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We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic
qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each
photon. The deterministic hyper-controlled-NOT (hyper-CNOT) gate on a two-photon system is attainable with our
interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble
embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum CNOT gate.
Moreover, we present a compact hyper-CNOTN gate on N + 1 hyperencoded photons with only two auxiliary
cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques.
Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum
networks.
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I. INTRODUCTION

Quantum computation, along with quantum information
processing, has attracted much attention in recent decades,
partly because of its promising superfast factoring character
and its potential for the efficient simulation of quantum
dynamic process [1]. Some critical two-qubit gates, such as
controlled-phase-flip (CPF) gate, controlled swap gate, and
controlled-NOT (CNOT) gate, together with simple one-qubit
rotations, can realize universal quantum computation [2]. In
other words, quantum computation can be referred to as a
succession of nontrivial two-qubit quantum gates and some
single-qubit quantum gates. To obtain the actual physical
implementation of quantum computation, one needs precise
control operations on well-defined two-level quantum systems.
Quantum computing with special physical systems has been
extensively researched theoretically and experimentally, such
as nuclear magnetic resonance [3–5], superconducting qubits
[6,7], quantum dots [8–10], photons in the polarization degree
of freedom (DOF) [11–15] and in both the polarization
and the spatial-mode DOFs (hyperparallel photonic quantum
computing) [16–18], microwave-photon resonators [19–21],
and diamond nitrogen-vacancy centers [22,23].

The optical system is especially fascinating for quantum
computation, since the optical qubits are ideal carriers for
transmitting quantum information and can be scaled up to deal
with truly large-scale quantum computation. Among all the
quantum computation schemes operating with photonic qubits,
they can be roughly divided into two large categories [12].
One makes use of linear optical elements and high-efficiency
single-photon detectors, and the other is performed with Kerr
nonlinearities. In 1998, Cerf et al. [24] encoded both the
spatial DOF and the polarization DOF of a single photon as
qubits, and a CNOT gate with the spatial DOF of the photon
as the control qubit, and its polarization as the target one was
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achieved. In 2000, Knill et al. [13] gave out a linear quantum
computation scheme based on projective measurements with
photon detectors and feedback operations in a probabilistic
way. To constitute the critical two-qubit optical gate in a
deterministic way, one can resort to Kerr nonlinearities.
However, naturally occurring nonlinearities are many orders
of magnitude too small for efficient quantum computation in
the single-photon level [25]. Several proposals based on Kerr
nonlinearities in fibers or crystals [26], electromagnetically
induced transparency (EIT) [27–29], and optical cavity-dipole
system [30,31] are developed. In the EIT scheme, the two
single-photon pulses propagate ultraslowly through a resonant
media subjected to EIT and could be mapped into two
highly excited Rydberg states [32] that interact strongly with
each other via dipole-dipole potential, and then a two-qubit
CPF gate between the two pulses is achieved when leaving
the media [27]. As for the cavity-based scheme, the dipole
embedded in the optical cavity interacts strongly with the
input single photons, and the interaction between the dipole
and the successive photons provides strong Kerr nonlinearities
that can be used to implement a CPF gate [31] on two
single photons. Recently, Ren et al. [16–18] proposed some
pioneering schemes for the hyperparallel photonic quantum
computing assisted by cavity-QED systems, and they can be
used to perform more quantum operations with less resources
in the quantum information protocols with multiqubit systems
in several DOFs, which may depress the resources consumed
and the photonic dissipation [18].

Here, with the state-of-art of ultracold atomic ensembles
coupling to the radiation field inside a high-finesse resonator
[33–36], we put forward an alternative setup for deterministic
hyperparallel optical quantum computation. Other than a
two-qubit CPF gate on the successive single-photon pulses
[31], we make use of the cavity-based scheme to constitute a
hyper-CNOT gate on two hyperencoded single photons. Both
the spatial DOF and the polarization DOF are utilized to
encode qubits as Cerf et al. [24] did in their linear quantum
computation protocol. Instead of taking the spatial DOF as
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the control qubit and taking the polarization as the target,
the spatial and polarization DOFs of the control photon are
independently used to control the spatial and polarization
DOFs of the target photon, respectively. Compared with the
initial single-sided cavity-based optical quantum computation
schemes [14,30,31], our proposal has the following advan-
tages: (i) our optical quantum computation is hyperparallel,
and each photon is encoded with two qubits, namely, the
spatial qubit {|a1〉,|a2〉} and the polarization qubit {|H 〉,|V 〉},
which is more powerful and more efficient [16–18]; (ii) the
atomic ensemble can offer a multimode quantum storage
media for the hyperencoded photons, and it will lead to a
potentially fast readout procedure when the quantum memory
for polarized photon qubit is needed; in addition, (iii) the
spatial CNOT (S-CNOT) gate and the polarization CNOT (P-CNOT)
gate can be performed independently, and the multiqubit
hyper-CNOTN gates can be in principle achieved. In other
words, our hyperparallel scheme is scalable and can be useful
for hyperencoded optical quantum computation.

The paper is organized as follows. In Sec. II, we focus on the
input-output relation for a single photon with our atomic en-
semble embedded in a double-sided microcavity which yields
the desired Kerr nonlinearity. The heralded hyper-CNOT gate
on two photons is constructed in Sec. III, and its performance
is briefly discussed with the current experimental techniques.
Besides, we also give out the multiqubit hyper-CNOTN gate on
N + 1 hyperencoded photons in Sec. III. Finally, we end up
with some discussion on the experimental feasibility of our
scheme and a summary in Sec. IV.

