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To date, a conclusive detection of quantum speedup remains elusive. Recently, a team by Google Inc.
[V. S. Denchev et al., Phys. Rev. X 6, 031015 (2016)] proposed a weak-strong cluster model tailored to have
tall and narrow energy barriers separating local minima, with the aim to highlight the value of finite-range
tunneling. More precisely, results from quantum Monte Carlo simulations as well as the D-Wave 2X quantum
annealer scale considerably better than state-of-the-art simulated annealing simulations. Moreover, the D-Wave
2X quantum annealer is ∼108 times faster than simulated annealing on conventional computer hardware for
problems with approximately 103 variables. Here, an overview of different sequential, nontailored, as well as
specialized tailored algorithms on the Google instances is given. We show that the quantum speedup is limited
to sequential approaches and study the typical complexity of the benchmark problems using insights from the
study of spin glasses.
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I. INTRODUCTION

Adiabatic quantum optimization (QA) [1–14], the quantum
version of classical simulated annealing (SA) [15], has caused
considerable controversy and interest since the introduction
of the D-Wave Inc. [16] quantum annealing machines [17].
Although there is increasing evidence that quantum effects do
play a role in the optimization process of these machines, there
is still no consensus as to if the machine is able to outperform
classical optimization heuristics on silicon-based computer
hardware. Multiple teams [18–36] have scrutinized this first
commercially available programmable analog quantum opti-
mizer [the current version being the D-Wave 2X (DW2X) with
up to 1152 quantum bits wired on a chimera topology [37]]
and tried to understand its advantages and disadvantages over
classical technologies, as well as improve its performance via,
e.g., quantum error correction [32,35,38] (at the price of having
too few logical qubits for a scaling analysis) or fine tuning of
the device [39,40].

In an effort to determine the thermodynamic (large number
of qubits n) scaling advantage of a quantum annealer over
conventional algorithms, it is of importance to use the
largest possible number of qubits on any device. As such,
embedded problems (that might require an overhead due to
the embedding) are suboptimal for scaling analyses. Native
problems, such as spin-glass-like systems [41,42] that use
all qubits of the system, are thus optimal to tickle out
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any putative quantum advantage from quantum annealing
machines. Unfortunately, results have been inconclusive so
far [23] and there is strong evidence that random spin-glass
problems are not well suited for benchmarking purposes
[24,30]. Thus, efforts have shifted to tailored problems, such as
carefully -crafted spin-glass instances [30,36] that are robust to
the intrinsic noise of analog machines. In particular, Ref. [30]
suggested a slight quantum advantage over classical simulated
annealing [43,44] using the 512-qubit D-Wave 2 quantum
annealer [45]. However, no scaling analysis was performed
because systems of approximately n ∼ 500 qubits are just at
the brink of the scaling regime.

Despite all these efforts, a “killer” application or problem
domain has yet to be found, where quantum annealing
outperforms notably classical simulational approaches. In
particular, given that many well-known optimization problems
from the traveling salesman problem to constraint satisfaction
and vertex cover problems can be mapped onto Ising spin-
glass-like Hamiltonians [46], there is great interest from both
science and industry to find efficient optimization approaches
to tackle spin-glass-like Hamiltonians, the main forte of the
DW2X device. Most recently, however, a team by Google
Inc. [47] showed for carefully crafted problems that quantum
annealing on the DW2X can outperform classical simulated
annealing by approximately eight orders of magnitude. Fur-
thermore, the scaling of quantum approaches (both on the
DW2X and using quantum Monte Carlo [48]) is considerably
better than for classical simulated annealing. We believe this
is the first notable “success story” for quantum annealing.
However, numerical comparisons were performed against one
of the commonly known least-efficient optimization methods,
namely, simulated annealing. While this seems to be a
fair comparison because both QA and SA are sequential
optimization methods where a control parameter (quantum
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fluctuations in the former and thermal fluctuations in the latter)
is decreased monotonically until reaching a target value, it is
unclear if this favorable scaling will persist for state-of-the
art optimization methods (see, for example, Refs. [49–52] for
some examples). We do emphasize, however, that the Google
Inc. studies [47,53,54] shed, for the first time, some light on the
structure of problems where quantum annealing might excel. In
particular, by carefully crafting weak-strong cluster problems
(see Sec. III for details), they can show that there is a sign
of finite-range quantum tunneling, at least within the basic
building blocks of the DW2X device, known as a K4,4 cell [47].

