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In this paper, we investigate the possibility of entanglement swapping between two distinct qubits coupled to
their own (in general) non-Markovian environments. This goal is achieved by performing Bell state measurement
on photons leaving dissipative cavities. In the continuation, we introduce the concept of entangling power to
measure the average of swapped entanglement over all possible pure initial states. Then we present our results
in two regimes, strong and weak coupling, and discuss the role of the detuning parameter in each regime in
the amount of swapped entanglement. We also determine the conditions under which the maximum amount of
entanglement can be swapped between the two qubits. It is revealed that, despite the presence of dissipation, it
is possible to create long-living stationary entanglement between the two qubits.
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I. INTRODUCTION

Recently, a great deal of attention has been devoted to
the concept of quantum entanglement [1] due to its various
applications such as quantum cryptography [2], quantum
teleportation [3], superdense coding [4], sensitive measure-
ments [5], and quantum telecloning [6]. There are many
implementations to produce entangled states like trapped
ions [7], atomic ensembles [8], photon pairs [9], and su-
perconducting qubits [10]. However, it is well known that
the interaction of atoms with various types of cavity fields
(with additional interaction terms such as Kerr medium, etc.)
is an efficient source of entanglement [11], a model which is
called the Jaynes-Cummings model (JCM) [12]. It relies on the
mutual coupling between a two-level atom and a single-mode
quantized field in the rotating-wave approximation.

On the other hand, this idea has been put forward that
it is possible to create entanglement between subsystems
distributed over long distances without any common past. In
such cases, one could think of entangling the subsystems by
constructing a more general system, with the help of two (or
more) other entangled quantum subsystems, a phenomenon
which is called quantum swapping [13]. This notion was
originally proposed for swapping the entanglement between a
pair of particles [13] and later was generalized to multiparticle
quantum systems [14]. It has also been shown that it is
possible to implement quantum swapping for continuous
variable systems [15]. Experimental demonstration of uncon-
ditional entanglement swapping for continuous variables has
been investigated in [16]. The possibility of optimization of
entanglement purification via entanglement swapping has been
studied in [17]. Entanglement swapping in two independent
JCMs has been discussed in [18]. In particular, very recently
the influence of Kerr medium on the entanglement swapping
in a three-level atom-atom system has been considered by one
of us [19].

In addition, by replacing the unknown state with an
entangled state, entanglement swapping can be considered a
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special example of quantum teleportation [20,21]. The basic
concept concealed behind quantum swapping is the Bell state
measurement (BSM) approach. This notion can be thought of
as a projection operator which projects the state of fields into
a Bell state and leaves qubits in an entangled state [22].

However, dissipation is ever present in real physical
systems. This is due to the unavoidable interaction between
these systems and their surrounding environments, which
usually leads to loss of entanglement stored in the systems.
Therefore, a lot of attention has been paid on the theory
of open quantum systems [23,24]. In this regard, besides
considering the Lindblad master equation, which is based
on the temporal evolution of the density operator of the
system [24], one can deal with the time evolution of the
wave function of the system instead of the density operator by
solving the time-dependent Schrödinger equation. Recently,
this approach has been used by us to investigate the dynamics
of entanglement of two qubits in separate environments
[25] and of two [26] and an arbitrary number [27,28] of
qubits in a common environment. Altogether, it seems quite
logical to investigate different aspects of quantum information
processing, especially quantum entanglement swapping, in the
presence of dissipation.

In this paper, we study the possibility of entanglement
swapping between two independent subsystems in the pres-
ence of dissipation. To this end, we consider each subsystem
as a dissipative cavity, in each of which there is a two-level
atom interacting with a cavity field, and the cavity mode itself
interacts with the surrounding environment. We model the
surrounding environment as a set of continuous harmonic
oscillators. This allows us to obtain the exact time evolution
of the wave function of each atom-environment subsystem as
a function of the environment correlation time and investigate
the dynamics of entanglement of each subsystem outside the
Markovian regime for both weak- and strong-coupling regimes
by paying attention to the linear entropy. Then, with the help of
BSM performed on the fields leaving the cavities, we show that
how the produced atom-field entanglement can be swapped
between field-feld and atom-atom results in a final (possible)
atom-atom entangled state in the presence of dissipation. Next,
we quantify the amount of entanglement via concurrence [29].
We then use an entangling power measure by generalizing
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the expression used for unitary maps [30] in order to see, on
average, how much entanglement can be swapped between two
atoms. The entangling power relies on the statistical average
over the initial states, which establishes an input-independent
dynamics of entanglement: a concept that has already been
applied in many quantum systems [31,32].