II. INPUT-OUTPUT RELATION FOR A SINGLE PHOTON
WITH AN ATOMIC ENSEMBLE EMBEDDED IN A

DOUBLE-SIDED CAVITY

The relevant level structure of the 87Rb [37,38], i.e., 5S1/2

and 5P1/2 manifolds involved and a highly excited Rydberg
state nS1/2 denoted |r〉, is shown in Fig. 1. Assisted by the
Rydberg state |r〉, one can prepare the atomic ensemble into
the single-excited collective spin wave (magnon) state and
perform the single-qubit operation on the magnon qubits.
Initially all the atoms are pumped to the state |g〉 = |5S1/2,F =
2,MF = 0〉. The collective spin wave state or magnon state

FIG. 1. Schematic diagram of the atomic ensemble cavity cou-
pling system. The incoming photon in port B will be totally reflected
when the coupling between the atomic ensemble and the cavity
is switched on, whereas, totally transmitted into port C when the
coupling is switched off.

with a single atom in the state |g0〉 = |5S1/2,F = 1,MF = −1〉
and |g1〉 = |5S1/2,F = 1,MF = 1〉 are exploited to encode the
magnon qubit and can store the orthogonally polarized photon.
The single excited collective state can be represented by
|cs〉 = 1√

N

∑N
j=1 |g1, . . . ,cj ,gj+1, . . . ,gN 〉, which means that

all atoms are in state |g〉 except for the j th one in state |c〉 (|c〉 =
|g0〉, |g1〉, |e0〉, |e1〉, or |r〉, where |e0〉 = |5P1/2,F = 2,MF =
−2〉, |e1〉 = |5P1/2,F = 2,MF = 2〉, and |r〉 = |nS〉). The
transitions |gs

0〉 ↔ |es
0〉 and |gs

1〉 ↔ |es
1〉 with frequency ω0 are

nearly resonantly coupled to the two degenerate cavity modes
â0 and â1 with orthogonal polarizations H and V, respectively
(shown in Fig. 1), and the corresponding coupling rates are
λ0 and λ1. Meanwhile, the two cavity modes â0 and â1 of
the frequency ωa are nearly resonantly driven by H and V
polarized photons input into the cavity, respectively. The state
of the ensemble will provide an appreciable difference in the
transmission and reflection coefficients for the input photons
with different polarizations. For instance, an H polarized
photon input from either side of the cavity will pass through the
cavity if the ensemble is in the state |gs

1〉, since the ensemble
is decoupled from the driven cavity mode â0. However, for the
ensemble in the state |gs

0〉, it will interact with the H photon
and lead to the mode splitting of the cavity, resulting in the
perfect reflection of H photon in the ideal case.

Consider a single polarized photon pulse with a finite
bandwidth [ωa − �/2,ωa + �/2], � � κ (the cavity decay
rate), and the coupling rates between an asymmetrical cavity
and modes b̂i(ω) and ĉi(ω) of ports B and C taken as real
constant, denoted

√
κb/2π and

√
κc/2π , respectively, since

only the optical fields with frequency close to the cavity
frequency ωa contribute mostly to the cavity mode [31].
Here we choose ωa as the carrier frequency, and δ′ = ω − ωa

measures the frequency detuning of ω component of the
input photon. δ0 = ω0 − ωa denotes the frequency difference
between the dipole transition and the cavity mode. The
Hamiltonian of the system in the frame rotating with respect
to ωa is [39]

Ĥ =
∑
i=0,1

{(
δ0 − iγei

2

)
σ̂ei ei

+ iλi

(
âi σ̂

†
giei

− â
†
i σ̂giei

)

+
∫ �

2

− �
2

δ′dδ′b̂†i (δ′)b̂i(δ
′) +

∫ �
2

− �
2

δ′dδ′ĉ†i (δ′)ĉi(δ
′)

+ i

√
κb

2π

∫ �
2

− �
2

dδ′[b̂†i (δ′)âi − b̂i(δ
′)â†

i ]

+ i

√
κc

2π

∫ �
2

− �
2

dδ′[ĉ†i (δ′)âi − ĉi(δ
′)â†

i ]

}
. (1)

Here γei
and λi denote the spontaneous emission rate of

the single excited collective state |es
i 〉 and the coupling rate

between the atomic ensemble and the corresponding reso-
nant cavity modes, respectively. σ̂ei ei

= |es
i 〉〈es

i | and σ̂giei
=

|gs
i 〉〈es

i |. When the atomic ensemble is pumped to the magnon
state |gs

i 〉 with the help of Rydberg state [32,40] or coherent
Raman process [41,42], a polarized photon either in mode
b̂i or ĉi directed into the cavity will drive the interaction
between the atomic ensemble and the cavity. In the single
excitation subspace, the composite system composed of the
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atomic ensemble and three radiation modes could evolve into
a general state |
(t)〉 with the Hamiltonian Ĥ [43,44],

|
(t)〉 =
∑
i=0,1

[
αi(t)

∣∣gs
i ,1,0,0

〉 + ∫
dδ′βi(δ

′,t)
∣∣gs

i ,0,1,0
〉

+
∫

dδ′εi(δ
′,t)

∣∣gs
i ,0,0,1

〉 + ζi(t)
∣∣es

i ,0,0,0
〉]

, (2)

where the four dimensions of each ket |
(t)〉 are spanned by
the internal states of the atomic ensemble and the photon num-
ber states of the radiation modes (âi , b̂i , and ĉi), respectively.

