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Quantities invariant under local unitary transformations are of natural interest in the study of entanglement.
This paper deduces and studies a particularly simple quantity that is constructed from a combination of two
standard permutations of the density matrix, namely, realignment and partial transpose. This bipartite quantity,
denoted here as R12, vanishes on large classes of separable states including classical-quantum correlated states,
while being maximum for only maximally entangled states. It is shown to be naturally related to the 3-tangle
in three-qubit states via their two-qubit reduced density matrices. Upper and lower bounds on concurrence and
negativity of two-qubit density matrices for all ranks are given in terms of R12. Ansatz states satisfying these
bounds are given and verified using various numerical methods. In the rank-2 case, it is shown that the states
satisfying the lower bound on R12 versus concurrence define a class of three-qubit states that maximize the
tripartite entanglement (the 3-tangle) given an amount of entanglement between a pair of them. The measure R12

is conjectured, via numerical sampling, to be always larger than the concurrence and negativity. In particular, this
is shown to be true for the physically interesting case of X states.
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I. INTRODUCTION

Quantum entanglement, the nonlocal and unique feature of
quantum mechanics, has been extensively investigated in the
recent past, and forms an important part of quantum informa-
tion theory [1]. In particular, shared bipartite entanglement is
a crucial resource for many quantum information tasks such
as teleportation [2], quantum cryptography [3], entanglement
swapping [4,5], remote state preparation [6], dense coding
[7], channel discrimination [8], and quantum repeaters [9].
Given a quantum state of many particles, say ρ, quantifying
its entanglement content is naturally important. This question
has been settled in favor of the von Neumann entropy of the
reduced density matrices in the case of pure bipartite states
[10], as it quantifies the entanglement that can be concentrated
using local operations alone. In the case of two-qubit states,
mixed or pure, “concurrence” is used, as it was shown to
be a monotonic function of the entanglement of formation
[11–13].

The partial transpose (PT) introduced by Peres [14]
is a powerful and simple tool to detect entanglement in
mixed bipartite states. However, while positivity under partial
transpose is necessary for separability, it fails to detect
a class of entangled states the so-called bound entangled
states [15]. Nevertheless, the logarithmic negativity [16]
measure based on the partial transpose is a useful measure
of entanglement in mixed states. More general measures of
quantum correlation, such as the quantum discord [17,18],
have been extensively studied as well. These measures of cor-
relations can be nonzero for states that have no entanglement
content.
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The purpose of this work is to focus on a measure that uses a
simple permutation of the density matrix. Given the multitude
of entanglement and correlation measures, this work seeks
to highlight some of the unique properties of this quantity
such as its vanishing on classically correlated states and its
natural relationship with concurrence and the three-tangle. It
is seen as a natural quantity when considering the problem of
maximizing the 3-tangle of three-qubit states given a fixed
entanglement between two of them. This gives rise to an
interesting set of states that we refer to as maximally 3-tangled
states. Thus, it is likely that this measure, which can be easily
calculated for any state, has physical content that deserves
further exploration.

Any measure of entanglement can not increase under
local operations and classical communications (LOCC) and
it should be constant and minimal on all separable states
[1,19]. This also implies that the measure of entanglement
must be invariant under local unitary (LU) transformations.
The spectra of the density matrix itself and the various reduced
density matrices got by tracing out subsystems are such LU
invariants. They could be invariant under nonlocal operations
and therefore their interpretation in terms of entanglement is
generally not tenable. However, interestingly, if the single sub-
system reduced density matrices of a multipartite pure state are
considered, collection of their eigenvectors form convex poly-
topes that characterize distinct entanglement classes [20–22].
Here, the notion of entanglement class is a broader class than
LU, and includes measurements and classical communica-
tions, that are included in the operation known as stochastic
local operations and classical communications (SLOCC). It
is clear that states that cannot be converted to each other by
LU are also not SLOCC equivalent, but the converse is not
true. States that can be converted to each other by SLOCC are
from an entanglement class. In the case of three-qubit pure
states, there are two different entanglement classes, known
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as the W and the GHZ, while for four qubits there are
nine [23].

Given a bipartite system 1 and 2 having a product
orthonormal basis {|i〉|α〉} and density matrix ρ12, the PT
with respect to the second subsystem, denoted as ρ

T2
12 , is given

by the matrix elements(
ρ

T2
12

)
iα;jβ = (ρ12)iβ;jα; (ρ12)iα;jβ = 〈i|〈α|ρ12|j 〉|β〉. (1)

Peres’s partial transpose criterion states that if ρ
T2
12 is negative,

then the state ρ12 is entangled. The other operation of
interest to this work is realignment [24,25]. The corresponding
operation on the density matrix ρ12, denoted as R(ρ12), is
given by

〈i|〈j |(R(ρ12))|α〉|β〉 = 〈i|〈α|ρ12|j 〉|β〉. (2)

The realignment criterion is that if the state ρ12 is separable,
then ‖R(ρ12)‖1 � 1, where ‖M‖1 is the trace norm equal to
tr
√

MM† [26]. This condition is found to detect some bound
entangled states, these being positive under PT and hence
not being detected by the corresponding criterion [15,25].
Note that both the realignment and partial transpose are
simple permutations of the elements of the density matrix.
While the partial transpose retains the Hermiticity of the
operator, realignment does not. In fact, if the subsystems
are of different dimensionalities, it results in a rectangular
matrix.

Consider a system consisting of M subsystems labeled
by i (1 � i � M), each in a Hilbert space of dimension di .
If its joint state is ρ, it was shown in [27], motivated by
considerations in [28], that LU invariants could be constructed
in the following way. Let {a} = (i1,i2, . . . ,iK ) be an arbitrary
closed path in the space of labels of the subsystems, that is,
1 � ik � M and iK+1 = i1. Then, the eigenvalues of

P({a}) = R
(
ρ

TiK

i1iK

)
. . .R

(
ρ

Ti1
i2i1

)
(3)

are (in general complex) LU invariants. Here, ρikim is a bipartite
state obtained by tracing out all other subsystems except ik and
im. It was also shown in [27] that the characteristic polynomial
of P is real and hence these real coefficients are also LU
invariants. Note that the “link transformation” [27,28] is a
combination of both PT and realignment, executed in that
order.

In the same work [27], it was shown that for the
case of bipartite pure state of two qubits, the quantity
det[R(ρT2

12)R(ρT1
21)]1/4 is equal to τ2/4, where τ2 is the two-

tangle [29], i.e., square of the concurrence [11–13]. This
motivates the question of the meaning of the spectra of
R(ρT2

12) as entanglement or correlation measures in an arbitrary
bipartite system. Using this, a new and central quantity of
this paper is defined and investigated in the case of two-qubit
density matrices of general rank.

The structure of the paper is as follows: In Sec. II, the
measure is defined and basic properties are studied, along with
its evaluation for various classes of states. In Sec. III, two-qubit
states of rank 2 or equivalently three-qubit pure states are
studied in detail. Bounds for the concurrence are given in terms
of the defined measure. Various boundaries of the inequality
are characterized and two classes of maximally-3-tangled

states are discussed. The difference between the concurrence
and the measure is shown to have direct connections with
the tripartite measure of the 3-tangle. In Sec. IV, results on
two-qubit states of rank greater than 2 are presented. Rank-3
and rank-4 boundaries are also investigated and all of these
are found to be Bell-diagonal states. The measure is also
evaluated for a special class of states, namely the X states,
and is shown to be larger than the concurrence. In Sec. V,
negativity is compared with R12 and again various boundaries
are investigated and their significance pointed out when we
can. For example, in this case the MEMS I states lie on the
boundary for rank-2 states. The Werner states and pure states
form common outer boundaries in both the R12-concurrence
and R12-negativity comparisons.