The rest of the paper is organized as follows: In Sec. II,
we introduce our modeling of dissipation of the system under
consideration and obtain the explicit form of the state vector
of the entire system at any time t . In Sec. III we investigate the
dynamics of the linear entropy of each subsystem. Section IV
deals with the dynamical behavior of the entangling power of
the atom-atom state after BSM for two types of Bell states of
cavities fields. Finally, in Sec. V we draw our conclusions.

II. MODEL

The system under consideration consists of two similar
but separate dissipative cavities, each containing a two-level
atom with an excited (ground) state |e〉 (|g〉). We model each
dissipative cavity as a high-Q cavity in which the qubit interacts
with a single-mode field, however, the field itself interacts with
an external field which is considered as a set of continuous
harmonic oscillators (see Fig. 1). The correlation between the
qubit and the field in each cavity via the coupling constant
gi is characterized by terms like gi(σ̂

+
i âi + σ̂−

i â
†
i ), in which

σ̂+
i (σ̂−

i ) is the raising (lowering) operator of the ith qubit and
âi (â†

i ) is the annihilation (creation) operator of the ith cavity
field. The interaction between the cavity and the external field
in the ith cavity can be governed by the Hamiltonian

ĤIi = ωci
â
†
i âi +

∫ ∞

0
ηB̂

†
i (η)B̂i(η) dη

+
∫ ∞

0
[Gi(η)â†

i B̂i(η) + H.c.] dη, (1)

where ωci
is the frequency of the ith cavity field, Gi(η) is

the coupling coefficient, which, in general, is a function of
the frequency that connects the external world to the ith
cavity, and B̂

†
i (η) and B̂i(η) are the creation and annihilation

operators of the ith surrounding environment in mode η, which

FIG. 1. Pictorial representation of the entanglement swapping.
Each qubit has been placed in its own cavity in the presence of
dissipation. BSM is performed on photons leaving the environments,
which leads to the establishment of entanglement between the atoms.

obey the commutation relation [B̂i(η),B̂†
j (η′)] = δij δ(η − η′).

From this point of view, it can be realized that photons in
each cavity can leak out to a continuum of states, which
is the source of dissipation. We show that this model leads
to a Lorentzian spectral density for each dissipative cavity,
which implies nonperfect reflectivity of the cavity mirrors. In
the following, we assume that each surrounding environment
possesses such a narrow bandwidth that only a particular
mode of the cavity can be excited [26,33]. This allows one
to extend integrals over η back to −∞ and take Gi(η) as a
constant (equal to

√
κi/π ). Then, by introducing the dressed

operators Âi(ω) = αi(ω)âi + ∫
βi(ω,η)B̂i(η) dη, one is able

to diagonalize Hamiltonian (1), where αi(ω) and βi(ω,η)
(in general, ∈ C) are obtained such that Âi(ω) (i = 1,2)
are annihilation operators obeying the commutation relation
[Âi(ω),Â†

j (ω′)] = δij δ(ω − ω′) [34,35]. The bosonic operator
âi can be shown to be a linear combination of the dressed
operators Âi(ω) as [26,33]

âi =
∫

α∗
i (ω)Âi(ω) dω, (2)

with

αi(ω) =
√

κi/π

ω − ωci
+ iκi

. (3)

From this point of view, one can dedicate that, in each cavity the
interaction between the qubit and the surrounding environment
is governed by terms like gi

∫
(σ̂+

i α∗
i (ω)Âi(ω) + H.c.)dω.

Henceforth, the Hamiltonian describing each atom-cavity
dissipative system in the rotating-wave approximation and in
units of � = 1 can be rewritten in terms of the dressed operators
as

Ĥ(AF)i = 1

2
ωqbi

σ̂zi
+

∫
ωÂ

†
i (ω)Âi(ω) dω

+ gi

∫
[σ̂+

i α∗
i (ω)Âi(ω) + H.c.]dω, (4)

in which ωqbi
and σ̂zi

are the atomic transition frequency and
population inversion operator of the ith qubit, respectively.
The time-dependent Schrödinger equation with Hamiltonian
(4) can be solved when the environment initially is in a
vacuum state regardless of the state of the qubit. Formally, it is
convenient to work in the interaction picture. The Hamiltonian,
(4), in the interaction picture, is given by

V̂(AF)i = eiĤ0(AF)i t Ĥ Int
(AF)i

e−iĤ0(AF)i t , (5)

in which

Ĥ0(AF)i = 1

2
ωqbi

σ̂zi
+

∫
ωÂ

†
i (ω)Âi(ω) dω,

Ĥ Int
(AF)i

= gi

∫
[σ̂+

i α∗
i (ω)Âi(ω) + H.c.] dω. (6)