The Schrödinger equation for this system can be specified
to be

iβ̇i(δ
′,t) = δ′βi(δ

′,t) + i

√
κb

2π
αi(t),

iε̇i(δ
′,t) = δ′εi(δ

′,t) + i

√
κc

2π
αi(t),

iζ̇i(t) = iλiαi(t) +
(

δ0 − i
γei

2

)
ζi(t),

iα̇i(t) = −iλiζi(t) − i

√
κb

2π

∫ �
2

− �
2

dδ′βi(δ
′,t)

−i

√
κc

2π

∫ �
2

− �
2

dδ′εi(δ
′,t). (3)

As the equations for different polarized photons are decoupled,
one can solve them individually with respect to the polarization
of the photon input. To clarify the birefringent character of the
system composed of the atomic ensemble and double-sided
cavity, referred as cavity-magnon system below, we choose
the input photon in mode b̂i and the initial state |
(0)〉 =
|gs

i ,0,1,0〉. Along with the standard input-output relation [39]
ŷout

i = ŷ in
i + √

κyâi (y = b, c and i = 0, 1), the reflection and
the transmission coefficients ra(ω) and ta(ω) with the input
photon in mode b̂i , in the weak excitation approach, can be
detailed, respectively, by

ra(ω) =
[
i(ωa − ω) + κc−κb

2

][
i(ω0 − ω) + γei

2

] + λ2
i[

i(ωa − ω) + κb+κc

2

][
i(ω0 − ω) + γei

2

] + λ2
i

,

ta(ω) = −√
κbκc

[
i(ω0 − ω) + γei

2

]
[
i(ωa − ω) + κb+κc

2

][
i(ω0 − ω) + γei

2

] + λ2
i

. (4)

As for the case that the cavity mode driven is decoupled from
the atomic ensemble, the coupling rate λi = 0, one can get the
specific reflection and transmission coefficients,

ra
0 (ω) = i(ωa − ω) + κc−κb

2

i(ωa − ω) + κb+κc

2

,

ta0 (ω) = −√
κbκc

i(ωa − ω) + κb+κc

2

. (5)

To obtain the reflection and transmission coefficients with the
input photon in mode ĉi , one just needs to exchange κb and
κc according to the symmetric character in this cavity-magnon
system.

When the coupling rates between the cavity and the modes
b̂i(ω) and ĉi(ω) are of small difference κ� = |κc − κb| �

κmin (κmin = min{κb,κc}), one can replace the reflection and
transmission coefficients above for the asymmetrical cavity
system with those for the symmetrical one with identical
coupling rates κ = κb = κc. Meanwhile, it will introduce an
additional error probability ε in the single-photon scattering
process by ε ∼ max{κ2

�/(κb + κc)2,κ2
�γ 2

ei
/λ4

i } in the resonant
case, and this can be improved by the use of the cavity
with almost identical mirrors [45,46], which will lead to the
ideal photon blockade [47] and two-photon gateway [48].
With the symmetrical cavity, the corresponding reflection and
transmission coefficients for the coupling and decoupling cases
can be respectively simplified as

r(ω) = 1 + t(ω),

t(ω) = −κ
[
i(ω0 − ω) + γei

2

]
[i(ωa − ω) + κ]

[
i(ω0 − ω) + γei

2

] + λ2
i

(6)

and

r0(ω) = 1 + t0(ω),

t0(ω) = −κ

i(ωa − ω) + κ
. (7)

From these expressions, one can draw a conclusion that if the
bandwidth of the input photon pulse is narrow enough �/2 �
κ and the spontaneous coefficient γei

is small enough when
it is compared with the cavity character 2λ2

i /κ , the reflection
coefficient r(ω) 	 1 and the transmission coefficient t(ω) 	 0.
However, the input photon, in the decoupling case (λi = 0),
could also be output in a nearly deterministic mode, since
t0(ω) 	 −1 and r0(ω) 	 0, when the photon is nearly resonant
to the cavity mode (ωa − ω 	 0).

When two single-photon pulses are successively directed
into the cavity, a π phase shift will appear if the polarization
states of the photons are different, but a zero phase shift
appears for two photons with the same polarization. However,
in both cases, whether the photon is reflected or transmitted is
determined by the state of the atomic ensemble. This exactly
demonstrates the effective Kerr nonlinearity which can be used
to constitute the hyper-CNOT gate in the following section.

III. HYPERPARALLEL GATES BASED ON THE
EFFECTIVE KERR NONLINEARITY

With an atomic ensemble embedded in a two-sided optical
cavity, the output process of the single polarized photon
performs the birefringence character, which is dependent on
the internal state of the atomic ensemble. Now, we proceed
to present the detailed scheme of our hyper-CNOT gate on two
photons a and b both hyperencoded in the polarization and the
spatial-mode DOFs. That is, a hyper-CNOT gate performs both
the CNOT gate on the state of the two-photon system in the
polarization DOF (P-CNOT) and that in the spatial-mode DOF
(S-CNOT). Suppose the states of a and b are, respectively, |ϕ〉a
and |ϕ〉b

|ϕ〉a = |ϕ〉as
⊗ |ϕ〉ap

,

|ϕ〉b = |ϕ〉bs
⊗ |ϕ〉bp

. (8)
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Here

|ϕ〉as
= α1|a1〉 + α2|a2〉,

|ϕ〉bs
= μ1|b1〉 + μ2|b2〉,

(9)|ϕ〉ap
= β1|H 〉 + β2|V 〉,

|ϕ〉bp
= ν1|H 〉 + ν2|V 〉,

and all of the states presented above are normalized, i.e.,
|ξ1|2 + |ξ2|2 = 1 (ξ = α, β, μ, and ν). Meanwhile, the
subscripts a and b, respectively, denote photon a and photon
b, and the sub-subscripts s and p are used to abbreviate the
spatial DOF and the polarization DOF of the photon involved.
|H 〉 and |V 〉 represent two orthogonal polarization modes of
photons, respectively. |a1〉 and |a2〉 (|b1〉 and |b2〉) are the
two spatial modes of photon a (b). Here we take the ideal
input-output process of the single photons to give out the
principle of our hyper-CNOT gate. That is, an input polarized
photon driving the interaction between the cavity mode and
the atomic ensemble will be totally reflected by the cavity, but
the orthogonal polarized one will pass through the cavity with
a π phase shift, since the cavity mode driven is decoupled from
the atomic ensemble.