II. A SIMPLE LU INVARIANT FROM REALIGNMENT
AND PARTIAL TRANSPOSE

As discussed above, products of certain permutations of
bipartite density matrices along a path in the space of labels
are capable of generating LU invariants. This paper is mainly
devoted to exploring the simplest of these, namely, when
the path simply connects two subsystems: say 1 → 2 →
1. The operator in this case is P(12) = R(ρT2

12)R(ρT1
21) =

R(ρT2
12)R(ρT2

12)†, and hence is positive. While all the eigen-
values or the coefficients of the characteristic polynomial of
P(12) maybe considered, in this paper the quantity

R12 = d {det [P(12)]}1/2d2 = d
{∣∣ det

[
R

(
ρ

T2
12

)]∣∣}1/d2

(4)

is studied. In particular, the case d1 = d2 = d is considered
so that the array R(ρT2

12) is square. Else, straightforward
generalized forms need to be used. The somewhat strange
power is to make contact with the well-known entanglement
measure of concurrence when d = 2, a case that we will
almost exclusively consider. From the definition it is obvious
that R12/d is the geometric mean of the singular values of
R(ρT2

12).
This quantity contains the entanglement along with other

correlations that may come from multipartite entanglement of
purifications of ρ12. Various evidences for this fact will be
presented in the subsequent parts of the paper. To be precise, it
is shown that for various classes of states R12 exceeds or equals
well-known measures of entanglement which shows that the
term ρ12 captures other correlations along with entanglement.
It is interesting to note that in the case of two qubits, R12

is equal to the volume of a steering ellipsoid [30–32], also
called “obesity,” which arises in the quantum steering ellipsoid
formalism of two-qubit states. The quantum steering ellipsoid
of a two-qubit state is defined as the set of Bloch vectors that
Bob can collapse Alice’s qubit to, considering all possible
measurements on his qubit. This formalism has provided a
faithful and intuitive representation of two-qubit states. This
observation gives an operational meaning to the term R12 that
needs further exploration.

The letter R is used to signify this quantity and maybe
considered as some sort of “rapprochement” between the two
subsystems. As the partial transpose followed by realignment
is repeatedly done in the following, it is useful to show
their combined operation explicitly in the case of a two-qubit
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state:

ρ =

⎛
⎜⎜⎜⎝

a11 a12 a13 a14

a∗
12 a22 a23 a24

a∗
13 a∗

23 a33 a34

a∗
14 a∗

24 a∗
34 a44

⎞
⎟⎟⎟⎠

�→ R(ρT2 ) =

⎛
⎜⎜⎜⎝

a11 a∗
12 a12 a22

a13 a23 a14 a24

a∗
13 a∗

14 a∗
23 a∗

24

a33 a∗
34 a34 a44

⎞
⎟⎟⎟⎠. (5)

For product states of the form ρ12 = ρ1 ⊗ ρ2, which is the
special case of separable states, R(ρT2

12) is a rank-1 projector.
The crucial observation is that for such product states

R
(
ρ

T2
12

) = ρR
1

(
ρR

2

)†
, (6)

where the notation ρR
1,2 denotes the density matrix reshaped

into a column vector of dimension d2
1,2 and (ρR

1,2)† denotes
the Hermitian conjugate of ρR

1,2. The reshaping is done by

stacking the rows in a column. Therefore, R(ρT2
12) is a matrix

of dimension d2
1 × d2

2 . To understand this more clearly, an
example of two-qubits will be considered explicitly. Let ρ1 and
ρ1 denote the density matrices of qubits 1 and 2, respectively,
as follows:

ρ1 =
(

a11 a12

a∗
12 a22

)
and ρ2 =

(
b11 b12

b∗
12 b22

)
. (7)

Then, ρR
1,2 are given as follows:

ρR
1 =

⎛
⎜⎜⎜⎝

a11

a12

a∗
12

a22

⎞
⎟⎟⎟⎠ and ρR

2 =

⎛
⎜⎜⎜⎝

b11

b12

b∗
12

b22

⎞
⎟⎟⎟⎠. (8)

Using Eq. (6), one obtains the following: This implies that

ρR
1 (ρR

2 )† =

⎛
⎜⎜⎜⎝

a11b11 a11b
∗
12 a11b12 a11b22

a12b11 a12b
∗
12 a12b12 a12b22

a∗
12b11 a∗

12b
∗
12 a∗

12b12 a∗
12b22

a22b11 a22b
∗
12 a22b12 a2b22

⎞
⎟⎟⎟⎠ (9)

and is easily seen to be R(ρ1 ⊗ ρT
2 ).

For two-qubit pure states it is easy to see that [27]
R12 = C12, where C12 is the concurrence [11–13]. Thus, this
motivates a more detailed study of this quantity in the case of
higher-rank two-qubit density matrices and its relationship to
the concurrence. R12 is a symmetric measure, i.e., R12 = R21,
when the subsystems have equal dimensions. This follows
from the definition, R12 depends on the eigenvalues of
R(ρT2

12)R(ρT1
21), while R21 depends on the eigenvalues of

R(ρT1
21)R(ρT2

12). These two sets of eigenvalues can differ only
in the number of zero eigenvalues, which happens when the
subsystem dimensions are different. Hence, we may define R12

to be such that subsystem labeled 1 is not of larger dimension
than that of subsystem 2.

The following proposition is now proved:
Proposition 1. 0 � R12 � 1.

Proof. Let the eigenvalues of P(12) = R(ρT2
12)R(ρT2

12)† be
μj , 1 � j � d2. Then,

R12 = d

⎛
⎝ d2∏

j=1

√
μj

⎞
⎠

1/d2

� 1

d

d2∑
j=1

√
μj , (10)

which follows from the fact that geometric mean is no
larger than the arithmetic mean. As R(ρT2

12) is only a
permutation of the original density matrix, it follows that
tr[P(12)] = ∑d2

j=1 μj = tr(ρ2
12) � 1. An application of the

Cauchy-Schwarz inequality
∑

i aibi �
√∑

i a
2
i

√∑
i b

2
i , with

ai = √
μi, bi = 1, gives

∑d2

j=1
√

μj � d, which results in
R12 � 1 as required. The lower limit is evident. �

It is instructive to evaluate R12 for well-known classes of
states and therefore the following examples are considered.

(1) Bipartite pure states. Using Schmidt decomposition
every bipartite pure state can always be written as |ψ12〉 =∑d

k=1

√
λk|φk〉|ψk〉 where d = min{d1,d2}. It follows that

R(|ψ12〉〈ψ12|T2 ) =∑
k,j

√
λjλk|φj 〉|φk〉〈ψk|〈ψj |. (11)

The eigenvalues of P(12) are then λkλj for k,j = 1,2, . . . ,d

which gives

R12 = d

(
d∏
k

λk

)1/d

.

For maximally entangled states λk = 1/d ∀ k, and it follows
that R12 = 1. This also follows from the fact that the maximally
entangled state

∑d
j=1 |jj 〉/√d gives R(ρT2

12) = S12/d, where
S12 is the swap operator S12|ij 〉 = |ji〉.