After some manipulation, the explicit form of the Hamiltonian
in the interaction picture may be obtained as

V̂(AF)i = gi

∫
[σ̂+

i α∗
i (ω)ei(ωqbi

−ω)t Âi(ω) + H.c.] dω. (7)

Without loss of generality, we assume that the two sub-
systems are similar, i.e., ωqb1

= ωqb2
≡ ωqb, ωc1 =ωc2 ≡ ωc,

022339-2



ENTANGLEMENT SWAPPING BETWEEN DISSIPATIVE SYSTEMS PHYSICAL REVIEW A 94, 022339 (2016)

g1 = g2 ≡ g, and κ1 = κ2 ≡ κ . It should be noted that the an-
alytical solution of the time-dependent Schrödinger equation
with an arbitrary initial state seems to be a very hard task, if not
impossible. Therefore, we suppose that there is no excitation
in the cavities before the occurrence of an interaction and each
atom is in the coherent superposition of the exited |ei〉 and
ground state |gi〉 as

|ψAF(0)〉i = (cos(θi/2)|ei〉 + sin(θi/2)eiφi |gi〉)|0〉Ri
, (8)

in which |0〉Ri
= Âi(ω)|1ω〉i is the multimode vacuum state

of the ith environment, where |1ω〉i = Â
†
i (ω)|0〉Ri

is the
multimode state of the ith environment representing one
photon at frequency ω and the vacuum state in all other modes.
In the above relation θi ∈ [0,π ] and ϕi ∈ [0,2π ] for i = 1,2.
Accordingly, the quantum state of the ith system at any time
t can be written as

|ψAF(t)〉i = Ci(t)|ei〉|0〉Ri
+ Di(t)|gi〉|0〉Ri

+
∫

Uωi
(t)|1ω〉|gi〉 dω, (9)

where Ci(t), Di(t), and Uωi
(t) are unknown coefficients that

should be determined. Using the time-dependent Schrödinger
equation (i ˙|ψ〉 = V̂|ψ〉), one arrives at the set of coupled
integrodifferential equations

Ċi(t) = −ig

∫
α∗(ω)eiδωtUωi

(t) dω, (10a)

Ḋi(t) = 0, (10b)

U̇ωi
(t) = −igα(ω)e−iδωtCi(t), (10c)

where δω ≡ ωqb − ω. The second differential equation of
the above set can be easily solved as Di(t) = Di(0) =
sin(θi/2)eiφi . After lengthy but straightforward manipulations,
the following integrodifferential equation for the amplitude
Ci(t) can be obtained:

Ċi(t) = −
∫ t

0
f (t − t1)Ci(t1) dt1, (11)

where f (t − t1) is the correlation function relating to the
spectral density J (ω) of the environment as

f (t − t1) =
∫

dωJ (ω)e−iδω(t−t1), (12)

in which, according to Eq. (3), the spectral density reads

J (ω) ≡ g2|α(ω)|2 = 1

π

g2κ

(ω − ωc)2 + κ2
. (13)

The parameter κ is connected to the damping time of
the environment τB ≈ κ−1, which is much longer than its
correlation time, over which the correlation functions of the
reservoir vanish [36]. On the other hand, it can be shown
that the relaxation time τR over which the state of the system
changes reads τR ≈ g−1 [37].

A glance at Eq. (13) reveals that the spectral density
is a Lorentzian distribution, which implies the nonperfect
reflectivity of the cavity mirrors [24]. This leads to an
exponentially decaying correlation function, with κ as the

decay rate factor of the cavity as follows:

f (t − t1) = g2e−κ(t−t1)e−i�(t−t1), (14)

in which � = ωc − ωqb is the detuning parameter. We note
that, by choosing special values of κ , it is possible to extract
the ideal cavity and the Markovian limits. The former is
obtained when κ → 0, which leads to J (ω) = g2δ(ω − ω0),
corresponding to a constant correlation function in which δ(·)
is the usual Dirac delta function. In this situation, the system
reduces to the usual JCM [38] with the vacuum Rabi frequency
�R = g. On the other hand, for small correlation times and
by taking κ much larger than any other frequency scale, the
Markovian regime may be obtained. For the other generic
values of κ , the model interpolates between these two limits.

At any rate, with the help of Laplace transform technique
one is able to solve the integrodifferential equation (11), as

Ci(t) = Ci(0)E(t), (15)

in which

E(t) ≡ e−(i�+κ)t/2

(
cosh (�t/2) + i� + κ

�
sinh (�t/2)

)
.

