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We give an algorithm for prediction on a quantum computer which is based on a linear regression model with
least-squares optimization. In contrast to related previous contributions suffering from the problem of reading
out the optimal parameters of the fit, our scheme focuses on the machine-learning task of guessing the output
corresponding to a new input given examples of data points. Furthermore, we adapt the algorithm to process
nonsparse data matrices that can be represented by low-rank approximations, and significantly improve the
dependency on its condition number. The prediction result can be accessed through a single-qubit measurement
or used for further quantum information processing routines. The algorithm’s runtime is logarithmic in the
dimension of the input space provided the data is given as quantum information as an input to the routine.
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I. INTRODUCTION

A central problem of machine learning is pattern recog-
nition [1], in which a machine is supposed to infer from
a set of training data how to map new inputs of the same
type to corresponding outputs. An important application lies
in image recognition, where example images are presented
to the computer together with a class label describing their
content, and the task is to generalize from the training data
in order to classify a new input image correctly. Nowadays,
image recognition by machines can compete with human
abilities for selected problems [2]. Pattern recognition plays
an increasingly important role in information technology and
robotics, but also in fields such as medicine and finance—in
short, everywhere a decision has to be derived from data.
If the class label in a pattern-recognition task is continuous,
one speaks of a regression problem, on which we will focus
here.

A widely used method adopted from statistics is linear
regression, which predicts new labels based on the linear fit
of the data. Learning in this context refers to the process of
estimating optimal parameters for the linear fit by reducing the
least-squares error of the data points. In computational terms,
this reduces to finding the (pseudo)inverse of a matrix which
represents the data, a task that can become very expensive
considering the size of datasets in industrial applications
today.

Quantum computing established itself as a promising
extension to classical computation [3] and was theoretically
shown to perform significantly better in selected computational
problems. Recently, a number of proposals apply quantum
information processing to methods in machine learning [4–8].
One line of approaches [9–11] focuses on the numerous
machine-learning methods formulated as matrix inversion
problems, which can be tackled by the quantum algorithm
to solve linear systems of equations introduced by Harrow,
Hassidim, and Lloyd (HHL) [12]. In particular, Wiebe, Braun
and Lloyd (WBL) [11] suggested a quantum algorithm for data
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fitting based on HHL. The authors approach linear regression
from a statistics perspective and their goal is to find a quantum
state of which the amplitudes represent the optimal parameters
of the linear fit learned from data. They show that this can be
done in time logarithmic in the dimension of the input data N

(e.g., the number of pixels in image recognition) for a s sparse
data matrix given in the form of quantum information, and with
a sensible dependency on its condition number κ as well as the
desired accuracy ε [roughly O(log Ns3κ6ε−1)]. They conclude
that “[a]lthough the algorithm yields [the state encoding the
parameters] efficiently, it may be exponentially expensive to
learn via tomography” [11] and shift their focus on a routine
which estimates the quality of a fit. Another attempt in the
same direction, but based on the singular-value decomposition
that we will also use here, is given in [13] and requires a
low-rank data matrix instead of the sparseness condition. The
author proposes various algorithms to analyze the parameter
vector using known quantum routines.

In this article, we want to add an important missing piece to
the literature of quantum machine learning by reapproaching
the rich problem of linear regression on a quantum computer
from a machine-learning perspective, in which the focus lies
on the prediction of new inputs based on a dataset. We
demonstrate a routine for prediction which is roughly in
O(log Nκ2ε−3), provided the information is given encoded
into a quantum state. Using the techniques of quantum
principal component analysis proposed in [14], our algorithm
does not require the data matrix X (defined below) to be
sparse. Instead, we only need to be able to represent XT X
by a low-rank approximation, meaning that it is dominated by
a few large eigenvalues.