(2) Bell-diagonal states. These states, as the name sug-
gests, are diagonal in the Bell basis [12,33]:

ρ12 = p1|φ+〉〈φ+| + p2|ψ+〉〈ψ+|
+p3|ψ+〉〈ψ+| + p1|φ−〉〈φ−|,

where
∑4

i pi = 1, and |ψ±〉 = (1/
√

2)(|01〉 + |10〉) while
|φ±〉 = (1/

√
2)(|00〉 + |11〉). This state is separable iff its

spectrum lies in [0,1/2] [34], otherwise it is entangled.
The entanglement calculated using the concurrence is C12 =
max{0,2pmax − 1} [13] where pmax = max{p1,p2,p3,p4}. It
is a simple calculation to show that

R12 = |8(p2 + p3 − 1/2)(p2 + p4 − 1/2)(p3 + p4 − 1/2)|1/4

and is nonzero even when concurrence is zero. In fact, R12 is
zero for any pair of pi and pj (i �= j ) satisfying pi + pj =
1/2. Bell-diagonal states appear as boundaries in many of
the following phase diagrams, and one special case of it, the
Werner state, is worth singling out for further details.

(3) Werner state. A well-known mixture of the maximally
entangled and mixed state is the two-qubit Werner state:
ρ12 = (1 − p)I/4 + p |φ+〉〈φ+| [35] where p (0 � p � 1).
This state is entangled iff 1/3 � p � 1 and in that case
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the entanglement, as measured by the concurrence, is C12 =
(3p − 1)/2. It is readily seen, however, that R12 = p3/4, and
hence is nonzero when the concurrence is zero, except in the
extreme case of p = 0, when there is a maximally mixed
state. It is easy to see that p3/4 − (3p − 1)/2 is monotonically
decreasing in [1/3,1] and hence attains the minimum value of
0 at p = 1. This implies that R12 � C12 for all values of p,
equality occurring only at the extreme cases of p = 0 and 1.

(4) Maximally entangled mixed states (MEMS). These
states [33,36–39] are two-qubit states whose entanglement
(concurrence) is maximized for a given value of mixedness,
measured using linear entropy. These states have been realized
experimentally [39] using correlated photons from parametric
down-conversion. There are two classes of MEMS, the rank-2
(MEMS I) and rank-3 (MEMS II) ones and are given as
follows:

ρMEMS I =

⎛
⎜⎜⎝

C12/2 0 0 C12/2
0 1 − C12 0 0
0 0 0 0

C12/2 0 0 C12/2

⎞
⎟⎟⎠,

where
2

3
� C12 � 1 (12)

and

ρMEMS II =

⎛
⎜⎝

1/3 0 0 C12/2
0 1/3 0 0
0 0 0 0

C12/2 0 0 1/3

⎞
⎟⎠,

where 0 � C12 � 2

3
, (13)

respectively. It readily follows from the definition in Eq. (4)
that R12 = C12 for MEMS I and R12 = √

2C12/3 for MEMS
II for the respective ranges of C12. It is easy to see

√
2C12/3 −

C12 � 0 in the range 0 � C12 � 2/3, equality occurring only
at C12 = 0 and 2/3. This implies that R12 � C12 for MEMS.
We will see below that this inequality is of general validity.

(5) Separable states. Consider first product states of the
form ρ12 = ρ1 ⊗ ρ2. Using Eq. (6) one obtains the following:

P(12) = R
(
ρ

T2
12

)
R

(
ρ

T1
21

) = R
(
ρ

T2
12

)
R

(
ρ

T2
12

)†
= ρR

1

(
ρR

2

)†
ρR

2

(
ρR

1

)† = tr
(
ρ2

2

)
ρR

1

(
ρR

1

)† (14)

which is of rank 1 and hence R12 = 0.
For states of the form ρ12 = ∑M

k=1 pkρ1k ⊗ ρ2k , a similar
calculation yields

P(12) =
M∑

k,l=1

pkpl tr(ρ2k ρ2l)ρ
R
1k

(
ρR

1l

)†
. (15)

This cannot be of full rank if M < d2
1 , and hence R12 = 0 in

this case as well.
(6) Classical-quantum correlated states. These are of the

form [40–42]

ρCQ =
∑

i

pi |i〉〈i| ⊗ ρi, (16)

where {|i〉} are orthonormal and ρi are arbitrary states. In
this and the next example we use subscripts C and Q for the
subsystems so as to make the classical and quantum labels

explicit. As a special case of separable states with M � dC <

d2
C it follows from Eq. (15) that RCQ = 0. Alternatively, it is

straightforward to verify that

P(CQ) =
∑
ij

tr(ρiρj )pipj |ii〉〈jj |,

and hence there are at least d2
C − dC vanishing eigenvalues of

P(CQ), implying that RCQ = 0. It should be noted that this
is true irrespective of whether the dimension of the classical
subsystem is greater or less than that of the quantum.

(7) Quantum-classical correlated states. From the sym-
metry property of R it may appear that we can conclude that
it vanishes also for quantum-classical correlated states where
the orthonormal projectors are in the second subspace. The
nonzero eigenvalues of P(QC) are the same as that of P(CQ),
which are at most dC in number. Therefore, if d2

Q � dC we
cannot conclude that P(QC) is rank deficient, and hence RQC

maybe nonzero in this case. On the other hand, if d2
Q > dC

we can indeed conclude that RQC = 0. This is related to
the restriction on the number of product states in the general
separable case considered in Eq. (15).

As a simple special case it also follows that R vanishes for
all classical-classical correlated states. It is interesting that the
quantum discord also vanishes for classical-classical states.
In the case of classical-quantum correlated states, it vanishes
only when the measurements are done on the classical part
of the state, otherwise, it does not vanish in general. In fact,
it vanishes iff the state is of this form and measurements are
done on the classical part of the state [41]. The quantity R12 is
a very simply calculable quantity unlike the quantum discord,
and also vanishes for such states. Thus, R12 does not seem to
include any correlations that are excluded by quantum discord.

Thus, for rank-1 two-qubit density matrix R12 gives
entanglement. But, for higher ranks R12 contains not just
entanglement but correlations of other types also. Since R12 is
nonconstant and nonzero for separable states as seen in the case
of separable Werner states, it is not an entanglement monotone
[1,19]. But, since R12 equals concurrence for two-qubit pure
states it is an entanglement monotone only on such states.
In this respect, it is similar to the quantum discord [17,18,43]
which includes other correlations and it almost never vanishes.
Quantum discord too is not an entanglement monotone except
on bipartite pure states since in this case it equals von
Neumann entropy. However, of course, the discord has an
information-theoretic interpretation of a difference of two
types of mutual information. It will be seen below how the
difference between R12 and C12 for rank-2 two-qubit states
has a natural interpretation.

III. RANK-2 TWO-QUBIT DENSITY MATRICES
OR PURE THREE-QUBIT STATES

Any rank-2 two-qubit density matrix can be obtained as
a reduced density matrix of a suitable three-qubit pure state.
In this section, the measure R12 is explored for such rank-2
density matrices with this intrinsic relationship to three-qubit
states in mind. Three-qubit states (pure as well as mixed)
have been actively explored in the recent past [29,44–56],
as they offer the simplest system that includes multiparty
entanglement sharing. Construction of LU invariants was
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discussed in [46], however, the quantity R12 was not considered
therein. A pure multipartite entanglement measure, the 3-
tangle, was introduced in [29]. The archetypal states of GHZ
and W were superposed and resulting entanglement studied
in [48,49,51,57]. These were based on various entanglement
measures such as concurrence, negativity, log-negativity,
entanglement of formation, von Neumann entropy, squashed
entanglement, and so on [1].

The canonical form of three-qubit pure states [45] is
extremely useful and given by

|ψ〉= λ0|000〉+ λ1e
iθ |100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉,

(17)

where λi ∈ [0,1] ∀ i = 0 to 4,
∑

i λ
2
i = 1, and θ ∈ [0,π ]. It

can be seen that Eq. (17) has only five independent parameters
excluding the trace [46]. The general three-qubit state with 16
real parameters is reduced to these 5 by LU transforms that
have 3 × 3 = 9 real parameters, and by accounting for overall
normalization and phase. Thus, this is the minimal form of any
such state. The following proposition for a two-qubit density
matrix of rank 2 now follows.

