shapes for the core and wings,
respectively. As electron density increases, the error in the
dipole line shape significantly increases from less than 1% to
nearly 10%, while the quadrupole line shapes are accurate
within a few percent throughout the tested densities. The
percent error in the octupole line shape is less than 1% across
all densities. It is important to include at least up to quadrupole
terms to accurately calculate the line shapes within a
2% error.

V. DENSITY DIAGNOSTICS

Plasma electron density is often diagnosed by fitting a
modeled line shape to the measured line shape. However,
many line-shape models used for this purpose employ up to
the dipole term (known as the dipole approximation) for the
perturber-radiator interaction potential in Eq. (4). Since we find
the quadrupole terms are important for accurate line-shape
calculations (Sec. IV), here we investigate the impact of
including higher-order multipole terms on density diagnostics.

The black dots in Figs. 4(a) and 4(b) are Hβ line
profiles measured by Wiese et al. [27] and by Carlhoff
et al. [23], respectively. We fit these measured profiles with
dipole, quadrupole, and sedecapole line shapes to infer the
electron density of the source plasmas. Since the sedecapole
line shape includes most higher-order multipole terms, we
consider the diagnostics with this line shape to be the most
accurate. Based on our sedecapole line-shape diagnostics, the
inferred conditions are ne = 9.2 × 1016 and 1.5 × 1018 e/cm3,
respectively. Our determination for Fig. 4(a) agrees well with
the conditions published in [27], which was determined to
be 9.3 × 1016 e/cm3. However, we note that our inferred
density is slightly different for Fig. 4(b) (determined to be
1.1 × 1018 e/cm3 from the Lorentz fitting) since they only
compared the FWHM with a calculation from Griem [28].

When we use the dipole and quadrupole line shapes, the
inferred conditions are not always consistent with the values
inferred while using the sedecapole line-shape model even
though the fits always look reasonable. For Fig. 4(a), the
percent difference in the inferred density is 1.6% between the
sedecapole and dipole profiles, while that of the quadrupole
profile shows half a percent difference.

In Fig. 4(b), we compare a case where electron density is
above 1018 e/cm3. The densities inferred with the dipole and
quadrupole line shapes are 1.3 × 1018 and 1.5 × 1018 e/cm3,
respectively.
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FIG. 4. (a) The highest-density measured spectrum from the
Wiese et al. [27] experiment, focused on Hβ (dots). The fits for the
calculated dipole, quadrupole, and sedecapole profiles are identical,
yielding fit differences less than the fit errors. (b) The measured Hβ

spectrum by Carlhoff et al. [23] (dots). The fits for the calculated
dipole, quadrupole, and sedecapole profiles yield differences in
density of 12%, which is greater than the fit errors.

For a quantitative discussion we use
∑

(data − model)2,
which is similar to the variance, as a measure of the goodness of
the fit because the uncertainties on the individual data points
are not available; the results are shown in Table II. For the
Wiese experiment, our χ2 decreases for each of the higher-
order approximations, while for the Carlhoff experiment, the
χ2 varies between the different approximations rather than
steadily decreasing. The trends reported are not conclusive.
There could be other sources of error due to neglect of

TABLE II.
∑

(data − model)2 (intensity units).

Approximation Wiese Carlhoff

Dipole 1166 9.9 × 10−3

Quadrupole 860 5.1 × 10−3

Sedecapole 829 9.5 × 10−3
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high-density effects, such as the overlapping Hγ line, changes
in the relative line intensity, the lowered continuum, and the
disappearance of substates; these effects are beyond the scope
of this paper.

At these high densities, the dipole line shape becomes
inaccurate as discussed in Sec. IV and underestimates the
density by 12%, while the quadrupole line shape still infers
the correct density. At these densities, including quadrupole
terms is necessary for accurate electron-density diagnostics.

VI. CONCLUSIONS

We explore the higher-order multipole moments in the
Coulomb interaction potential between the radiator and the
perturbing particles, focusing on their effect on line shapes.
While this is important for all line-shape theory, we focus on
the hydrogen Balmer β line (n = 4 → 2) due to its use as an
astrophysical and laboratory diagnostic [3]. This line-shape
calculation includes higher-order multipole moments from
both ions and electrons in the plasma. In calculations of the
asymmetry of the Hβ line, the quadrupole term due to the ions
is often included while the quadrupole term due to the electrons
is usually neglected. We show that including just the ions
in the quadrupole calculation results in greater disagreement
with measurement, while including quadrupole contributions
from both ions and an electrons brings the asymmetry into
agreement with the data. We also study the convergence of the
line shapes from using the higher-order multipole moments; at

least the quadrupole term should be included for 2% accuracy
in the line shape. Using line shapes calculated up to the dipole
term infer erroneous electron densities at ne � 1018 e/cm3,
while using the quadrupole profile is in error of 2% or
less at densities up to the Inglis-Teller limit of the Hβ line
(∼1019 e/cm3). The line-shape inaccuracy due to omitting
the quadrupole terms would cause one to underestimate the
density inferred from a measured spectrum by ∼12% even
at a density as low as 10% of its Inglis-Teller limit. While
we focus on the Hβ line-shape calculation, similar impact is
expected from other lines. We therefore find that it is necessary
to include up to at least the quadrupole terms due to both the
ions and electrons for accurate line-shape calculations and
accurate electron-density diagnostics.
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[18] S. Ferri, A. Calisti, C. Mossé, J. Rosato, B. Talin, S. Alexiou,
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