II. PREDICTION WITH LINEAR REGRESSION

The problem of supervised pattern recognition can be
described as follows. Given a set of data points D =
{(x(1),y(1)), . . . ,(x(M),y(M))} with x(m) ∈ RN and y(m) ∈ R for
m = 1, . . . ,M , the goal is to predict the output ỹ ∈ R to a new
input x̃ ∈ RN . A linear model proposes a map,

f (x,w) = xT w, (1)
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FIG. 1. Left: Illustration of linear regression given training data
points (x(m),y(m)). In contrast to statistical analysis, the task in
machine learning is not to determine the fit itself, but to guess the class
label ỹ of a new input x̃ based on the fitted function. Right: The inputs
can be generated by a nonlinear map x → x̄ into a higher dimensional
space, dramatically increasing the power of linear regression to fit
nonlinear functions.

where w = (w1, . . . ,wN )T ∈ RN is a vector of parameters that
have to be “fitted” or learned from the data. (Note that we can
omit a potential bias w0 by including it in w and extending x
by a corresponding entry x0 = 1.) It is important to emphasize
that the inputs x can be generated by a nonlinear map from
some original space in which the data is given into RN , which
enables linear regression to fit nonlinear functions (e.g., in
polynomial curve fitting; see Fig. 1).

The most common method to estimate the parameters
(yielding the minimum variance with zero bias for the estimate)
is to minimize the least-squares error between the predicted
values by the model, f (x(m),w), and the actual target outputs
y(m) for each data point,

min
w

M∑
m=1

[f (x(m),w) − y(m)]2.

As is apparent from this objective function, we focus on
unregularized linear regression here, and the matter of reg-
ularization is an open question in quantum machine-learning
research [15].

Introducing the compact matrix notation X = (x(1),

. . . ,x(M))T (which we refer to as the data matrix contain-
ing all training inputs as rows) and the target vector y =
(y(1), . . . ,y(M))T , the least-squares error becomes |Xw − y|2,
and it is a widely used result [16] that the solution to the
least-squares problem is given by

w = X+y,

where X+ is the Moore-Penrose pseudoinverse of X. Formally,
one can write X+ = (X†X)−1X† if (X†X)−1 exists, and the
approach in WBL solves the resulting equation via quantum
computation. We will use a different form of the Moore-
Penrose pseudoinverse based on the reduced singular-value
decomposition X = U�V† [17] in order to allow for X to be
nonsparse. Here, � is a diagonal matrix containing the real sin-
gular values σ1,σ2, . . . ,σR > 0 and the rth orthogonal column
of U ∈ RM×R (V ∈ RJ×R) is the rth left (right) eigenvector
vr (ur ) to the singular value σr . As opposed to the eigenvalue
decomposition, the singular-value decomposition can always
be found, and in particular for nonsquare matrices [18].
The pseudoinverse can then be defined as X+ = V�−1U†.
The singular values of X are at the same time the square
roots of the nonzero eigenvalues {√λ1, . . . ,

√
λR} of X†X and

XX†, and the left and right singular vectors are their respective
eigenvectors; we make use of this fact below.

Using this mathematical background in the case of real
spaces, as well as the convenient alternative formulation
X = ∑

r σrurvT
r [18], the least-squares solution can be written

as

w =
R∑

r=1

σ−1
r vruT

r y. (2)

Moreover, according to Eq. (1), the output ỹ for a new input x̃
is given by

ỹ =
R∑

r=1

σ−1
r x̃T vruT

r y. (3)

The desired output (“prediction”) of the pattern classification
algorithm is thus a single scalar value, which will circumvent
the problem of expensive state tomography notorious for
quantum machine-learning algorithms [19]. The problem
stated here can be solved in polynomial time O(Nd ) on
a classical computer, where for the best current algorithms
2 � d � 3. The aim of this work is to find a quantum algorithm
that can reproduce the result from Eq. (3) more efficiently
assuming that the data is given as quantum information in the
form specified below.