Proposition 2. For a rank-2 two-qubit density matrix R2
12 �

C12 � R12 or, equivalently, C12 � R12 �
√

C12.
Proof. Using the canonical form of a three-qubit state which

is a purification of the given state ρ12 leads to the following
parametrization:

ρ12 =

⎛
⎜⎜⎝

λ2
0 0 λ0λ1e

iθ λ0λ3

0 0 0 0
λ0λ1e

−iθ 0 λ2
1 + λ2

2 λ1λ3e
−iθ + λ2λ4

λ0λ3 0 λ1λ3e
iθ + λ2λ4 λ2

3 + λ2
4

⎞
⎟⎟⎠.

(18)

The following measures are readily calculated:

C12 = 2λ0λ3 and R12 = 2λ0λ
1/2
3

(
λ2

3 + λ2
4

)1/4
. (19)

Considering the difference

C4
12 − R4

12 = −16λ4
0λ

2
3λ

2
4 � 0, (20)

it follows that C12 � R12.
Similarly,

R4
12 − C2

12 = 4 λ2
0λ

2
3

[
4 λ2

0

(
λ2

3 + λ2
4

) − 1
]

� 4 λ2
0λ

2
3

[
4 λ2

0

(
1 − λ2

0

) − 1
]

� 0, (21)

where the first inequality follows from λ2
3 + λ2

4 � 1 − λ2
0,

a consequence of the normalization constraint. The second
follows from the fact that x(1 − x) attains the maximum value
of 1/4 when 0 � x � 1. Thus, the proposition is proved. �

The equality R12 = C12 in the case of rank-1 two-qubit
states becomes broadened into this inequality and the measure
R12 is never smaller than concurrence in the case of rank-2
states. However, there is also an upper bound on R12, as it is
never larger than

√
C12. Thus, C12 and R12 when they vanish

do so simultaneously.

A. The 3-tangle, concurrence, and R12 in three-qubit pure states

The difference R4
12 − C4

12 is now shown to be related to the
tripartite entanglement in the three-qubit purification, namely,
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C
12
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R

12

R
12
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2, 2, 2 system (Three-qubit complex pure state)

FIG. 1. The R12 and the entanglement between two qubits C12

having density matrix ρ12 of rank 2. Also shown are the bounds from
proposition 2, the straight line being W states, while the parabola
consists of maximally-3-tangled ones (M3TS). Here, 10 000 random
tripartite complex three-qubit pure states are used.

the 3-tangle. To recall the definition of the 3-tangle [29], it is
given by τ = C2

1(23) − C2
12 − C2

13 where Cij is the concurrence
between qubits i and j . The quantity C1(23) is the concurrence
between qubit 1 and the pair of qubits 2 and 3 since in the
case of three-qubit pure state, the reduced density matrix of
qubits 2 and 3 is of rank 2. The 3-tangle τ has been shown to
be permutationally invariant and 0 � τ � 1. The expression
of the 3-tangle is rather complicated, and can be expressed
as a Cayley hyperdeterminant [29], however, in terms of the
parameters of the canonical form it is simply τ = 4(λ0λ4)2.
Along with Eq. (19) this leads to the remarkably simple relation

R4
12 = C2

12

(
C2

12 + τ
)
. (22)

It can be seen that in the case of two-qubit rank-1 density
matrices, i.e., two-qubit pure states where the 3-tangle (τ ) is
equal to zero, the equality above reduces to the one proved
in [27], namely, C12 = R12. From the point of purification it
implies that if the two quantities C12 and R12 of a two-qubit
density matrix are fixed, then after purification to a three-qubit
pure state the 3-tangle (τ ) of the final state also gets fixed and
is given using Eq. (22) as follows:

τ = R4
12 − C4

12

C2
12

. (23)

It should be noted that the 3-tangle is permutation invariant
and, hence, the combination in the right-hand side will inherit
this property.

Figure 1 shows R12 versus concurrence between two
qubits where the overall three-qubit state is randomly sampled
according to the Haar measure. The relation between the two
measures as reflected in the inequality of Proposition 2 is seen
as the region bounding the straight line and the parabola. It is
of interest to analyze the states that make up the boundaries
of this region.
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B. Upper boundary are from W states

The upper boundary in Fig. 1 corresponds to C12 = R12.
Using Eq. (19), this is seen to imply that λ4 = 0 when
the entanglement is nonzero. The corresponding states are
therefore the W class of states [51]

|ψ〉 = λ0|000〉 + λ1e
iθ |100〉 + λ2|101〉 + λ3|110〉. (24)

It is easy to calculate then that C12 = R12 = 2λ0λ3, C13 =
R13 = 2λ0λ2, C23 = R23 = 2λ2λ3. The tripartite measure of
entanglement, the 3-tangle simply denoted as τ , is 0 for all
these states. Note that the relation in Eq. (22) implies that
for the upper boundary indeed τ = 0. Thus, the W class of
states is similar to pure two-qubit states, inasmuch as there
is no difference between the measure R12 and concurrence.
W states maximize the concurrence between two qubits for
a given R12. This is reminiscent of states that maximize
concurrence for a given purity, and indeed these are seen to
be on the upper boundary too for the following reason.

1. MEMS I is the reduced density matrix of W state

It will be now shown that the MEMS I are reduced density
matrices of W class states. In Sec. II it is shown that R12 = C12

for MEMS I. Note that while the state above is an MEMS I
state only in the range 2/3 � C12 � 1, our use of it is the
entire range 0 � C12 � 1. Therefore, this state is continued to
be referred to as “MEMS I” for convenience although strictly
speaking it is a generalization that is no more maximally
entangled when C12 < 2/3.

Using Eq. (22) it can be seen that if purification of MEMS
I is carried out, in this case to a three-qubit pure state, then
the 3-tangle of the purified state is equal to zero. In the earlier
Sec. III B it was shown that Cij = Rij for all pairs in W class of
states having zero 3-tangle. This naturally raises the question
of whether MEMS I are the reduced density matrices of W

class of states. Indeed, it is found that for parameter values of
λ2

0 = λ2
3 = C12/2 and λ2

2 = 1 − C12 in Eq. (24) of W class of
states, the reduced density matrix of the first and second qubits
is that of MEMS I. The corresponding canonical form of the
W state for which the reduced density matrix of the first and
second qubits is MEMS I is

|ψ〉 =
√

C12

2
|000〉 +

√
1 − C12|101〉 +

√
C12

2
|110〉. (25)

MEMS I states appear later in this paper, when negativity is
discussed, as a very different boundary.

C. Lower boundary are from maximally-3-tangled states

The lower boundary of Fig. 1 is characterized by states
that have C12 = R2

12. Fixing the entanglement C12 between
two qubits which are part of a three-qubit pure state, these
maximize R12. While this seems obscure, it is clear from
Eq. (22) that for a given C12, maximizing R12 is the same as
maximizing the tripartite entanglement as measured by the 3-
tangle. In this sense, the states that make up the lower boundary
are maximally-3-tangled states (M3TS). Using Eq. (19), one
derives that C12 = R2

12 implies, provided λ3 �= 0, λ0 �= 0,

λ4
0 − λ2

0

(
1 − λ2

1 − λ2
2

) + 1
4 = 0. (26)
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FIG. 2. The 3-tangle and the concurrence between first and
second qubits (C12) of a three-qubit pure state is shown. Here, 10 000
such states are sampled according to the uniform Haar measure.
The M3TS states are selected from Eq. (27) where the value of the
parameter C12 is chosen randomly.