In this work, we complement the study of Ref. [47]: first,
we expand the notion of “limited quantum speedup” [23] to
take into account different classes of algorithms (see Sec. II)
and thus attempt to present a fair assessment of any sequential
quantum annealer. In particular, we introduce the notion of
“limited sequential quantum speedup” which refers to speedup
with respect to any algorithm that optimizes sequentially
such as, for example, simulated annealing. Furthermore, we
distinguish two types of state-of-the-art optimization methods:
“tailored” and “nontailored” algorithms. Tailored algorithms
exploit the structure of the studied optimization problem; we
thus feel this might pose an unfair advantage. Nontailored al-
gorithms are generic, and thus present the state of the art when
studying a wide variety of optimization problems. Our results
show that sequential quantum approaches (DW2X quantum
annealer and quantum Monte Carlo) clearly outperform any
other currently available sequential methods, but fall short of
outperforming nontailored (as well as tailored) algorithms.
We thus herewith raise the bar for any quantum optimization
approach. Second, we illustrate with a simple two-energy level
model with noise how a suboptimal annealing time for small
problem sizes can lead to a change in slope of the scaling
analysis, as observed in Ref. [47] for the DW2X machine.
Finally, we study the energy landscape of the instances and
show that the spin-glass backbone of the weak-strong cluster
network dominates and thus might negatively impact the
scaling of this class of problem for future larger chips and/or
system sizes.

The paper is structured as follows. In Sec. II, we introduce
a classification for the concept of “quantum speedup” in order
to better assess the comparison between classical and quantum
devices. In Sec. III, we briefly describe the weak-strong
cluster model, followed by a summary of our results in
Sec. IV. Concluding remarks are summarized in Sec. V. All the
algorithms used in this study are outlined in the Appendixes.

II. LIMITED QUANTUM SPEEDUP REDEFINED

Given the intrinsic differences between classical and quan-
tum heuristics, it is impossible to define a simple recipe to
quantify “quantum speedup.” In Ref. [55], the authors discuss
in detail the meaning of quantum speedup, defining different
“classes” of speedup to better quantify any putative speedup of
a quantum device [56]. More precisely, they classify quantum
heuristics in four different classes, ranging from the class with
the strongest proof of quantum enhancement to the class with
the weakest proof, as follows:

Provable quantum speedup. It is rigorously proven that
no classical algorithm can scale better than a given quantum

algorithm. For example, the Grover algorithm (assuming an
oracle) [57] belongs to this class.

Strong quantum speedup. Originally defined in Ref. [58],
strong quantum speedup refers to a comparison with the best
classical algorithm, regardless if the algorithm exists or not.
Note, however, that the “best classical algorithm” might not
be known or there might be no consensus as to what the
best classical algorithm is. For example, the well-known Shor
quantum algorithm for the factorization of prime numbers [59]
belongs to this class.

Potential quantum speedup. Refers to speedup when com-
paring to a specific classical algorithm or a set of classical
algorithms. In this case, any potential quantum speedup might
be short lived if a better classical algorithm is developed. An
example is the simulation of the time evolution of a quantum
system, where the propagation of the wave function on a
quantum computer would be exponentially faster than the
direct integration of the Schrödinger equation.

Limited quantum speedup. Speedup obtained by comparing
the algorithmic approach used in a quantum computer to the
closer classical counterpart. Usually, quantum Monte Carlo
(QMC) is used for the comparison with adiabatic quantum
optimization [8,29,55].