(16)

Here � =
√
κ2 − �2

R + 2i�κ , in which �R =
√
�2 + 4g2.

The obtained analytical expression for the amplitude Ci(t) is
exact and therefore outside of the Markovian regime. It should
be noted that the exact solution presented in (15) for strong- and
weak-coupling regimes is due to the Lorentzian spectral den-
sity, which has been directly extracted from our modeling of
dissipative cavity. For other kinds of spectral densities, only the
weak-coupling regime is amenable to a general analysis [39].

III. ENTROPY EVOLUTION OF THE SUBSYSTEMS

In this section, we investigate the dynamical behavior of
entanglement between a qubit and its surrounding environment
in each subsystem. It is well known that the linear entropy is
a promising quantity to measure the amount of entanglement
between the qubit and its surrounding environment field, which
is defined as [40]

SA(θ,φ; t) = 1 − Tr
(
ρ̂2

A

)
, (17)

in which ρ̂
A

is the atomic reduced density matrix for each sub-
system. The linear entropy can range between 0, corresponding
to a completely pure state, and (1 − 1/d), corresponding to a
completely mixed state, in which d is the dimension of the
density matrix (here, d = 2). Using Eq. (9), the explicit form of
the atomic reduced density operator at any time can be derived
by tracing over environment variables, which results in

ρ̂
A
(t) =

( |C(t)|2 C(t)D∗(t)
D(t)C∗(t) 1 − |C(t)|2

)
, (18)

in which we have dropped the subscript i from coefficients
Ci(t) and Di(t) (and also from parameters θi and φi) because
only one subsystem is considered. It is interesting that it is
possible to have an input-independent parameter. This can be
done by computing the average linear entropy with respect to
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FIG. 2. Time evolution of the average linear entropy as a function
of the scaled time τ for (a) the strong-coupling regime, i.e., R = 10
with � = 0 (solid blue line) and � = 15κ (dashed red line), and (b)
the weak-coupling regime, i.e., R = 0.1 with � = 0 (solid blue line)
and � = 1.5κ (dashed red line).

all possible input states on the surface of the Bloch sphere as

Sav
A

(t) =
∫

SA(θ,φ; t) d�, (19)

in which d� is the normalized SU(2) Haar measure. This is
related to the concept of entangling power [30].

According to Eqs. (15) and (18), the effective dynamics
of the linear entropy depends on the function E(t). It is
noteworthy that from Eq. (16) two distinct weak- and strong-
coupling regimes can be distinguished by introducing the
dimensionless parameter R = g/κ , by which we are able to
analyze our results in two regimes, good (R � 1) and bad
(R � 1) cavities. In the bad-cavity limit, the relaxation time
is greater than the reservoir correlation time and the variation
of the linear entropy is essentially a Markovian exponential
behavior. In the good-cavity limit, the reservoir correlation
time is greater than the relaxation time and non-Markovian
effects such as revival and oscillation of entanglement become
dominant. The latter effects are indeed due to the long memory
of the environment.

Figure 2 illustrates the average linear entropy as a function
of the scaled time τ = κt for both strong- and weak-coupling
regimes in the absence and presence of detuning. In the strong-

coupling regime and in the absence of the detuning parameter,
the entropy has an oscillatory decaying behavior which repre-
sents a non-Markovian process. These revivals and oscillations
are due to the memory depth of the reservoir. This can be
understood from the fact that, in the strong-coupling regime,
the environment feeds back some of the information which it
has taken during the interaction with the qubit. In the presence
of the detuning parameter, the entanglement sudden death is no
longer seen. The linear entropy remains alive at longer intervals
of time. On the other hand, in the weak-coupling regime, the
linear entropy starts from 0, increases monotonically up to
its maximum value, and then drops and decreases until it
vanishes. Again, the detuning parameter makes the entropy
survive for longer times. Actually, for both coupling regimes
and for sufficiently high values of the detuning parameter, it is
possible to have a quasistationary entanglement.