A. P-CNOT gate based on the effective Kerr nonlinearity

The framework of our proposal for the P-CNOT gate on the
two-photon system ab is shown in Fig. 2. Hi (i = 1,2,3, and
4) represents a half-wave plate that could be used to perform
the Hadamard operation |H 〉 → 1√

2
(|H 〉 + |V 〉) and |V 〉 →

1√
2
(|H 〉 − |V 〉) on the polarization DOF of photon a, and

HWPj (j = 1,2, and 3) stands for a half-wave plate performing
the bit-flip operation σx = |H 〉〈V | + |V 〉〈H |. The PBS is a
polarizing beam splitter which transmits the polarized photon
|H 〉 and reflects |V 〉, respectively. Since the two photons a

and b are in an arbitrary product state |ϕ〉ab = |ϕ〉a ⊗ |ϕ〉b, an
ideal P-CNOT gate with the polarization DOF of photon a as

FIG. 2. Schematic diagram for the P-CNOT gate. The square
brackets containing an ellipse stand for the cavity-ensemble system.
HWPi and Hj are half-wave plates whose optical axes are set
differently to perform the bit-flip operation and the Hadamard
operation on the polarization DOF of photons, respectively. Pπ is
a π phase shifter, and the PBS is a polarizing beam splitter, which
transmits the |H 〉 polarized photon and reflects the |V 〉 polarized one,
respectively.

the control qubit and that of photon b as the target qubit will
transfer the state |ϕ〉ab into the state |ϕp〉ab̄. Here

|ϕp〉ab̄ = |ϕ〉as
⊗ |ϕ〉bs

⊗ [
β1|H 〉 ⊗ σ̂x

p

b
|ϕ〉bp

+ β2|V 〉|ϕ〉bp

]
.

(10)

The spatial DOF is not contaminated and the single-qubit
operator performed on b is a bit-flip operation σ̂x

p

b
= |H 〉〈V | +

|V 〉〈H |.
To implement the transformation |ϕ〉ab → |ϕs〉ab̄, we first

initialize the atomic ensemble Ep into a superposition state
|ϕ〉m = 1√

2
(|gs

0〉 + |gs
1〉) and then input the control photon a in

the state |ϕ〉a . After passing through the half-wave plates H1

and H2, the spatial modes a1 and a2 of photon a are combined
at the PBS1. With HWP1 for the bit-flip operation performed
on the a1 mode, the state of photon a input into the cavity
evolves into |ϕp〉1,

|ϕp〉1 = α1(β ′
1|a1〉 + β ′

2|a2〉) ⊗ |V 〉
+α2(β ′

1|a2〉 + β ′
2|a1〉) ⊗ |H 〉. (11)

Here β ′
1 = 1√

2
(β1 + β2) and β ′

2 = 1√
2
(β1 − β2). Considering

the birefringent propagation of the polarized photon input,
the output state of photon a together with that of the atomic
ensemble is |ϕp〉2,

|ϕp〉2 = 1√
2

{
α1

[
β ′

1

(|a1〉|V 〉∣∣gs
1

〉 − |a2〉|V 〉∣∣gs
0

〉)
+β ′

2

(|a2〉|V 〉∣∣gs
1

〉 − |a1〉|V 〉∣∣gs
0

〉)]
+α2

[
β ′

1

(|a2〉|H 〉∣∣gs
0

〉 − |a1〉|H 〉∣∣gs
1

〉)
+β ′

2

(|a1〉|H 〉∣∣gs
0

〉 − |a2〉|H 〉∣∣gs
1

〉)]}
. (12)

With HWP2 for another bit-flip operation on the a1 mode, the
two spatial modes a1 and a2 of photon a are combined again at
the PBS2, and then pass through HWP3 and Pπ , respectively.
The state |ϕp〉2 involves into

|ϕp〉3 = 1√
2
|ϕ〉as

⊗ [ − (β ′
1|H 〉 + β ′

2|V 〉)∣∣gs
0

〉
+ (β ′

1|V 〉 + β ′
2|H 〉)∣∣gs

1

〉]
. (13)

|ϕp〉3 is the desirable output state for a hybrid CPF gate on
a photon-magnon system. The half-wave plates H3 and H4,
respectively, on the a1 and a2 modes will introduce a Hadamard
operation on the polarization DOF of the photon a. If one
performs a Hadamard operation Hm on the atomic ensemble,
|gs

0〉 → 1√
2
(|gs

0〉 + |gs
1〉) and |gs

1〉 → 1√
2
(|gs

0〉 − |gs
1〉), with the

coherent Raman process or Rydberg-state-assisted quantum
rotation, one projects the composite system composed of the
photon a and the atomic ensemble Ep into the state

|ϕp〉4 = |ϕ〉as
⊗ [

β2|V 〉∣∣gs
0

〉 + β1|H 〉∣∣gs
1

〉]
, (14)

which is a hybrid two-qubit entangled state for the system
composed of photon a and the atomic ensemble Ep when
β1β2 �= 0, and it can be used to perform quantum communi-
cation and distributed quantum computation [1].

Compared with the optical path of photon a, the target
photon b in the state |ϕ〉b passes through a relatively simple
optical path where the four half-wave plates Hi (i = 1, 2, 3, and
4) are removed. The Hadamard operations on the polarization
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DOF of the photon are excluded; therefore, the evolution of
target photon b together with control photon a and the atomic
ensemble of state |ϕp〉4 can be obtained with a similar way to
the evolution discussed in Eqs. (12) and (13), and one has

|ϕp〉5 = |ϕ〉as
⊗ |ϕ〉bs

⊗ [ − β2|V 〉|ϕ〉bp

∣∣gs
0

〉
+β1|H 〉(σx

p

b
|ϕ〉bp

)∣∣gs
1

〉]
. (15)

After the photon b passes through the setup and propagates into
the two output modes b1 and b2, another Hadamard operation
Hm on the atomic ensemble is performed and the state of the
combined system then evolves into

|ϕp〉6 = [
(β2|V 〉 ⊗ |ϕ〉bp

− β1|H 〉 ⊗ σx
p

b
|ϕ〉bp

) ⊗ ∣∣gs
0

〉
+ (β2|V 〉 ⊗ |ϕ〉bp

+ β1|H 〉 ⊗ σx
p

b
|ϕ〉bp

) ⊗ ∣∣gs
1

〉]
⊗ |ϕ〉as

⊗ |ϕ〉bs
. (16)