The introduction of the aforementioned categories has
helped enormously in ensuring that there are no misun-
derstandings when referring to quantum speedup. Indeed,
these general categories have the advantage that they cover
a broad class of quantum computing paradigms. However,
given that, at the moment, analog quantum annealing machines
dominate this field of research, it might be of importance to
introduce definitions for quantum speedup tailored towards
these machines. Therefore, to be able to perform a fair
assessment of speedup for quantum annealing machines, we
introduce the following definitions that complement the notion
of “limited quantum speedup”:

Limited sequential quantum speedup. Speedup obtained
by comparing a quantum annealing algorithm or machine
to any sequential algorithm [e.g., simulated annealing (SA)
[15] or population annealing (PA) Monte Carlo [60–63]]
where a control parameter is monotonously tuned until a
certain threshold is reached (e.g., the temperature in SA or
the transverse field in QA). While sequential methods might
not necessarily be the best classical optimization algorithm,
they are the classical counterpart to quantum annealing.

Limited nontailored quantum speedup. Speedup obtained
by comparing a quantum annealing algorithm or machine to the
best-known generic classical optimization algorithm that is not
tailored to a particular problem and does not exploit particular
knowledge of the problem to be optimized [e.g., isoenergetic
cluster optimizers (ICM) [52] or the groups method [64]].

Limited tailored quantum speedup. Speedup obtained by
comparing a quantum annealing algorithm or machine to
the best-known tailored classical optimization algorithm that
explicitly exploits the structure of the problem to be optimized
and will perform in a suboptimal fashion (if work at all) on
any other type of optimization problem [examples are hybrid
cluster moves (HCM) [34] or the Hamze–de Freitas–Selby
(HFS) algorithm [65,66]].

Given the sequential nature of transverse-field quantum
annealing, limited sequential quantum speedup is naturally
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the fairest comparison to classical counterparts. However, this
might not be of much use if classical sequential algorithms
are slow compared to other classical optimization methods. A
comparison to tailored algorithms is slightly unfair because the
structure of the problem is being exploited, i.e., the developer
of the algorithm knows a priori how to design the algorithm to
outperform quantum annealing. We do emphasize that it might
be misleading to compare limited tailored quantum speedup to
potential quantum speedup because the classical algorithm is
specifically designed to outperform the quantum counterpart.
However, comparing to nontailored classical algorithms is
similar to potential quantum speedup. The classical approach is
generic and widely applicable and makes no assumptions about
the studied problem. In addition, it should be the currently
fastest optimizer available [67].

Finally, quantum annealing with a transverse field is the
simplest possible quantum-enhanced algorithm. Going beyond
more complex driving Hamiltonians (e.g., nonstoquastic [68],
different initial states [69], the insertion of Hamiltonians
during the annealing [70], or schedule randomization [71]),
one could easily imagine implementing far more complex
quantum algorithms that exploit the current advantages of
classical methods. For example, quantum cluster updates can
be implemented by suitably coupling two systems with the
same target Hamiltonian together, or quantum population
annealing by running multiple quantum chips in parallel and
culling the least-fit copies of the target Hamiltonian. Once
the field of quantum optimization has reached this stage
of development, the aforementioned defined categories will
require adjustments to take into account these advances.