IV. ENTANGLEMENT SWAPPING

As observed, there is no direct interaction among the two
(AF)i (i = 1,2) systems, therefore, their states are expected to
remain separable,

ρ̂(t) = |�(t)〉〈�(t)|, (20)

where |�(t)〉 = |ψAF(t)〉1 ⊗ |ψAF(t)〉2. However, thanks to
the results in the previous section, where it is established that
the states of the atom-field are entangled in each cavity, in line
with the goals of our paper, it is now quite reasonable to search
for a strategy to exchange the entanglement between the
atom-field in each cavity and the atom-atom (and/or field-field)
for the sake of quantum information processing purposes. In
this regard, one could think of creating entanglement between
the two atoms by performing BSM on the field modes leaving
the cavities (see Fig. 1). Mathematically speaking, this can be
done by projection |�(t)〉 onto one of the Bell states of the
cavity fields. Among the different types of resources for linear
optical quantum swapping implementations, two-photon
pairs have been put forward as an efficient resource for our
purposes, which are [41]

|�±〉F = 1√
2

(|0〉R1
|1〉R2

± |0〉R1
|1〉R2

), (21a)

|�±〉F = 1√
2

(|0〉R1
|0〉R2

± |1〉R1
|1〉R2

), (21b)

in which |0〉Ri
has been defined before and

|1〉Ri
≡

∫
�(ω)|1ω〉i dω, (22)

where
∫ |�(ω)|2dω = 1, with �(ω) the pulse shape associated

with the incoming photon. Using the introduced Bell-type
states, one can easily construct the desired projection oper-
ator PF = |M〉FF〈M|, in which M ∈ {�±,�±}. Consequently,
operating the projection operator onto |�(t)〉 leaves the field
states in a Bell-type state and also establishes an entangled
atom-atom state. In the next two subsections, we onsider the
projection operator based on the Bell states |�−〉 and |�+〉
and investigate the resulting entanglement properties of the
atom-atom states. It should be noted that the other two Bell
states can also straightforwardly be taken into account.
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A. Bell state |�−〉F

Let us now consider the projection operator

P −
F = |�−〉FF〈�−|, (23)

whose action on |�(t)〉 in (20) leaves the field states in the
Bell state |�−〉F and establishes the atom-atom state (after
normalization)

|�AA(t)〉 = P −
F |�(t)〉

= 1√
N−(t)

{X12(t)|e,g〉 − X21(t)|g,e〉

+ [ϒ12(t) − ϒ21(t)]|g,g〉}, (24)

in which the normalization coefficient reads as

N−(t) = |X12(t)|2 + |X21(t)|2 + |ϒ12(t) − ϒ21(t)|2. (25)

Here, we have defined

Xjk(t) = Cj (t)
∫

dω�∗(ω)Uω
k
(t)e−iωt , (26a)

ϒjk(t) = Dj (t)
∫

dω�∗(ω)Uω
k
(t)e−iωt . (26b)

In order to quantify the amount of entanglement between
the two atoms, we use the concurrence, which has been defined
as [29]

E(ρ̂(t)) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (27)

where λi , i = 1,2,3,4 are the eigenvalues (in decreasing order)
of the Hermitian matrix ρ̂AA (σy

1 ⊗ σ
y

2 ρ̂∗
AA

σ
y

1 ⊗ σ
y

2 ), with ρ̂∗
AA

the complex conjugate of ρ̂AA and σ
y

k := i(σk − σ
†
k ). The

concurrence varies between 0 (completely separable) and 1
(maximally entangled). For the state, (24), concurrence reads
as

E(ρ̂(t)) = T1(t,θ1,θ2)

T1(t,θ1,θ2) + T2(θ1,θ2,φ1,φ2)
, (28)

in which

T1(t,θ1,θ2) = 2 cos2(θ1/2) cos2(θ2/2)|E(t)|2, (29a)

T2(θ1,θ2,φ1,φ2) = 1

2
[1 − cos θ1 cos θ2

− sin θ1 sin θ2 cos(φ1 − φ2)]. (29b)

The surprising aspect here is that the resulting concurrence
does not depend on the pulse shape of the incoming photon
[i.e., �(ω)]. Before considering the time evolution of the re-
sulting concurrence, it is interesting that, for certain conditions,
state (24) can have a unique stationary state. A glance at (28)
reveals that whenever T2(θ1,θ2,φ1,φ2) = 0, the concurrence
would be independent of time and it always remains at its
maximum value, i.e., 1. According to Eq. (29b), this condition
is fulfilled with the set of solutions

θ1 = θ2 and φ1 − φ2 = 2mπ, m = 0, ± 1, (30)

which leads to the maximally entangled Bell state (up to an
irrelevant global phase)

|�−〉 = 1√
2

(|e,g〉 − |g,e〉). (31)

Quite generally, the concurrence, (28), depends on the initial
state. However, it is logical to state that our model is a good
entangler when the average of the final swapped entanglement
over all possible initial states is positive. This statistical
average over the initial states establishes an input-independent
dynamics of entanglement. Therefore, we use the concept of
entangling power, which is defined as [30]

E(t) :=
∫

E(ρ(t)) dμ(|ψ(0)〉), (32)

where dμ(|ψ(0)〉) is the probability measure over the subman-
ifold of product states in C2 ⊗ C2. The latter is induced by the
Haar measure of SU(2) ⊗ SU(2). Specifically, referring to the
parametrization of (8), it reads

dμ(|ψ(0)〉) = 1

16π2

2∏
k=1

sin θkdθkdϕk. (33)

This measure is normalized to 1. It is trivial that in this case
the entangling power E lies in [0,1].