III. THE QUANTUM LINEAR REGRESSION ALGORITHM

The quantum linear regression algorithm is based on
the method of encoding classical information such as a 2n

dimensional vector a = (a0, . . . ,a2n−1)T into the 2n ampli-
tudes a0, . . . ,a2n−1 of a n-qubit quantum system, |ψa〉 =∑2n−1

i=0 ai |i〉, where {|i〉} is a convenient notation for the
computational basis {|0 . . . 0〉=̂|0〉, . . . ,|1 . . . 1〉=̂|2n − 1〉}. In
other words, the probabilistic description of a set of two-level
quantum systems is used to store and manipulate classical
information. Here we will refer to this method as amplitude
encoding and denote every such quantum state by a ψ with a
subscript referring to the classical vector it encodes. (In other
words, |a〉 is a quantum state where some mathematical object
a is encoded into the basis state in a way that is to specify
in detail, while |ψa〉 is a quantum state representing the real
vector a via amplitude encoding.)

The general idea of the quantum pattern-recognition al-
gorithm is to create a quantum state representing the data
matrix X = ∑

r σrurvT
r via amplitude encoding (step A)

and use tricks from [12,14] to invert the unknown singular
values efficiently (steps B and C). In step D, quantum
state representations of y,x̃ are used to write the desired
prediction from Eq. (3) into the off-diagonal elements of an
ancilla qubit, where it can be read out by a simple σx,σy

measurement. Details regarding the computational complexity
will be considered further below.

A. State preparation

The quantum algorithm takes copies of the quantum states
representing each of the objects X,y, and x̃ from above in
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amplitude encoding,

|ψX〉 =
N−1∑
j=0

M−1∑
m=0

x
(m)
j |j 〉|m〉, (4)

|ψy〉 =
M−1∑
μ=0

y(μ)|μ〉, (5)

|ψx̃〉 =
N−1∑
γ=0

x̃γ |γ 〉, (6)

with
∑

m,j |x(m)
j |2 = ∑

μ |y(μ)|2 = ∑
γ |x̃γ |2 = 1. Note that

the algorithm thus works with normalized data and the results
have to be rescaled accordingly. Using the Gram-Schmidt
decomposition, we can formally write

|ψX〉 =
R∑

r=1

σ r

J∑
j=1

vr
j |j 〉

M∑
m=1

ur
m|m〉,

or, in short,

|ψX〉 =
R∑

r=1

σ r |ψvr 〉|ψur 〉. (7)

Here, |ψvr 〉 = ∑J
j=1 vr

j |j 〉 and |ψur 〉 = ∑M
m=1 ur

m|m〉 are
quantum states representing the orthogonal sets of left and right
singular vectors of X (and, at the same time, the eigenvectors
of X†X as well as XX†) via amplitude encoding, and σ r are the
corresponding singular values. The number of qubits needed to
construct states (4)–(6) are �log N� + �log M�, �log M�, and
�log N�, respectively, and the aim of the following algorithm
is to remain linear in the number of qubits or logarithmic
in the problem size. The states (4)–(6) can be understood as
the result of previous quantum computation or simulation, as
argued in [11]. If given a “classical” dataset, techniques for the
efficient preparation of arbitrary initial quantum states are a
nontrivial and still controversially discussed topic, although
some ideas have been brought forward of how to prepare
certain states linear in the number of qubits [20] or via quantum
random access memories [21]. Clader et al. [22] show a way
to prepare a quantum state efficiently for the HHL algorithm if
an oracle is given that conditioned on a register in uniform
superposition “loads” the vector entries into an entangled
register, ’‘writes” these entries into the amplitude of an ancilla,
and performs a conditional measurement to prepare the desired
state in amplitude encoding. This conditional measurement
has a high probability to succeed for relatively uniform entries,
while sparse amplitudes underlie the Grover bound and cannot
be prepared in time logarithmic in the dimension of the
classical vector we want to encode into a quantum state. We
acknowledge that overall, the question of state preparation
is an outstanding challenge for quantum machine-learning
algorithmic design.