This implies that λ1 = λ2 = 0, else the discriminant of the
quadratic equation in λ2

0 becomes negative. Hence,

λ0 = 1√
2
, λ4 =

√
1

2
− λ2

3.

Thus, only one variable, say λ3, is needed to parametrize
the lower boundary. The pairwise concurrences in such states
are C12 = √

2 λ3, C13 = 0, and C23 = 0. The states, using
instead of λ3, the entanglement C12, are given by

|ψM3TS〉 = 1√
2

(
|000〉 + C12|110〉 +

√
1 − C2

12|111〉
)

.

(27)

These are explicit forms of maximally-3-tangled states. If
C12 = 0, this results in the three-qubit GHZ states. For C12 = 1
it reduces to (|00〉 + |11〉)|0〉/√2, wherein qubits 1 and 2 are
maximally entangled and qubit 3 is not entangled to them.

The 3-tangle for |ψM3TS〉 states are

τ = 1 − C2
12 = 1 − R4

12. (28)

In Fig. 2, the 3-tangle τ is plotted as a function of entanglement
between qubits 1 and 2 (C12) for a random sampling of
three-qubit states. It is clear that the states in Eq. (27) give
the maximum 3-tangle for the given value of C12. Also, as a
consequence of this maximization it is found that C13 = C23 =
0 for these states, which is a reflection of the monogamy of
entanglement. When the entanglement between two qubits in
a tripartite system is held fixed, maximizing the multipartite
entanglement results in the other two pairs not being entangled.

For these states it also holds that R23 = R13 = 0. Indeed,
the reduced density matrices are

ρ13 = ρ23 = 1
2 (|1〉〈1| ⊗ |α〉〈α| + |0〉〈0| ⊗ |0〉〈0|), (29)

where

|α〉 = C12|0〉 +
√

1 − C2
12|1〉.
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It is quite clear that these are classical-quantum correlated
states as in Eq. (16) and it has been shown already in Sec. II
that R13 and R23 indeed vanish for this class. On the other
hand, the reduced density matrix of the first and the second
qubits is a mixture of two Bell states

ρ12 =
(

1 + C12

2

)
|φ+〉〈φ+| +

(
1 − C12

2

)
|φ−〉〈φ−|, (30)

therefore, a special case of Bell-diagonal states [12,33].
A natural generalization of |ψM3TS〉 presents itself as

states whose 3-tangle is maximized under constraints that
two of the pair entanglements are fixed, say, C12 and C13.
Stationary points of the 3-tangle with these constraints lead to
(λ0 = 1/

√
2, λ1 = 0, λ2 = C13/

√
2, λ3 = C12/

√
2) and can

be shown to be a maxima. Thus, the states have two parameters
and are given as follows:

|ψ〉 = 1√
2

(|000〉 + C13|101〉 + C12|110〉

+
√

1 − C2
12 − C2

13|111〉), (31)

and the 3-tangle τ of these states is given as follows:

τ = 1 − C2
12 − C2

13. (32)

Thus, the coefficients C12 and C13 have to be chosen such
that 0 � C2

12 + C2
13 � 1. Here, C12 = √

2λ3, C13 = √
2λ2,

and interestingly it is found that C23 = C12C13. The states
in Eq. (31) are natural generalizations of the M3TS. Contrary
to the M3TS case, if the entanglement (concurrences) between
first and second qubits, and between first and third qubits, is
kept fixed at some nonzero value, then the maximization of
the 3-tangle does not lead to zero entanglement (concurrence)
between the second and third qubits. For these states it can be
seen that R12 = √

C12(1 − C2
13)1/4, R13 = √

C13(1 − C2
12)1/4,

and R23 = √
C12C13(1 − C2

12)1/4(1 − C2
13)1/4, so that R23 =

R12R13 as well. These expressions reduce to those of M3TS
for C13 = 0. For other interpretations and appearance of the
M3TS, please see the last section.

IV. TWO-QUBIT STATES WITH RANK > 2

For rank-1 and -2 states, or pure two-qubit and pure
three-qubit states, the connections between the measure R12

derived from the partial transpose followed by realignment
and standard entanglement measures such a concurrence, and
3-tangle is striking and instructive. It also leads naturally
to a segregation of the W states, as well as to a class of
states that are in an essential sense maximally tangled, the
M3TS states. When we step beyond to rank-3 and -4 states,
the picture predictably gets murkier. The purifications are,
for example, to systems of two-qubits and a qutrit for the
rank-3 case. Equivalents of 3-tangles are to our knowledge not
readily available. Yet, from lower-rank cases we can expect
that the difference of some powers of R12 and C12 may reflect
multiparty entanglement present in such purifications. This ex-
pectation is predicated on the inequality R12 � C12 continuing
to hold for rank-3 and -4 cases, which appears to be true.

This was checked numerically in two ways. One, by direct
Haar sampling of pure states of two-qubits and one-qutrit
(rank-3 case) or one-ququad (rank-4 case), and constructing
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FIG. 3. The R12 and the entanglement between two qubits C12

having density matrix ρ12 of rank 3 and 4 at top and bottom, respec-
tively. Also shown are the boundaries for rank-2 states for comparison.
Ansatz-state-I curve in top figure corresponds to Eqs. (35) and (36).
Werner state curve in the bottom figure corresponds to Eq. (39).
Here, 10 000 random tripartite complex pure states with respective
dimension of the third subsystem are used. The insets show an
enlarged view of the region near the origin in the top figure.

R12 and C12. The result is shown in Fig. 3 where only rank-3
and rank-4 cases are shown. It is clear that the straight line
corresponding to C12 = R12 is being typically avoided, and in
fact R12 versus C12 is quite large. States close to the equality
line are therefore all rank-1 and some rank-2 states. This is
in accordance with the picture that emerged of the difference
being a multiparty entanglement of the purification. We expect
that there is more of such entanglement present in purifications
of rank-3 or rank-4 states. Note that the latter can also be
thought of reduced density matrices of four-qubit pure states.

The second method by which this was checked was by
explicitly constructing the density matrix ρ12 (real case) in its
spectrally decomposed form, where its four eigenvectors and
eigenvalues are parametrized. Then, with these parametrized
eigenvalues and eigenvectors, and using Mathematica 9, it
is checked that the density matrix ρ12 satisfies R12 � C12.
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Thus, it is proved for real rank-4 two-qubit density matrices
R12 � C12 and it is most likely valid for complex states as
well. Considering arbitrary rank-4 perturbations of pure states
also validated this inequality. Further, in this regard see the
comment at the end of the paper.