III. WEAK-STRONG CLUSTER MODEL

The weak-strong cluster network is a tailored model
designed to exploit quantum tunneling in quantum optimizers
and, therefore, to demonstrate how finite-range tunneling can
provide a computational advantage over classical heuristics
[47]. The model is composed by highly connected and
ferromagnetically coupled clusters (J = 1) (corresponding to
the unit cells of the chimera graph [37]) that interact with each
other (see Fig. 1). These clusters can be divided in two classes:
“strong” clusters, which form the spin-glass bulk of the model,
and “weak” clusters, which are ferromagnetically coupled to
strong clusters. To complete the model, an external field is
applied to all the spins of the system: a “strong” negative
external field h1 = −1 to those spins belonging to strong
clusters and a “weak” positive external field h2 = −λh1 =
0.44 < 1/2 to those spins belonging to weak clusters. The
ground state of the system is therefore the configuration with
all spins of both weak and strong clusters pointing along the
direction of the strong local field. Individual weak-strong
clusters are coupled by a spin-glass backbone where the
interactions between the clusters can take values {±1}. Note
that the interactions between weak-strong clusters only occur
between sites in the strong cluster. See Fig. 3 of Ref. [47] for
the actual graphs simulated on the DW2X quantum annealer.
The peculiarity of the weak-strong cluster model is that there
exists a bifurcation point during both the classical and quantum
annealing where the system is forced to follow a “wrong” path
leading to a local minimum, namely, the configuration with
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J = −1(b)
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FIG. 1. Sketch of the weak-strong clusters and networks.
(a) Structure of a weak-strong cluster. Two K4,4 cells of the chimera
lattice are connected ferromagnetically (blue lines, J = 1), as well as
all spins within each K4,4 cell. Black dots correspond to qubits in the
strong cluster with a biasing magnetic field h1 = −1. The white dots
represent the weak cluster, where each site is coupled to a weaker
field h2 = −λh1 with λ = 0.44 < 0.5 in the opposite direction. The
white lines represent the connections from the strong cluster to
neighboring strong clusters of a weak-strong pair. (b) Weak-strong
cluster network: each rectangle represents a weak-strong cluster.
The different weak-strong clusters are connected via a spin-glass
backbone where the interactions can take values Jx̄x̄′ = ±1. Here, red
lines represent J = −1. Note that the connections between clusters
only occur between the strong clusters.

spins in weak clusters pointing toward the weak external field.
However, quantum annealers, unlike classical annealers, can
tunnel earlier to the “correct” path and, eventually, reach the
true ground state of the system.

The Hamiltonian describing the weak-strong cluster model
is composed of four main terms: the Hamiltonian describing
the strong (weak) clusters H1 (H2) and the Hamiltonians
describing either the interaction between strong clusters H1,1

or the interaction between strong and weak clusters H1,2 (see
Ref. [47] for details). Each pair of weak-strong cluster can be
seen as a single functional cluster [i.e., a single gray box in
Fig. 1(b)], labeled by a two-dimensional spatial position x̄.
Strong clusters belonging to two different functional clusters
are then linked with random couplings (Jx̄x̄ ′ = ±1) following
a predetermined backbone B. Note that the weak clusters
only couple to the strong cluster within a given weak-strong
cluster. More precisely, for � = {1, 2} the aforementioned
Hamiltonians have the form

Hx̄
� = −J

∑

i,j∈Vx̄

σ z
�,iσ

z
�,j −

∑

i∈Vx̄

h�σ
z
�,i (1)

and

Hx̄,x̄ ′
1,1 = −

∑

j∈Vx̄,x̄′

Jx̄,x̄ ′σ z
1,j σ

z
1,j , (2a)

Hx̄
1,2 = −J

∑

j∈Ṽx̄

σ z
1,j σ

z
2,j , (2b)
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where Vx̄ represents the eight vertices in one K4,4 unit cell
of the chimera graph for the functional cluster in the position
x̄. The set Vx̄,x̄ ′ represents the vertices on the left-hand side
which couple two adjacent strong clusters while the set Ṽx̄

represents the vertices of the right-hand side of the strong and
weak clusters that are linked by a ferromagnetic interaction
J = 1. Putting together Eqs. (1) and (2), the final problem
Hamiltonian for the weak-strong cluster model assumes the
form

H =
∑

x̄∈B

[
Hx̄

1 + Hx̄
2 + Hx̄

1,2

] +
∑

(x̄,x̄ ′)∈B
Hx̄,x̄ ′

1,1 , (3)

with (x̄,x̄ ′) indicating two functional clusters which are
adjacent in the given backbone B. Because of imperfections
in the DW2X device, the embedding of the weak-strong
cluster network in the chimera topology is nontrivial. However,
systems of up to n = 945 qubits have been studied.