As stated before, two distinct regimes, strong and weak cou-
pling, can be distinguished. Figure 3 illustrates the entangling
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FIG. 3. Time evolution of the entangling power of the atom-atom
state after BSM (P −

F = |�−〉FF〈�−|) as a function of the scaled time
τ for (a) the strong-coupling regime, i.e., R = 10 with � = 0 (solid
blue line) and � = 15κ (dashed red line), and (b) the weak-coupling
regime, i.e., R = 0.1 with � = 0 (solid blue line) and � = 1.5κ

(dashed red line).
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power as a function of the scaled time τ = κt in the absence
and presence of detuning for both coupling regimes. In the
strong-coupling regime, an oscillatory behavior of entangle-
ment is seen due to the long memory effect of the cavities.
In both cases the entangling power has a decaying behavior
in the absence and presence of the detuning parameter. The
detuning parameter has a crucial role in surviving the swapped
entanglement. Especially, in the strong-coupling regime, it
completely suppresses the entanglement’s sudden death.

B. Bell state |�+〉F

Let us now consider another Bell state, i.e., |�+〉F, in
order to construct the projection operator P +

F = |�+〉FF〈�+|.
It is straightforward to obtain the following (normalized)
atom-atom state by applying this new projection operator to
state (20):

|�AA(t)〉 = P +
F |�(t)〉

= 1√
N+ {C1(t)C2(t)|e,e〉 + C1(t)D2(t)|e,g〉

+D1(t)C2(t)|g,e〉
+ [D1(t)D2(t) + C1(0)C2(0)�(t)2]|g,g〉}, (34)

in which

�(t) = −ig

∫ t

0
dt1E(t1)eiωqb(t−t1)

∫
dωα(ω)�∗(ω)e−iω(t−t1).

(35)
In the above relations, the normalization coefficient is

N+ ≡ N+(t,θ1,θ2,φ1,φ2)

= cos2(θ1/2) cos2(θ2/2)[|E(t)|4 + |�(t)|4]

+ 0.5|E(t)|2(1 − cos θ1 cos θ2) + sin2(θ1/2) sin2(θ2/2)

− 0.5 sin θ1 sin θ2Re[e−i(φ1+φ2)�2(t)]. (36)

For state (34) the concurrence explicitly reads as

E(ρ̂(t)) = T (t,θ1,θ2)

N+(t,θ1,θ2,φ1,φ2)
, (37)

in which

T (t,θ1,θ2) = 2 cos2(θ1/2) cos2(θ2/2)|E(t)|2|�(t)|2. (38)

Unlike the previous case, the concurrence depends on the
pulse shape of the incoming photon, i.e., �(ω). Therefore,
different pulse shapes lead to different behaviors of the
dynamics of entanglement. However, due to the technical
difficulties arising when calculating the integrals, (35), we
consider the incoming pulse shape to be exactly the same as
(3). With this assumption, the function �(t) explicitly becomes

�(t) = −2ie−(i�+κ)t/2 g

�
sinh(�t/2). (39)

Quite generally, the concurrence, (37), is 0 at any time for
θ1 = θ2 = π . This condition corresponds to initial atomic
state |g,g〉 (up to a global phase). Here, no entanglement can
be created because no excitation can be exchanged between
the two qubits by the action of BSM. Moreover, according
to (34) and (36) the final state after BSM is |g,g〉 (up to an
irrelevant global phase), which clearly is a separable state.
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FIG. 4. Time evolution of the concurrence of the atom-atom state
after BSM (P +

F = |�+〉FF〈�+|) as a function of the scaled time τ

for the strong-coupling regime, i.e., R = 10 for (a) � = 0 and (b)
� = 15κ , with θ1 = θ2 = 0 (solid blue line) and θ1 = θ2 = π/2 and
φ1 = φ2 = 0 (dashed red line).

On the other hand, we expect that the concurrence reaches
its maximum value for θ1 = θ2 = 0. This corresponds to the
initial atomic state |e,e〉. It is straightforward to show that
with these values, the concurrence is maximum whenever the
following condition is fulfilled:

|E(t)| = |�(t)|. (40)

However, due to the presence of parameter g in the expression
of �(t), this condition can only be fulfilled in the strong-
coupling regime. In order to see this phenomenon explicitly, let
us plot the concurrence for some initial states in both coupling
regimes.