A. States in the lower boundary of the rank-3 case

States that give the lower boundaries in Fig. 3 for ranks 3
and 4 are now discussed. They are assumed to be mixtures
of Bell states as was the lower boundary of the rank-2 case,
namely, the reduced density matrix of M3TS states. Consider
first the case of rank 3, for which an ansatz for the states in the
lower boundary is

ρ12 = 1 − p

2
(|ψ+〉〈ψ+| + |ψ−〉〈ψ−|) + p |φ+〉〈φ+|. (33)

This will be referred to as “ansatz state I” in the following. It
is readily verified that

C12 = max{0,2p − 1}, R12 = √
p |2p − 1|1/4. (34)

For 0 � p � 1/2, the concurrence is zero, however, R12

increases from 0 to a maximum value of (1/3)3/4 when
p = 1/3, and decreases again to zero at p = 1/2. Thus, there
are two distinct segments in the R12 versus C12 graph for this
state, one a horizontal segment

C12 = 0 for 0 � R12 � (1/3)3/4, (35)

and the other the curve

R12 = C
1/4
12

√
1 + C12

2
, (36)

when 1/2 < p � 1. Both these segments are shown in Fig. 3
where the regions

C12 < R12 � C
1/4
12

√
1 + C12

2
for C12 > 0,

0 � R12 � (1/3)3/4 for C12 = 0

(37)

are populated.
Apart from this figure, strong evidence that the lower

boundary is indeed given by states in Eq. (33) is checked
numerically by adding a random density matrix ρR to this
ansatz such that the resultant state is still of rank 3. This
random density matrix is such that its eigenvalues are chosen
randomly with eigenvectors as |ψ±〉 and |φ+〉 such that the
final density matrix is of rank 3 with unaltered eigenvectors.
The eigenvalues are selected as cos2(θ ), sin2(θ ) cos2(φ), and
sin2(θ ) sin2(φ) where θ and φ are independent random vari-
ables chosen uniformly from [0,π ] and [0,2π ], respectively.
The final density matrix ρ ′

12 is given as follows:

ρ ′
12 = ρ12 + ερR

1 + ε
, (38)

where ρ12 is the ansatz state and ε is the perturbation parameter
which controls the amount of randomness added to the ansatz
state ρ12. In Fig. 4, results are shown for states generated as per
Eq. (38) for various values of ε. It can be seen from the figure
(and was also checked numerically) that there is no violation
of Eqs. (37). A more general rank-3 state which lies close
to the subspace spanned by {|ψ±〉, |φ+〉} may be constructed
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FIG. 4. The R12 and the entanglement between two-qubits C12

having density matrix ρ ′
12 of rank 3 given in Eq. (38) for ε = 0.51.

Here, 20 000 such states are sampled randomly in each case. Also
shown are the bounds from Eqs. (37). The insets show an enlarged
view of the region near the origin.

by Gram-Schmidt orthonormalization. Results not presented
here reconfirm that the boundary is populated with states as in
Eq. (33).

B. Werner states form the lower boundary in the rank-4 case

Evidence is now presented that Werner states form the lower
boundary of rank-4 density matrices, and hence the whole
C12 − R12 diagram. Just as in rank-2 and rank-3 cases, these
border states are also Bell diagonal. Consider the Werner state
ρW = (1 − p)I/4 + p |ψ−〉〈ψ−| [35] (0 � p � 1), which is
entangled iff 1/3 < p � 1 and in that case the entanglement,
as measured by the concurrence, is C12 = (3p − 1)/2. As
mentioned in the Introduction, R12 = p3/4 for these states.
Substituting p in terms of R12 in the expression for concurrence
one obtains the following:

C12 = max

{
0,

3R
4/3
12 − 1

2

}
. (39)

Thus, C12 = 0 for 0 � R12 � (1/3)3/4 which is also the case
for the ansatz given for rank-3 border states [refer Eq. (37)].
It is greater than zero for (1/3)3/4 < R12 � 1, in which case
R12 = [(2C12 + 1)/3]3/4. This curve is plotted in that part of
Fig. 3 that corresponds to rank-4 states.

To check that Eq. (39) indeed forms the lower boundary
for the rank-4 cases, again random perturbations are added to
the border (Werner) states. First a random tripartite pure is
selected consisting of two-qubits and a ququad. The reduced
density matrix of the two-qubits ρR is then added to the Werner
state:

ρ12 = (ρW + ερR)/(1 + ε). (40)

It can be seen from Fig. 5 (and also verified numerically) that
there are no states that violate the inequality in Eq. (39). Thus,
for the rank-4 case (and hence for generic two-qubit states) it
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FIG. 5. The R12 and the entanglement between two-qubits C12

having density matrix ρ ′
12 of rank 4 given in Eq. (40) for values of

ε = 0.51. Here, 20 000 such states are sampled randomly in each
case. Werner state curve corresponds to Eq. (39). Also shown are the
bounds from Eq. (39). The insets show an enlarged view of the region
around R12 = 0.6 and N12 = 0.3.

follows that

C12 � R12 �
(

2C12 + 1

3

)3/4

for C12 � 0. (41)

In Fig. 6, the various boundaries of the C12 − R12 diagram are
shown for arbitrary two-qubit states. It includes the parabola
from Proposition 2, and curves from Eqs. (37) and (41). The
curve corresponding to rank 1 is the common upper boundary
for all the ranks, and is simply the line C12 = R12. It can be seen
that as the rank increases, the corresponding lower boundary
gets shifted in the downward direction, but always remains a
Bell-diagonal state.
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FIG. 6. Boundary curves for R12 and the entanglement between
two-qubits C12 having density matrix ρ12 of all the ranks as per given
in Proposition 2 [Eqs. (37) and (41)]. Also shown are various classes
of states lying on the respective boundaries.

C. Concurrence and R12 in X states

An important subset of two-qubit states are the so-called X

states [58–61] which appear in many physical contexts from
quantum optics to condensed matter [61–63]. They have been
intensively investigated, and there are analytical formulas for
the quantum discord of the X states [60,61], which were later
shown to have very small worst-case error by giving explicit
counterexamples [64]. It is therefore of interest to investigate
them in the context of this paper, especially as they are in
general of full rank. The states are given by the following
form that makes the sobriquet “X states” evident:

ρX =

⎛
⎜⎝

a 0 0 w

0 b z 0
0 z∗ c 0

w∗ 0 0 d

⎞
⎟⎠. (42)

This describes a quantum state provided the unit trace and
positivity conditions a + b + c + d = 1,

√
bc � |z|, √

ad �
|w| are satisfied. X states are entangled if and only if either√

bc � |w| or
√

ad � |z|, and both conditions cannot hold
simultaneously [65]. Concurrence is C12 = 2 max{0,|z| −√

ad,|w| − √
bc}. For X states, it is readily seen that

R12 = 2|ad − bc|1/4||z|2 − |w|2|1/4, (43)

which has an interesting structure, involving the product of the
determinants of the reshaped diagonal and antidiagonal.

Proposition 3. For X states, R12 � C12.

Proof. That

|ad − bc|1/4 � ||w|2 − bc|1/4,

||w|2 − |z|2|1/4 � ||w|2 − bc|1/4,

follow from the conditions that
√

ad � |w| and |z| �
√

bc,
respectively. It follows then that

R12 � 2 ||w|2 − bc|1/2, R12 � 2 ||z|2 − ad|1/2,

the latter being derived similarly. However, it also follows
easily that ||w|2 − bc|1/2 � |w| − √

bc provided |w| �
√

bc

and similarly ||z|2 − ad|1/2 � |z| − √
ad when |z| �

√
ad .

Thus, whenever the concurrence is nonzero, it is necessarily
smaller than or equal to R12. �

As a simple corollary, whenever R12 = 0, then C12 = 0.
For X states, it is clear that R12 = 0 whenever ad = bc or
|w| = |z|. It is not evident from the concurrence expressions
that it is zero in these cases, but it is so.

V. NEGATIVITY AND R12

While the R12-concurrence pair has been exhaustively
studied in the case of two-qubit states, it is interesting
to compare R12 with other measures of entanglement. In
particular, as R12 is crucially dependent on the partial transpose
operation, it is of interest to compare it with “negativity”
[66–68] which is exclusively based on the partial transpose
operation.