The main result of Ref. [47] is to show, either ex-
perimentally (by using the DW2X quantum optimizer) or
numerically (by using quantum Monte Carlo simulations),
that quantum cotunneling effects play a fundamental role
in adiabatic optimization. Note that quantum Monte Carlo
is the closest classical algorithm to quantum annealing on
the DW2X. The results of Ref. [47] on the DW2X chip are
approximately 108 times faster than simulated annealing [15]
and considerably faster than quantum Monte Carlo despite
both the DW2X quantum annealer and quantum Monte Carlo
having a similar scaling (similar slope of the curves in Fig. 4
of Ref. [47] for quantum Monte Carlo and the DW2X).
While this, indeed, represents the first solid evidence that
the DW2X machine might have capabilities that classical
optimization approaches do not possess, it is important to
perform a comprehensive comparison to a wide variety of
state-of-the-art optimization methods. Within the categories
defined in Sec. II, the results of Ref. [47] for the DW2X clearly
outperform any sequential optimization methods, however, fall
short of outperforming tailored and nontailored optimization
methods. We feel, however, that knowingly exploiting the
structure of a problem does not amount to a fair comparison.
However, our results shown below clearly suggest that generic
optimization methods still outperform the DW2X. One might
thus question the importance of the results of Ref. [47].
We emphasize that this is the first study that undoubtedly
shows that the DW2X machine has finite-range tunneling and
gives clear hints towards the class of problems where analog
quantum annealing machines might excel.

In addition to showing here that a variety of either “tailored”
to the weak-strong cluster structure or more “generic” classical
heuristics can achieve similar performances of the DW2X chip,
we also study the energy landscape of the weak-strong cluster
networks. The latter provides valuable insights about the
limitations of finite-range tunneling for this class of problems.
Our analysis suggests that the scaling advantage of finite-range
cotunneling over sequential algorithms could be lost for
instances with problem sizes beyond the ones considered in
Ref. [47].

In the next section, we further discuss the performance
of DW2X compared to tailored and nontailored classical
heuristics in detail.

IV. RESULTS

In this section, we present our main results. In the first part,
we compare the performance of the DW2X device against
general (nontailored) and tailored classical algorithms. The
description of the used algorithms is in the Appendix. In the
second part, we analyze in depth the scaling behavior of the
DW2X device by varying the number of used qubits. The aim
is to better understand the role of nonoptimal annealing times
for a noisy analog device to the asymptotic scaling of the
computational time. Finally, we study the energy landscape,
as proposed in Ref. [30], and show that for increasing
problem size the spin-glass backbone of the weak-strong
cluster network dominates and the advantages of finite-range
tunneling diminish for increasing system sizes.

A. Analysis of the computational scaling

In order to compare heuristics which are fundamentally
different from each other, it is necessary to define a metric
which is not only fair, but that gives a quantitative measure
of the speedup. In this work, and to compare on equal footing
with the results in [47], we follow the time-to-solution metric
introduced in Refs. [29,55]. This metric is defined as the time
to find the ground state with 99% of confidence after a given
number of repeated runs, namely,

Ttts = TannR = Tann
log10(1 − 0.99)

log10[1 − psucc(Tann)]
, (4)

where Tann is the annealing (running) time of the quantum
(classical) heuristic and R is the number of repetitions needed
to reach a confidence s. For the current generation of the
DW2X, the total annealing time Tann cannot be arbitrarily
small. For the experiments described here, Tann was set to
the minimum time allowed in the device (20 μs). In the next
section, we better describe the consequences imposed by this
limitation to correctly extrapolate the asymptotic limit of the
computational time.