In Fig. 4 we have plotted the time evolution of the
concurrence, (37), as a function of the scaled time τ = κt in
the strong-coupling regime (i.e., R = 10) for two initial atomic
states in the absence and presence of the detuning parameter.
Let us first investigate the case in which the exact resonance
condition is considered. As shown in Fig. 4(a) (solid curve), for
initial atomic state |e,e〉 (i.e., θ1 = θ2 = 0) and in the absence
of the detuning parameter (� = 0), the concurrence has an
oscillatory behavior between 0 and its maximum value (i.e., 1).
Therefore, despite the presence of dissipation, it is possible to
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FIG. 5. Time evolution of the concurrence of the atom-atom state
after BSM (P +

F = |�+〉FF〈�+|) as a function of the scaled time τ

for the weak-coupling regime, i.e., R = 0.1 in the absence of the
detuning parameter (i.e., � = 0) for θ1 = θ2 = 0 (solid blue line)
and θ1 = θ2 = π/2 and φ1 = φ2 = 0 (dashed red line).

achieve the maximum amount of entanglement. The maximum
value of entanglement is obtained whenever condition (40) is
fulfilled, which straightforwardly takes us to the following
scaled times τn at which the concurrence is maximum:

τn = 1

10

(
2nπ + π

4

)
, (41)

where n is an integer. At these times, it is straightforward
to show that, E(t) and �(t) become real functions of time,
and consequently the atom-atom state is projected into the
following Bell state:

|�AA〉 = 1√
2

(|e,e〉 + |g,g〉). (42)

For another atomic initial state (i.e., θ1 = θ2 = π/2) and in the
absence of the detuning parameter, an oscillatory and decaying
behavior of concurrence is seen [see Fig. 4(a); dashed curve].
The entanglement sudden death phenomenon is clearly seen
and no stationary entanglement is created.

In the presence of the detuning parameter and for θ1 = θ2 =
0, the oscillatory and decaying behavior of the concurrence is
clearly seen. However, the entanglement’s sudden death is no
longer observed. As the scaled time goes on, the amplitude
of oscillations decreases until the concurrence reaches the
stationary value (here it is about 0.47). Our further calculations
(not shown here) illustrate that, as the detuning parameter
increases, the stationary value of concurrence decreases. For
other initial states, the detuning parameter causes concurrence
to vanish in shorter scaled times.

Figure 5 illustrates the resulting concurrence as a function
of the scaled time τ in the weak-coupling regime for zero
detuning parameter with different initial atomic states. The
weak-coupling regime shows different behavior. In this regime
and for θ1 = θ2 = 0, the concurrence starts at 0, increases
monotonically up to the stationary value, and then remains
fixed at this value as time goes on. The amount of swapped
entanglement is negligible in comparison to that in the strong-
coupling regime. This can be explained by paying attention
to the fact that in the weak-coupling regime, the correlation
between a typical qubit and its environment is too weak.
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FIG. 6. Time evolution of the entangling power of the atom-atom
state after BSM as a function of the scaled time τ for (a) the strong-
coupling regime, i.e., R = 10 with � = 0 (solid blue line) and � =
15κ (dashed red line) and (b) the weak-coupling regime, i.e., R = 0.1
with � = 0 (solid blue line) and � = 1.5κ (dashed red line).

Therefore, the amount of swapped entanglement must be less
than that in the strong-coupling regime. As explained before,
the concurrence never reaches its maximum value in this
regime. For another initial state, the stationary concurrence
no longer exists. Finally, it should be noted that our further
calculations show that the presence of the detuning parameter
decreases considerably the amount of stationary concurrence.

Having ascribed the role of the initial state in the dynamics
of swapped entanglement, we examine, on average, how much
entanglement can be swapped between the two qubits. For
this purpose, we have plotted the entangling power as a
function of the scaled time τ = κt for the two strong- and
weak-coupling regimes in the absence and presence of the
detuning parameter (see Fig. 6). In the strong-coupling regime,
oscillatory behavior of the entangling power with a decaying
envelope is clearly observed. In the absence of the detuning
parameter the entanglement sudden death phenomenon is
clearly seen.