B. Extracting the singular values

In order to transform Eq. (7) into a “quantum represen-
tation” of the result (3), we need to first invert the singular
values of X. For this, we will “extract” the eigenvalues λr

of X†X to eigenvectors vr and use the inversion procedure
from [12] in the following step. In order to access the
eigenvalues, we use copies of the state (4) in which on the
level of description we ignore the |m〉 register in order to
obtain a mixed state ρX†X = trm{|ψX〉〈ψX|} which represents
the positive Hermitian matrix X†X,

ρX†X =
N∑

j,j ′=1

M∑
m=1

x
(m)
j x

(m)∗
j ′ |j 〉〈j ′|.

From here, we use the ideas of quantum principal component
analysis introduced in [14] to “apply” ρX†X to |ψX〉, resulting
in

K∑
k=0

|k
t〉〈k
t | ⊗ e−ikρX†X
t |ψX〉〈ψX|eikρX†X
t ,

for some large K . As outlined in [14], the quantum phase-
estimation algorithm results in

R∑
r=1

σ r |ψvr 〉|ψur 〉|λr〉,

in which the eigenvalues λr = (σ r )2 of ρX†X are approximately
encoded in the τ qubits of an extra third register that was
initially in the ground state.

C. Inverting the singular values

Adding an extra qubit and rotating it conditional on the
eigenvalue register [12] then yields

R∑
r=1

σ r |ψvr 〉|ψur 〉|λr〉
[√

1 −
( c

λr

)2
|0〉 + c

λr
|1〉

]
. (8)

The constant c is chosen so that the inverse eigenvalues are
not larger than 1, which is given if it is smaller than the
smallest nonzero eigenvalue λmin of X†X, or, equivalently,
the smallest nonzero squared singular value (σ min)2 of X.
We perform a conditional measurement on the ancilla qubit,
only continuing the algorithm (“accepting”) if the ancilla is in
state |1〉 (otherwise the entire procedure has to be repeated).
Note that amplitude amplification can boost the probability of
accepting quadratically, as discussed in the runtime analysis
below. Uncomputing and discarding the eigenvalue register
results in

|ψ1〉 := 1√
p(1)

R∑
r=1

c

σ r
|ψvr 〉|ψur 〉, (9)

where the probability of acceptance is given by p(1) =∑
r

| c
λr |2.

D. Executing the inner products

The goal of the last step is to write the desired result∑R
r=1(σ r )−1〈ψx̃|vr〉〈ψy|ur〉 into selected entries of an ancilla’s

single-qubit density matrix, from which it can be accessed by
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a simple measurement. Consider the result (9) of the previous
step, as well as |ψ2〉 = |ψy〉|ψx̃〉 from (5) and (6). The inner
product cannot be extracted by a direct SWAP test between
|ψ1〉 and |ψ2〉 if we want the output domain to extend into
the negative numbers, since this would lead to an acceptance
probability of 1

2 + 1
2 |〈ψ1|ψ2〉|2, which is ambiguous in the

sign of the desired result 〈ψ1|ψ2〉. The following “prediction
routine” circumvents these problems: Conditionally prepare
the two states so that they are entangled with an ancilla
qubit,

1/
√

2(|ψ1〉|0〉 + |ψ2〉|1〉), (10)

and trace out all registers except from the ancilla. The
off-diagonal elements ρ12,ρ21 of the ancilla’s density matrix
read

c

2
√

p(1)

∑
r

(σ r )−1
∑

j

vr
j x̃j

∑
m

ur
my(m′),

and contain the desired result (3) up to a known normalization
factor. Conditionally preparing (10) requires us to execute
the entire algorithm including state preparation conditioned
on the state of the ancilla qubit and might not be easy to
implement. In that case, one can adapt the algorithm so
that the |0 . . . 0〉 basis state in |ψ1〉 and |ψ2〉 is “excluded”
from all operations and remains with a constant amplitude

1√
2

throughout the algorithm (while the other 2n − 1 am-
plitudes are renormalized accordingly). This prepares states
of the general form |a〉 = 1√

2
(|0 . . . 0〉 + ∑N

i=1 ai |i〉),|b〉 =
1√
2
(|0 . . . 0〉 + ∑N

j=0 bj |j 〉). A common SWAP test effectively

shifts the inner product by 1/2 and thus reveals |〈a|b〉|2 =
| 1

2 + 1
2

∑N
i=1 aibi |2 from which the sign of

∑N
i=1 aibi can be

extracted.