Subsequently, the atomic ensemble state can be measured with
the energy exchange-free method developed in Ref. [49] or
others [50]. On detecting the atomic ensemble in state |gs

1〉, one
projects the hybrid state in Eq. (16) into the desired outcome of
P-CNOT gate, shown in Eq. (10), with the polarization DOF of
photon a as control qubit and that of b as target qubit. As for the
|gs

0〉 case, a single phase-flip operator σz
p
a

= |H 〉〈H | − |V 〉〈V |
performed on a leads to the same result as that of |gs

1〉. In a
word, the P-CNOT gate on the two-photon system ab, in the
ideal case, can be achieved deterministically in a heralded way,
without any negative influence on their spatial-mode quantum
states.

B. S-CNOT gate based on the effective Kerr nonlinearity

Up to now, we detailed our scheme for constructing a
P-CNOT gate with the spatial DOF of the photons unpolluted.
However, in order to implement the hyperparallel optical
quantum computation with the qubits hyperencoded in both
the spatial and the polarization DOFs of a two-photon system,
an S-CNOT gate acting on the spatial DOF of the two
photons involved is constituted in this subsection. Figure 3
shows the schematic diagram for the S-CNOT gate. The BSj

(j = 1,2) represents the beam splitter which is used to
perform the Hadamard operation |a1〉 → 1√

2
(|a1〉 + |a2〉) and

|a2〉 → 1√
2
(|a1〉 − |a2〉) on the spatial DOF of photon a. To

demonstrate the generality of our S-CNOT gate, we can choose

FIG. 3. Schematic diagram for the S-CNOT gate. The BS is a
balanced nonpolarized beam splitter, which is used to perform the
Hadamard operation on the spatial DOF of photons.

the states of photons a and b to be |ϕ〉a and |ϕ〉b in Eq. (8),
respectively, as we did in constructing the P-CNOT gate.

First, one can initialize the atomic ensemble Es in Fig. 3.
to a superposition state |ϕ〉m, and then direct the photon a

into the a1, a2 input modes of the S-CNOT gate. The state of
photon a together with the atomic ensemble Es , i.e., |ϕs〉1 =
|ϕ〉a ⊗ |ϕ〉m, evolves as

BS1−→ (α′
1|a1〉 + α′

2|a2〉) ⊗ |ϕ〉ap
⊗ |ϕ〉m

cavity
−−→

1√
2

{∣∣gs
0

〉
[β1|H 〉(α′

1|a1〉 + α′
2|a2〉)

−β2|V 〉(α′
1|a2〉 + α′

2|a1〉)]
+ ∣∣gs

1

〉
[−β1|H 〉(α′

1|a2〉 + α′
2|a1〉)

+β2|V 〉(α′
1|a1〉 + α′

2|a2〉)]
}

PBS
−→

1√
2

{∣∣gs
0

〉
[(β1|H 〉 − β2|V 〉) ⊗ (α′

1|a2〉

+α′
2|a1〉)] + ∣∣gs

1

〉
[(−β1|H 〉′ + β2|V 〉)

⊗ (α1|a1〉 + α2|a2〉)]
}

BS2−→
1√
2

[∣∣gs
0

〉 ⊗ (α1|a1〉 − α2|a2〉)

−∣∣gs
1

〉 ⊗ |ϕ〉as

] ⊗ (β1|H 〉 − β2|V 〉)
= |ϕs〉2, (17)

where α′
1 = 1√

2
(α1 + α2) and α′

2 = 1√
2
(α1 − α2). With a

Hadamard operation Hm on the atomic ensemble Es , |ϕs〉2

evolves into the state |ϕs〉3,

|ϕs〉3 = (β1|H 〉 − β2|V 〉)(α2|a2〉
∣∣gs

0

〉 − α1|a1〉
∣∣gs

1

〉)
,

(18)

which is a hybrid entangled state, since the spatial modes of
the photon a cannot be decoupled from the atomic ensemble
Es when α1α2 �= 0.

After the Hm operation, one can direct the target photon
b into the input modes b1 and b2 of the S-CNOT gate. The
evolution of the system composed of the photon a, b, and the
atomic ensemble Es in |ϕs〉3 ⊗ |ϕ〉b is similar to that of |ϕs〉1.
One can get the system in the state |ϕs〉4 after the photon b

leaves the S-CNOT gate,

|ϕs〉4 = (β1|H 〉 − β2|V 〉) ⊗ (ν1|H 〉 − ν2|V 〉)
⊗ [

α2|a2〉 ⊗ ∣∣gs
0

〉 ⊗ (μ1|b2〉 + μ2|b1〉)
+α1|a1〉 ⊗ ∣∣gs

1

〉 ⊗ (μ1|b1〉 + μ2|b2〉)
]
. (19)

To complete the S-CNOT gate, one has to implement another
Hadamard operation Hm followed by a state measurement on
the atomic ensemble Es . If the outcome of the measurement
on the atomic ensemble is the state |gs

1〉, the composite system
will be projected into

|ϕs〉5 = (β1|H 〉 − β2|V 〉) ⊗ (ν1|H 〉 − ν2|V 〉)
⊗ [

α2|a2〉 ⊗ σb
xs

|ϕ〉bs
+ α1|a1〉 ⊗ |ϕ〉bs

]
. (20)

With a single phase-flip operation σzp
= |H 〉〈H | − |V 〉〈V | on

photon a and b, the photonic state |ϕs〉5 changes into the state
that is identical to the outcome of the S-CNOT gate with the
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spatial DOF of photon a as the control qubit and that of b as
the target qubit. As for the |gs

0〉 case, the S-CNOT gate can also be
accomplished, when an additional single phase-flip operator
σzs

a
= |a1〉〈a1| − |a2〉〈a2| on the spatial DOF of photon a is

performed.