In the weak-coupling regime, on average, the amount of en-
tanglement is negligible in comparison with that in the strong-
coupling regime. However, a small amount of entanglement
is seen in the presence of the detuning parameter.
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V. CONCLUDING REMARKS

To sum up, we have considered two independent dissipative
cavities, each consisting of a qubit. In each dissipative cavity,
the qubit interacts with a single-mode field and the field
interacts with a set of continuum harmonic oscillators.
Therefore, the leakage of photons into a continuum of
states is the source of dissipation. This allows us to
investigate our results outside of the Markovian limit.
However, by introducing a set of dressed operators Âi(ω)
which contain the information of the cavity field and the
surrounding environment, we have solved the time-dependent
Schrödinger equation and obtained the analytical expression
of the state vector of each subsystem for special initial
conditions.

Then, before considering the entanglement swapping pro-
tocol, we have investigated the dynamics of entanglement
between each qubit and its surrounding environment. This
has been done by evaluating the average of the linear entropy
measure over all possible initial states of the qubit. The results
show that oscillatory decaying behavior of the entropy is
seen in the strong-coupling regime and in the absence of the
detuning parameter. These oscillations are due to the long
memory of the environment. However, this behavior does
not occur in the weak-coupling regime, where the behavior
of the entropy is monotonically decaying. In the presence of
the detuning parameter, the linear entropy survives for longer
intervals of time in both regimes.

Next, we have implemented the entanglement swapping
protocol to transform entanglement from two atom-field
subsystems to atom-atom by an interference measurement
performed on fields leaving the cavities (BSM). This has
been done by projecting the state of the entire system
onto one of the Bell states of the cavity fields. We have
presented our results for two types of field-field Bell-type
states. First, we consider the |�−〉F Bell state. In this case,
the resulting concurrence does not depend on the pulse
shape of incoming photons. Furthermore, for θ1 = θ2 and
φ1 − φ2 = 2mπ (m = 0, ± 1), the atom-atom state has the
unique stationary state |�−〉 = 1√

2
(|e,g〉 − |g,e〉). In order to

investigate the dynamical behavior of swapped entanglement,
we introduced the entangling power, (32). Again, oscillatory
behavior of the entanglement is seen for the strong-coupling
regime. In both regimes, the swapped entanglement shows
decaying behavior. However, the detuning parameter plays a
crucial role in surviving the swapped entanglement.

On the other hand, for the field-field Bell state |�+〉F,
the situation differs slightly. First, the resulting concurrence
depends directly on the pulse shape of incoming photons.
By assuming that the pulse shape is the same as α(ω), it is
possible to solve the relevant integrals and obtain the analytical
expression for the concurrence. Second, unlike the previous
case, there is not a unique entangled stationary state, but
for θ1 = θ2 = π the concurrence is 0 at any time t . In the
strong-coupling regime, for initial atomic state |e,e〉 (i.e., θ1 =
θ2 = 0), and in the absence of the detuning parameter (� = 0),
oscillatory (without decaying) behavior of the concurrence is
seen. Our results show that at discrete (scaled) times τn =
1

10 (2nπ + π
4 ), where n is an integer, the concurrence reaches

its maximum value and the atom-atom state is projected
into the maximally entangled Bell state 1√

2
(|e,e〉 + |g,g〉).

Furthermore, the amount of swapped entanglement in the
weak-coupling regime is negligible in comparison with that
in the strong-coupling regime.

Finally, we should emphasize that our results can be helpful
in designing implementations for entanglement swapping
when environmental effects cannot be neglected. For instance,
recently, it has been proven that a hyperentanglement swapping
protocol which is based on the hyperentanglement Bell
state measurement can discriminate 16 Bell states in both
polarization and spatial mode degrees of freedom [42]. It is
also shown that it is possible to perform long-distance quantum
communication based on the logic-qubit entanglement when
environmental effects are not considered [43]. Based on our
presented formalism, our idea can be extended to an arbitrary
number of qubits in their own dissipative environments [27].
Therefore, our results could be useful for discriminating an
arbitrary number of Bell states based on the hyperentanglement
and logic-qubit entanglement swapping when they suffer from
noise. Furthermore, our proposal has the potential ability to
consider a number of qubits in each dissipative cavity. In this
way, the qubits inside each dissipative cavity can be considered
a Bose-Einstein condensate in an optical cavity [44] in the
presence of thermal noise. Then the output of the optical cavity
of each node is sent to an intermediate site where a Bell-like
detection is performed on these optical pairs [44]. Finally,
recalling the crucial role of entanglement swapping in the de-
velopment of real devices for the application of quantum infor-
mation theory, such as the development of quantum computers
and quantum remote state preparation, whenever the subsys-
tems unavoidably interact with their environment, our proposal
can be expected to be a first step towards such protocols.
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