IV. RUNTIME ANALYSIS

According to [14], one needs temporal resources t = k
t

in O(log N ) and of the order of O(ε−3) copies of ρX†X to
“exponentiate” a density matrix in step B, where ε is the error
and N is the dimension of the inputs in our data set. The method
requires the density matrix ρX†X to be close to a low-rank
approximation which is dominated by a few large eigenvalues
in order to maintain the exponential speedup. In general, it
takes time t = O(1/δ) to simulate eiHt for a Hamiltonian H

up to error δ [12], and with the trick from [14] it takes time
t2 to do the same for eiρt . This means that if we want to
resolve relatively uniform eigenvalues of the order of 1/N ,
time grows quadratically with N and the exponential speedup
is lost. Hence, the method is only efficient if the density matrix
is dominated by a few large eigenvalues.

The singular-value inversion procedure in step C determines
the runtime’s dependency on the condition number of X, κ =
σ max(σ min)−1. The probability to measure the ancilla in the
excited state is

p(1) =
∑

r

∣∣∣ c

λr

∣∣∣2
� R

∣∣∣∣ λmin

λmax

∣∣∣∣
2

= Rκ−4,

which means one needs, on average, less than κ4 tries to
accept the conditional measurement. Amplitude amplification
as in [9,12] reduces this to a factor of O(κ2) in the runtime,
which can become significant for matrices that are close to
being singular. The condition number is a measure for how
easy it is to invert a matrix, and it is no surprise that the
runtime of the quantum algorithm also depends on it. The
amended SWAP routine in step D is also linear in the number of
qubits, and the final measurement only accounts for a constant
factor. The upper bound for the runtime can thus be roughly
estimated as O(log Nκ2ε−3) if we have sufficient copies of
ρX†X available, which is required to be close to a low-rank
matrix. Remember that this does not include the costs of
quantum state preparation in case the algorithm processes
classical information. Compared to the previous result in
WBL, this is an improvement of a factor κ−4, whereas the
dependence on the accuracy is worse by a factor ε−2. However,
in contrast to other proposals, our algorithm tackles the
problem of pattern recognition or prediction. Furthermore, we
can apply our algorithm efficiently to nonsparse, but low-rank
approximations of the matrix X†X.

V. CONCLUSION

We described an algorithm for a universal quantum com-
puter to implement a linear regression model for supervised
pattern recognition. The quantum algorithm reproduces the
prediction result of a classical linear regression method with
(unregularized) least-squares optimization, thereby covering
an important area of machine learning. It runs in time
logarithmic in the dimension N of the feature vectors as well
as independent of the size of the training set if the inputs
are given as quantum information. Instead of requiring the
matrix containing the training inputs, X, to be sparse, it merely
needs X†X to be representable by a low-rank approximation.
One can furthermore transform the input data by a nonlinear
feature map known as the “kernel trick” (discussed in [9]
for polynomial kernels) to increase the potential power of
the method. The application of different kernels as well
as the question of how to include regularization terms is
still open for further research. The sensitive dependency on
the accuracy as well as the unresolved problem of state
preparation (which appears in any of the numerous quantum
algorithms encoding classical information into the amplitudes
of quantum states) illustrate how carefully one needs to
treat “magic” exponential speedups for pattern recognition.
However, as demonstrated here, quantum information can
make a contribution to certain problems of machine learning,
promising further fruitful results in the emerging discipline of
quantum machine learning.
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