C. The performance of our hyper-CNOT gate

Since the S-CNOT gate and the P-CNOT gate can be imple-
mented individually on the respective DOF of a two-photon
system, leaving the other DOF identical to the original one, one
can construct the hyper-CNOT gate by applying the P-CNOT gate
and the S-CNOT gate successively on the photons a and b. In
the ideal case, the hyper-CNOT gate will work deterministically
and without error as the P-CNOT gate and the S-CNOT gate do.
However, in practice, the birefringence for such combined
magnon-cavity system is imperfect as that in most cavity-
based optical quantum computation [14,16,17,31], and the
deterministic refection and transmission, respectively, adopted
in the strong-coupling regime and the uncoupled situation have
to be amended a little, leading to an imperfect hyper-CNOT gate
with practical experimental technology [33–36].

In what follows, we quantitatively characterize the ef-
ficiency and fidelity of the P-CNOT gate and the S-CNOT

gate, respectively. Due to the spontaneous emission of the
collective states |es

i 〉 (i = 0,1), the photons input into the
P-CNOT and S-CNOT gates can be lost, leading to vanish
output. The efficiency η which is defined as the probability
that both of the input photons will be emitted out from their
respect output ports is dependent on the initial states of the
input photons. Even if both input photons are emitted by
the P-CNOT and the S-CNOT gates, the frequency-dependent
reflection and transmission of the input photon will modify
the output states of the quantum gates. Besides, the fidelity
F = |〈ϕi |ϕp〉|2 also depends on the initial states of the input
photons, where |ϕi〉 and |ϕp〉 stand for the ideal output state
and the practical output state, respectively. Since the difference
between the two output coupling rates κ� of the asymmetric
double-sided cavity could be very little by the use of mirrors
with almost identical reflectivity [45–48], we would like to
take the symmetric cavity to consider the influence of the
detuning and finite magnon-cavity coupling strength on our
proposal. To discuss the sensitivity of our proposal to the cavity
outcoupling imbalance, we also give out the performance
of our hyper-CNOT gate under the asymmetric cavity with
κ� = 0.1κb by choosing κc � κb.

When the control photon a is in a superposition state |ϕa〉 =
1/2(|a1〉 + |a2〉) ⊗ (|H 〉 + |V 〉) and the target photon b is in
|ϕb〉 = (μ1|b1〉 + μ2|b2〉) ⊗ (ν1|H 〉 + ν2|V 〉), the efficiency
of the P-CNOT gate is

ηp = 1
2 {ξ0[|(T+ + 1)μ1|2 + |μ1|2 + |T−μ2|2]

+ ξ1[|(T+ + 1)μ2|2 + |μ2|2] + |T−μ1|2]}, (21)

with T± = t0 ± t1 and ξi = 2[|ti |2 + Re(ti)]|ν1 + ν2|2 + 1
(i = 0 or 1). t1 and t0 signify the transmission coefficients
t(ω) for λi �= 0 and t0(ω) for λi = 0, respectively. Meanwhile,
the fidelity of the optical P-CNOT gate with respect to the initial

state of the photons a and b can be detailed as

Fp = ||μ1|2ς0 − |μ2|2ς1 + T−[|μ1|2ς1 − |μ2|2ς0]|2
4ηp

, (22)

where ς0 = 2(t0 + 1)Re(ν1ν2) + t0 and ς1 = 2t1Re(ν1ν2) +
t1 + 1.

If the input photonic state for the S-CNOT gate is identical
to that for the P-CNOT gate, i.e., |ϕa〉 ⊗ |ϕb〉, the performance
of the S-CNOT gate can be evaluated in a similar way. The
efficiency ηs and the fidelity Fs of the S-CNOT gate can be
detailed as

ηs = 1

2
{ξ ′

0[|(T+ + 1)ν2|2 + |ν2|2 + |T−ν1|2]

+ξ ′
1[|(T+ + 1)ν1|2 + |ν1|2] + |T−ν2|2]}, (23)

Fs = ||ν1|2ς ′
1 − |ν2|2ς ′

0 + T−[|ν1|2ς ′
0 − |ν2|2ς ′

1]|2
4ηs

. (24)

Here the parameters ξ ′
i = 2[|ti |2 + Re(ti)]|μ1 + μ2|2 + 1

(i = 0 or 1), ς ′
0 = 2(t0 + 1)Re(μ1μ2) + t0, and ς ′

1 =
2t1Re(μ1μ2) + t1 + 1.

To evaluate the performance of our schemes, we calculate
the average efficiencies η̄p and η̄s and the average fidelities F̄p

and F̄s over the coefficients in the input photonic states. The
P-CNOT gate and the S-CNOT gate enjoy the same performance
with our input photons, since the coefficients affecting the
efficiencies and fidelities will change their performance into
each other by exchanging their spatial state and polarization
state, detailed in Eqs. (21)–(24), which will eliminate the
effects of coefficients when performing the average over the
coefficients of the input photons.

The average efficiencies η̄p and η̄s and the average fidelities
F̄p and F̄s as functions of the normalized photon detuning �/κ

and the coupling rate λ/κ are shown in Fig. 4 when setting γ =
κ . The average fidelities F̄p and F̄s approach a steady value
limited by the frequency detuning �/κ . Although λ/κ varies
by a factor of 2, due to the residual thermal motion of the atom
in the current experiment, it has little effect on the performance
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FIG. 4. The efficiencies and fidelities of our P-CNOT and the S-
CNOT gates with symmetric double-sided cavities. The solid lines
stand for the resonant case and the doted lines represent the case with
� = 0.1κ where γ = κ for practical microcavity.
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FIG. 5. The average efficiencies and fidelities of our hyper-
CNOT gates with asymmetric double-sided cavities. Here the cavity
outcoupling rate difference is chosen as κ� = κb, the detuning � = 0,
and γ = 0.1κb.

of our hyper-CNOT gate when λ/κ is large enough. In principle,
the detuning �/κ can be arbitrarily reduced, if the input photon
is tuned to be resonant to the cavity, and then one has η̄p =
η̄s > 90.28% and F̄p = F̄s > 99.64% when g/κ � 3. Even
with a detuning as large as �/κ = 0.1, one can get ηp = ηs >

90.26% and F̄p = F̄s > 98.26% when the condition λ/κ � 3
is achieved. In other words, the hyper-CNOT gate constituted
here, to some extent, is not sensitive to the detuning � and the
fluctuation of the coupling rate λ/κ .