For a two-qubit state ρ12, after partial transpose, at most
only one eigenvalue can be negative. The negativity is then
defined as

N (ρ12) = max{0, − 2μmin}, (44)
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FIG. 7. The R12 and the negativity between two-qubits N12 having
density matrix ρ12 of rank 2. Also shown are various analytical curves.
The lower curve corresponds to the lower boundary in Eq. (46). Here,
20 000 random tripartite complex three-qubit pure states are used.

where μmin is the minimum eigenvalue of the partial transpose
of ρ12. Unlike concurrence, negativity can be calculated for
bipartite systems of any dimensionality. If the negativity is
nonzero, then the state is entangled. In that case ρ12 is said
to be a NPT (negative partial transpose) state, otherwise it
is a PPT (positive partial transpose) state and is guaranteed
to be separable only for 2 × 2 and 2 × 3 systems [69].
Concurrence and negativity for two-qubit states have been
previously compared [33,67,70] and it was shown that the
following holds:√

(1 − C12)2 + C2
12 − (1 − C12) � N12 � C12. (45)

It was also shown that the class of states which satisfies the
bound N12 = C12 includes two-qubit pure states, and Bell-
diagonal states [12,33] (which include Werner states) while
the class of states which satisfy the lower bound are rank-
2 maximally entangled mixed states of rank, i.e., MEMS I
[33,36–39].

A. Rank-1 and -2 states

It should be noted that the inequality in Eq. (45) holds true
for two-qubit density matrices of all ranks. However, as shown
below, the same inequality, with R12 simply replacing C12,
holds true for the restricted class of two-qubit rank-1 or rank-2
states. That is, for these states√

(1 − R12)2 + R2
12 − (1 − R12) � N12 � R12. (46)

To begin with, the inequality in Eq. (46) is checked for 100 000
random states ρ12 which are reduced density matrices of pure
states of three-qubits that are drawn from the Haar measure.
The bounds are found to hold true in every case, including in a
subset which is shown in Fig. 7. The boundary states are now
presented and verified to be boundaries by using perturbations
as in the cases above.
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FIG. 8. The R12 and the negativity between two-qubits N12 having
density matrix ρ12 obtained using Eq. (48). Parameter used is ε =
0.51. Here, 10 000 such states are selected.

1. Pure states have N12 = R12

It can be seen easily that for any arbitrary two-qubit pure
state |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, N12 and R12 are
the same and given by N12 = R12 = 2|ad − bc|. Thus, all two-
qubit pure states correspond to the upper boundary of Fig. 7. It
is interesting that while apart from pure states, C12 = R12 also
for all (rank-2) reduced density matrices from the W class of
three-qubit states, this is no longer the case when negativity
is compared with R12. Such states are found not to be special
and fill the interior of the region in Fig. 7 rather uniformly.

2. The lower boundary are MEMS I

The R12-concurrence lower boundary consisted of M3TS
states. These do not form the border when negativity replaces
the concurrence. It is easy to see that for M3TS states N12 =
R2

12. MEMS I [33,36–39] were special in the R12-concurrence
case and were the upper boundary as C12 = R12. The spectral
decomposition of MEMS I is

ρMEMS I = (1 − C12)|01〉〈01| + C12|φ+〉〈φ+|, (47)

where R12 can also be used in place of C12 owing to their
equality for such states. Again, simple explicit calculations
yield in this case that N12 =

√
(1 − R12)2 + R2

12 − (1 − R12),
the lower bound in Eq. (46).

That these states turn out to form the lower boundary
in the R12-negativity case (restricted to rank-2 states) is
established by using random rank-2 perturbations and the
result is displayed in Fig. 8. The procedure of perturbation is
now given. As proved in Sec. III B 1, MEMS I is the reduced
density matrix of a subset of W class of states as given in
Eq. (25). Using these three-qubit purifications of perturbations
of MEMS I can be constructed as

|φ〉 = |ψ〉 + ε|ψR〉√
1 + ε2 + ε(〈ψ |ψR〉 + 〈ψR|ψ〉)

. (48)

Here, |ψ〉 is a state in the W class restricted to the form
in Eq. (25) (C12 uniformly random in [0,1]), and |ψR〉 is a
three-qubit random pure state selected according to the Haar
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FIG. 9. The R12 and the negativity between two-qubits N12 having
density matrix ρ12 of rank 3. Also shown are various analytical curves.
Ansatz state II in the figure corresponds to Eq. (53). Here, 20 000
random tripartite complex pure states with respective dimension of
the third subsystem are used. The insets show an enlarged view of the
region near the origin.

measure and ε is the perturbation parameter. Results in Fig. 8
are presented for ε = 0.51. It can be seen that the inequality
in Eq. (46) is strictly respected. A rather large value of the
“perturbation” is used to clearly show the strict spread of the
values to the left of the boundary curve.

B. Two-qubit states with rank > 2

For rank-3 and -4 states it is found from extensive numerical
sampling that the lower bound in Eq. (46) is violated while the
upper bound is still valid (refer Fig. 9). In other words, for rank
3 and rank 4, the inequality N12 � R12 holds. Here too it can
be seen that there is a lower bound on the spread of the states,
i.e., for given value of N12 there seems to be a maximum value
taken by R12 or for given value of R12 there is the minimum
value taken by N12.

1. States in the lower boundary of the rank-3 case

For the case of rank-3 states it is found that neither the
ansatz state I given in Eq. (33) (which gave the lower boundary
for the concurrence versus R12) nor the MEMS II define the
lower boundary of negativity versus R12. Based on the fact
that the spectral decomposition of MEMS I states which form
the lower boundary of rank-2 states are mixtures of a pure
separable state and an orthogonal maximally entangled state
[Eq. (47)], the following generalization (“anstaz state II”) is
examined:

ρ12 = α|01〉〈01| + β|φ+〉〈φ+| + γ |φ−〉〈φ−|, (49)

where 0 � α,β,γ � 1 and α + β + γ = 1. It is readily veri-
fied that for these states

R12 =
√

|β2 − γ 2|, N12 =
√

α2 + (β − γ )2 − α. (50)

The coefficients α,β and γ = 1 − α − β are now fixed such
that for a given value of R12 the minimum value of negativity

is obtained. Using the method of Lagrange multipliers with α

as an independent parameter, this minimization fixes the other
coefficients as

β = 1
2 [1 − α +

√
(1 − α)(1 − 3α)],

γ = 1
2 [1 − α −

√
(1 − α)(1 − 3α)].

(51)

It should be noted that 0 � α � 1/3 to have valid values of
β and γ . With these values of the coefficients, the state in
Eq. (49) is the ansatz state II for which using Eq. (50) one gets

R12 = (1 − α)3/4(1 − 3α)1/4, N12 = 1 − 3α. (52)

Hence, the corresponding negativity versus R12 curve is

R12 = N
1/4
12

(
2 + N12

3

)3/4

, (53)

which is indeed found to be the lower boundary in
Fig. 9.

As for any two-qubit state N12 = 0 if and only if C12 = 0 it
follows that the ansatz state I given in Eq. (33), with 0 � p �
1/2, belongs to the horizontal segment with N12 = 0 in Fig. 9.
As in that case, the maximum value of R12 for rank-3 states
with N12 = 0 is (1/3)3/4. To summarize, the regions

N12 < R12 � N
1/4
12

(
2 + N12

3

)3/4

for N12 > 0,

and 0 � R12 � (1/3)3/4 for N12 = 0

(54)

are populated for rank-3 states. It is checked numerically
(results not presented) that perturbing the boundary states
always results in values of negativity and R12 that lie in the
interior of this region. Thus, although the properties of MEMS
I motivated the form of the ansatz state II for nonzero negativity
in the rank-3 case, it should be noted that this is different from
the rank-3 MEMS II [33,36–39].