In general, we are interested in the asymptotic limit of the
computational time Ttts to understand what would be the true
scaling for large systems. For the weak-strong cluster network,
it is expected that Ttts grows exponentially with the system size
(up to a polynomial correction) as

Ttts ≈ poly(n) 10a+b
√

n = 10a+b
√

n+c log10(
√

n), (5)

with nc/2 the dominant term of the polynomial prefactor
poly(n). Observe that, for the scaling in Eq. (5), we choose

√
n

rather than n. This choice has been made for two main reasons.
On one hand, it is well known that optimization problems on
chimera Hamiltonians have a computational scaling that it is
well approximated by a stretched exponential [23,29]. On the
other hand, the graph underlying the chimera Hamiltonian
is almost planar with a tree width equal to

√
n (as a two-

dimensional lattice) rather than n (as a fully connected graph)
[66]. Hence, it is expected that typical collective excitations
involve a number of qubits of the order of

√
n. Among all

the parameters in Eq. (5), the most important parameter is b

because it represents the dominant term in the limit of large
systems. In order to determine the values of parameters a, b,
and c in Eq. (5), it is possible to either use a linear fit of the
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form

f (x) = a + b
√

n, (6)

i.e., it is assumed that the term c is negligible, or a log-corrected
fit of the form

f (x) = a + b
√

n + c log10(
√

n). (7)

The advantage of a linear fit is that less parameters have to
be determined. However, it is more affected by finite-size
effects. The log-corrected regression, on the contrary, takes
into account eventual finite-size effects but the regression could
display a “nonphysical” scaling behavior for small system
sizes where the fit increased for n → 0 (see, for instance, the
top-left panel of Fig. 7).

In Fig. 2, we report the computational scaling of the various
classical and quantum heuristics considered in this paper
(top panel), as well as the asymptotic parameter b (bottom
panel). The results show that sequential quantum approaches
(DW2X and QMC) clearly outperform classical sequential
algorithms [simulated annealing (SA) and population anneal-
ing(PA)], having a smaller asymptotic scaling exponent b.
Nevertheless, both tailored [hybrid cluster method (HCM),
Hamze–de-Freitas–Selby (HFS) and the super-spin approx-
imation (SS)] and nontailored classical algorithms [isoen-
ergetic cluster moves (ICM) combined with either parallel
tempering (PT+ICM) or replica Monte Carlo (RMC+ICM)]
have a better performance.

We emphasize that these results are specific to the
DW2X quantum annealer and its underlying chimera topology.
Certain nontailored algorithms might not perform as well on
different topologies or other problem classes. For example, the
general classical ICM algorithm in its native implementation
[52] would not be as efficient for highly connected graphs.
Therefore, future quantum annealing machines with denser
connectivities might again outperform the current classical
state of the art, at which point, hopefully, more efficient
classical methods will be developed.

B. Nonoptimal annealing time and “double scaling”

In the previous section, we analyzed the performance of
the various classical and quantum heuristics by looking at the
computational scaling. More precisely, we are interested in the
asymptotic behavior of the time to solution [see Eq. (4)] that
it is expected to be exponential in the limit of large systems:

Ttts ≈ e−b
√

n, (8)

where b is the asymptotic scaling exponent. However, how
large should the system be in order to extrapolate the
asymptotic scaling b? Many factors such as the annealing
schedule [7,73], as well as the intrinsic noise of the system
[73–76], can affect the scaling behavior of the computational
time. To address the above question, we show in this section
that the use of a nonoptimal annealing schedule can lead to
a “double-scaling” effect where the true asymptotic scaling is
hidden by a fictitious (but more favorable) scaling.