In the previous discussion, we detailed the performance
of our hyper-CNOT gate with a completely symmetric double-
sided cavity containing an atomic ensemble. In fact, there
might be some difference in the coupling rates between the
cavity and modes b̂i and ĉi (κ� = κc − κb �= 0) in practice.
To discuss the sensitivity of our scheme to κ�, the average
fidelity and average efficiency of our hyper-CNOT gate are
calculated with the similar procedure as those used in the
symmetric case by using the reflection and transmission
coefficients obtained with the asymmetrical cavity, shown in
Fig. 5 when setting κ� = 0.1κb and γ = κb in the resonant
case (� = 0). The average efficiency η̄p and average fidelity
F̄p of the P-CNOT gate are, respectively, η̄p > 89.86% and
F̄p > 99.32% when λ/κb � 3, and the average efficiency
η̄s and average fidelity F̄s of the S-CNOT gate in this case
are, respectively, η̄s > 90.09% and F̄s > 99.33%. The little
decrease of the average efficiencies and average fidelities in
the asymmetric case compared with those in the symmetric
case makes our hyper-CNOT gate, to some extent, robust to the
cavity outcouping imbalance.

The parameters above for calculations of efficiencies and
fidelities are based on the current experiments achieved with
a Bose-Einstein condensate of 87Rb atomic ensemble coupled
to an optical Fabry-Perot cavity, where the maximum coupling
strength between a single atom and a single intracavity
photon, along with the decay rate of the excited state and
the cavity mode, are (λ,κ,γ )/2π = (10.6,1.3,3) MHz [51,52].
Recently, there have been plenty of other methods to couple
the atomic ensemble with an optical cavity [53] which might
be another building block for our proposal. Therefore, our

hyperparallel quantum computation is robust against the
practical imperfections and can be achieved with the current
QED setup.

D. Generalized hyper-CNOTN gate based on the effective
Kerr nonlinearity

We only detail the scheme of the two-qubit photonic
hyper-CNOT gate in the previous section. However, multiqubit
gates are useful, when performing scalable hyperparallel
optical quantum computation, since it is resource consuming
to constitute the multiqubit gates with building blocks of
two-qubit gates and single-qubit gates [2]. Fortunately, our
two-qubit hyper-CNOT gate can be easily generalized to
multiqubit hyper-CNOTN gates, where one photon as control
qubit and all the others as target qubits, which have been widely
researched in the stationary qubit systems [54–57] and could
be exploited to perform the hyperentanglement preparation
[58], error corrections [59], and quantum algorithms [60,61].

The procedure for constituting the multiqubit photonic
hyper-CNOTN gate could also be divided into two steps: (i)
constituting the P-CNOTN gate on the polarization DOF with
the spatial DOF of the photons unaffected; (ii) constituting the
S-CNOTN gate on the spatial DOF with the polarization DOF
of the photons unpolluted. We will detail the procedure of the
P-CNOTN gate below, since the S-CNOTN gate can be achieved
individually on the corresponding spatial DOF of the photons,
which is similar to that for the P-CNOTN gate.

Suppose the control photon a is in the superposition state
|ϕ〉a = |ϕ〉as

⊗ |ϕ〉ap
, where the spatial state |ϕ〉as

= α1|a1〉 +
α2|a2〉 and the polarization state |ϕ〉ap

= β1|H 〉 + β2|V 〉 with
|α1|2 + |α2|2 = 1 and |β1|2 + |β2|2 = 1. The N target photons
b1, b2, . . . , and bN are, respectively, in the superposition states
of the form |ϕ〉bi = |ϕ〉bi

s
⊗ |ϕ〉bi

p
, where |ϕ〉bi

s
= μi

1|b1〉 +
μi

2|b2〉 and |ϕ〉bi
p

= νi
1|H 〉 + νi

2|V 〉 with |μi
1|2 + |μi

2|2 = 1 and

|νi
1|2 + |νi

2|2 = 1. To implement the P-CNOTN gate, we could
use the circuit setup in Fig. 2 by substituting the target photon
b in the original P-CNOT gate with the photon string b1, b2,
. . . , and bN . Besides, the target photon bi+1 should be subse-
quently input into the cavity after bi is output by the cavity.
Meanwhile, the time delay between each two target photons
bi and bi+1 could be utilized to discriminate their spatial
modes.

We first initialize the atomic ensemble into the superposi-
tion state |ϕ〉m = 1√

2
(|gs

0〉 + |gs
1〉) and then input the control

photon a in the state |ϕ〉a . After passing through the setup
in Fig. 2, with an additional Hadamard operation Hm on the
atomic ensemble Ep, the combined photon-ensemble system
constituted by photon a and Ep evolves into the state |ϕp〉4,
shown in Eq. (14). Subsequently, we input the first target pho-
ton b1 with its spatial mode, respectively, into the imports b1

and b2 as we did for the target photon b during the P-CNOT pro-
cedure. After the photon b1 passes through the setup and prop-
agates into the output modes b1 and b2, the composite system
composed of photons a and b1 and the ensemble Ep evolves
into ∣∣ϕN

p

〉
1 = [ − β2|V 〉|ϕ〉b1

p

∣∣gs
0

〉 + β1|H 〉σx
p

b1

∣∣gs
1

〉]
⊗ |ϕ〉as

⊗ |ϕ〉b1
s
. (25)
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With a similar procedure, one could subsequently input the
target photon bi after the photon bi−1 is emitted by the cavity.
The constituted system composed of photons a and b1b2 . . . bi ,
and the ensemble Ep evolves into