2. Werner states are in the lower boundary of rank-4 cases

Evidence is now presented that Werner states form the lower
boundary of full-rank states. As the Werner state is a Bell-
diagonal state, C12 = N12 [12,33], and it follows on using
Eq. (39) that

N12 = max

{
0,

3R
4/3
12 − 1

2

}
. (55)

It can be seen that N12 is zero for 0 � R12 � (1/3)3/4 which
is also the case of rank-3 border states [refer Eq. (54)]. It is
greater than zero for (1/3)3/4 < R12 � 1, in which case N12 =
(3R

4/3
12 − 1)/2 or equivalently R12 = [(2N12 + 1)/3]3/4. This

curve is shown in Fig. 10 along with results from rank-4
matrices derived from a Haar sampling of pure states in (2,2,4)
dimensions.

To check that Eq. (55) indeed forms the lower boundary
for rank-4 case in Fig. 10, the same method from Sec. IV B
is employed. Results not presented here then confirm that the
Werner states lie on the boundary of the R12 versus negativity
region and define the extreme curve within which all states
lie. To summarize, for all two-qubit states, including the
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rank-4 case,

N12 � R12 �
(

2N12 + 1

3

)3/4

for N12 � 0. (56)

In Fig. 11, the boundary curves corresponding to all the ranks
of two-qubit density matrices are shown. It includes various
analytical curves from Eqs. (46), (53), and (55). The curve
corresponding to rank 1 is common to all the ranks. It can
be seen that as the rank increases, the corresponding lower
boundaries get lower. If a two-qubit state is separable, then
N12 = C12 = 0, and in this case the maximum value of R12

is (1/3)3/4 ≈ 0.4387. In other words, if for a two-qubit state
R12 > (1/3)3/4, it is necessarily entangled. If this criterion is
applied to, for example, Werner state it gives clear separable-
entangled regions.

It should be noted that throughout this work, possible
classes of states with respective boundaries are given and
verified with various numerical and analytical methods, but
apart from these there could be other classes of states on the
boundaries.

VI. SUMMARY AND DISCUSSIONS

In this paper, correlations in bipartite density matri-
ces on Hd ⊗ Hd were studied using the quantity R12 =
d| det[R(ρT2

12)]|1/d2

, where R(ρT2
12) is formed by the combined

operations of partial transpose and realignment on the density
matrix. It is based on a simple permutation of the density
matrix and involves no extremization, or even diagonalization.
It is proved that 0 � R12 � 1. Several examples show how
they vanish on large classes of separable states including
classical-quantum correlated states, while being maximum
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FIG. 10. The R12 and the negativity between two-qubits N12

having density matrix ρ12 of rank 4. Also shown are various analytical
curves. The dashed curve in the figure corresponds to the lower
boundary in Eq. (46). The Werner state curve in the bottom figure
corresponds to Eq. (55). Here, 20 000 random tripartite complex pure
states with respective dimension of the third subsystem are used.
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FIG. 11. Boundary curves for R12 and the entanglement between
two-qubits N12 having density matrix ρ12 of all the ranks as per given
in Eqs. (46), (54), and (56). Also shown are various classes of states
lying on the respective boundaries.

(= 1) on maximally entangled states. It is also shown that R12

is an entanglement monotone only on two-qubit pure states
since in this case it equals concurrence as well as negativity.
These properties are reminiscent of quantum discord. Two-
qubit density matrices were studied in detail to motivate that
this measure captures entanglement in the bipartite state along
with other multiparty entanglement that may be present in the
purification of such states.

In the case of density matrices of rank 2, their purification
in terms of three-qubit states is possible. Extensive use of
the canonical form of three-qubit pure state is made to make
simple connections between R12, the concurrence, and the
tripartite measure of the 3-tangle. When the density matrix is
of rank 2, analytical results on the lower and upper bounds
of the concurrence in terms of R12 are obtained. States
satisfying the bounds are found to be special, one being the
well-known W states, and the other (see comments below)
referred to here as maximally-3-tangled states (M3TS) as they
have the property of maximizing the tripartite entanglement
for a given entanglement (concurrence) between two-qubits.
It is found that this maximization leads to zero entangle-
ment in the other two pairs, reflecting the monogamy of
entanglement.

Interestingly, if the entanglement between two pairs of
qubits in a tripartite pure state are kept fixed, then the max-
imization of the 3-tangle does not lead to zero entanglement
between the second and the third qubits and leads to a
generalization of the M3TS. In the case of two-qubit density
matrices of ranks 3 and 4, strong evidence is provided that
R12 � C12. The physically important subset of X states, which
are of rank 4 in general, is considered where this is explicitly
proved. Upper bounds on R12 and the class of states satisfying
these bounds are given for all higher ranks as well. As in
the case of rank 2, the boundary states are Bell diagonal
(whose purification is the M3TS) in the case of rank 3 also
it is a Bell-diagonal state, which has been identified and
verified numerically. For the rank-4 states, the border states are
Werner states, which are also special cases of Bell-diagonal

022344-12



SIMPLE PERMUTATION-BASED MEASURE OF QUANTUM . . . PHYSICAL REVIEW A 94, 022344 (2016)

states. Thus, the R12 versus concurrence “phase diagram” is an
interesting one which has many special states at the boundaries
separating states by rank.

Apart from concurrence, another important measure,
namely the negativity, has been compared with R12 for two-
qubit density matrices. Motivations are that negativity, unlike
concurrence, can be defined in arbitrary dimensional systems,
and it is also derived from the operation of partial transpose.
Upper and lower bounds on R12 in terms of negativity and
the class of states satisfying these bounds are given for all the
ranks. In the case of rank 2, the state is given by MEMS I, for
rank 3 the state is a mixture of two Bell states and a separable
pure state orthogonal to both of them. While in the case of rank
4, the ansatz state is again the Werner state. Strong evidences
are provided in support of these boundaries and the ansatz
states satisfying them.

Recently, we have come to know of various related aspects
of the central quantity R12 and the states M3TS. In the two-
qubit case, the inequality R12 � C12 is established analytically
[31,32]. The M3TS states have been studied as “maximal slice”
[44] states and have been shown to violate maximally, for a
given tangle, a tripartite nonlocality inequality, namely, the
Svetlichny inequality [50,71]. However, the rather simple and
natural way in which it appears on maximizing the 3-tangle
for a given concurrence (or R12) is interesting.

Thus, there is a significance associated with most of the
boundary states and hence makes R12 an interesting quantity

for more detailed investigation. In particular, every two-qubit
pure state violates Bell’s inequality [72], the M3TS violates
the Svetlichny inequality, W class of states have zero 3-tangle
[51], Werner states have maximum negativity for given linear
entropy, while MEMS I have maximum concurrence for given
linear entropy [33,36–39]. It will be interesting to investigate
the significance of the ansatz states I and II. Considering other
spectral quantities than the determinant of P(12) is possible.
More detailed studies and interpretation of such quantities is
of interest, and it is hoped that this work provides sufficient
reasons and motivations.
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1450004 (2014).
[23] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys.

Rev. A 65, 052112 (2002).
[24] K. Chen and L.-A. Wu, Quantum Inf. Comput. 3, 193

(2003).
[25] O. Rudolph, Lett. Math. Phys. 70, 57 (2004).
[26] O. Rudolph, Phys. Rev. A 67, 032312 (2003).
[27] U. T. Bhosale, K. V. Shuddhodan, and A. Lakshminarayan, Phys.

Rev. A 87, 052311 (2013).
[28] M. S. Williamson, M. Ericsson, M. Johansson, E. Sjöqvist, A.
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Tarrach, Phys. Rev. Lett. 85, 1560 (2000).
[46] A. Sudbery, J. Phys. A: Math. Gen. 34, 643 (2001).
[47] A. Acı́n, A. Andrianov, E. Jané, and R. Tarrach, J. Phys. A:
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