∣∣ϕN
p

〉
2 =

⎡
⎣β1|H 〉∣∣gs

1

〉 i∏
j=1

σx
p

bj
+ (−1)iβ2|V 〉∣∣gs

0

〉⎤⎦
⊗ |ϕ〉as

|ϕ〉b1
p
|ϕ〉b2

p
· · · |ϕ〉bi

p
. (26)

Here the operator
∏i

j=1 σx
p

bj
= σx

p

b1
⊗ σx

p

b2
⊗ · · · ⊗ σx

p

bj
rep-

resents the bit-flip operation on j th target photons. After
all the N target photons pass through the setup, anther
Hadamard operation Hm on the atomic ensemble Ep is
performed, and then the state of the composite system evolves
into

∣∣ϕN
p

〉
3 =

⎧⎨
⎩

⎡
⎣β1|H 〉〉

N∏
j=1

σx
p

bj
+ (−1)iβ2|V 〉

⎤
⎦∣∣gs

0

〉

+
⎡
⎣−β1|H 〉

N∏
j=1

σx
p

bj
+ (−1)iβ2|V 〉

⎤
⎦∣∣gs

1

〉⎫⎬⎭
⊗ |ϕ〉as

|ϕ〉b1
p
|ϕ〉b2

p
· · · |ϕ〉bN

p
. (27)

To decouple the atomic ensemble, a measurement on the
ensemble is performed [49,50]. When the outcome is |gs

0〉,
one can project the N + 1 photons into the state

∣∣ϕN
p

〉
4 =

⎡
⎣β1|H 〉〉

N∏
j=1

σx
p

bj
+ (−1)iβ2|V 〉

⎤
⎦

⊗ |ϕ〉as
|ϕ〉b1

p
|ϕ〉b2

p
· · · |ϕ〉bN

p
, (28)

which is the desired outcome of the P-CNOTN gate when the
polarization DOF of photon a acts as the control qubit and that
of b1b2 . . . bN as the target qubits, conditioned on N is even. If
N is odd, a single phase-flip operator σz

p
a

= |H 〉〈H | − |V 〉〈V |
performed on a leads to the same result as that for the even case.
When the outcome of the measurement on atomic ensemble is
|gs

0〉, the P-CNOTN gate can also be completed with or without
a single phase-flip σz

p
a

operation on the photon a.
The S-CNOTN gate on the spatial DOF of the photons could

be constituted with the setup in Fig. 3. The procedure of the
S-CNOTN gate can be completed in a similar way to that for P-
CNOTN gate, since the polarization modes of photons involved
in the S-CNOTN gate decouple from the spatial modes and serve
a similar function as the spatial modes do in the P-CNOTN gate.
That is, the multiqubit hyper-CNOTN gate on both DOFs of
the photons are achievable, when successively operating the
control photon a and the target photons b1, b2, . . . , and bN ,
with the two CNOTN gates.

IV. DISCUSSION AND SUMMARY

The interaction between the atomic ensemble and the
polarized photon provides us a useful interface for constructing
the blocks of hyperparallel photonic quantum computation,
since the birefringent propagation of the successively input
photons acts as the effective Kerr nonlinearity. The collective

spin wave operations in atomic ensembles are well developed
[62], and the fidelities of the spin wave rotation procedures
of 99% are reported [63]. Moreover, the atomic ensemble can
offer a quantum storage media [35] with multiple modes for
the hyperencoded photons [64]. As the control photon and the
target photon are injected successively into the magnon-cavity
system for the hyper-CNOT gate, a time delay of a few μs

between them is needed, which could be achieved through
simple fiber loops. For longer time delay, the atomic ensemble
could be utilized to store the coherent state of light for a few
minutes [65].

Our two-qubit hyper-CNOT gate is quite efficient, since it
enjoys the same advantages as the original ones did [16,17]
by hyperencoding a single photon with two qubits by both its
spatial and polarization DOFs, which makes the schemes less
decoherent than two-photon entanglement, and is relatively
easier to perform quantum logical gates on qubits residing
in different DOFs of the same photon. In addition, our
hyper-CNOT gate is quite different from the previous ones
based on the quantum dot embedded in microcavities [16,17]
and that assisted by NV centers embedded in photonic crystal
cavities coupled to two wave guides [18]. It is more flexible,
by dividing the hyper-CNOT gate into the individual S-CNOT

gate and the P-CNOT gate. Meanwhile, it could be directly
generalized into the multiqubit hyper-CNOTN gate, which is
of great importance when performing the hyperentanglement
preparation and redundant encoding procedure [58,66,67],
and could find potential application in memoryless quantum
communication [68,69] in a hyperparallel quantum network. In
addition, it needs only two atomic ensembles in our multiqubit
hyper-CNOTN gate, and it makes our scheme more efficient
and more convenient when compared with the multiqubit gate
constituted with two-qubit gates and single-qubit gates [2].
Besides, the atomic ensembles are well developed quantum
memory systems for photonic qubits, and they can store
hyperencoded photons in a single atomic ensemble with longer
time of several milliseconds [70], which is essential in quantum
networks.

In summary, the effective Kerr nonlinearity induced by an
atomic ensemble embedded in a double-sided cavity was pro-
posed based on the input-output theory of the cavity QED. By
hyperencoding two qubits in the spatial and polarization DOFs
of each photon, a hyperparallel optical quantum computation
can be implemented with auxiliary magnon-cavity systems.
The proposed scheme is robust to the variation of coupling rate
λi and the detuning � involved in the practical experiment.
Maybe this work will be useful for its value in quantum
computation and quantum networks with single photons of
multiple DOFs.
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