It is well known that the computational scaling of a quantum
annealer represents only an upper bound of the true scaling if a
nonoptimal schedule is used [23,33]. For instance, consider the
case of a fixed schedule but with a very large annealing time.
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FIG. 2. Top panel: computational scaling (for 99% success) for
different classical algorithms compared with the experimental results
using the DW2X chip [47]. As one can see, both general classical
algorithms [isoenergetic cluster moves (ICM) either using parallel
tempering (PT) or replica Monte Carlo (RMC)] and tailored classical
algorithms for the weak-strong cluster model [hybrid cluster moves
(HCM), super-spin approximation (SS), Hamze–de-Freitas–Selby
(HFS)] have a comparable scaling with the quantum inspired classical
algorithm [quantum Monte Carlo (QMC)] and the DW2X device
[72]. Moreover, for the classical tailored algorithms, the overall
scaling prefactor is also comparable with the DW2X device. For
HCM, random instances with no broken qubits have been used.
Bottom panel: analysis of the scaling factors by using either linear
regression, or a log-corrected regression for log10 Tann. In the figure,
bars represent the confidence intervals. For the scaling analysis, we
used a stretched exponential that fits better the numerical data (see
Appendix A). Interestingly, the general-purposes classical algorithm
ICM, together with the chimera-optimized classical algorithm (HFS)
and the cluster-optimized algorithms (HCM and SS) have the best
scaling. (QMC and SA data taken from Ref. [47].) All the simulations
(excluding HCM) have been run on the same instances used in [47].

In this case, the computational scaling would be a flat curve
because the probability of success would be one for almost all
system sizes available for examination. Therefore, very large
systems are required to extrapolate to the correct asymptotic
scaling.

The DW2X quantum annealer has a fixed schedule and, as
previously mentioned, a minimum annealing time of 20 μs.
Furthermore, the DW2X chip is affected by an unavoidable
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intrinsic noise [30,34,36,39] that can alter the computational
scaling.

To better understand the scaling behavior of the DW2X for
the weak-strong cluster model, we compare its scaling with
the scaling behavior of a noisy two-energy level model with a
fixed (linear) schedule and a nonoptimal annealing time. More
precisely, we use the following Hamiltonian [7]:

H2LV(t) = −(1 − t/Tann)|ψ〉〈ψ | − t/Tann|ω〉〈ω|, (9)

where Tann is the total annealing time, and |ψ〉 and |ω〉 are
the equal superposition of all the states and the target states
one wants to find, respectively. The system in Eq. (9) can
be reduced to an effective 2 × 2 matrix and, then, it can be
exactly solved [7,73]. To simulate the presence of local noise,
we assume that each spin has a probability q to be oriented
in the wrong direction after the annealing of the system [73].
Therefore, the effective noisy Hamiltonian has a probability
equal to (1 − q)n that its ground state ω′ is effectively the
desired target state ω. Assuming that the level of noise is small
enough compared to the probability of success psucc(n, Tann)
of the perfect annealer (namely, when Tann is much larger than
the optimal annealing time), the probability of success of the
noisy two-energy level Hamiltonian can be written as

p′
succ(n,Tann, q) = (1 − q)npsucc(n, Tann). (10)

Figure 3 shows the comparison between the computational
scaling Ttts for the DW2X chip [47] and the two-energy
level model described above (for the numerical details, see
Appendix G). For the latter, the computational scaling is
expressed in arbitrary units in order to ease the comparison.
As expected, the ideal two-energy level model without noise
(2LV, q = 0) has a plateau for small systems and, only for large
systems, the computational time shows the asymptotic scaling.
When the noise is added to the two-energy level model (2LV,
q = 0.1) a “double-scaling” phenomenon appears: for small
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FIG. 3. Double-scaling effect produced by the combination of a
noisy system and a nonoptimal annealing time. We display data for
the DW2X device (as in [47]) compared to the annealing of a noisy
two-energy level model (2LV) with a nonoptimal (linear) annealing
schedule and a fixed total annealing time (Tann = 500). The numerical
study shows that, for small systems, the scaling is mainly dominated
by the noise while, for large systems, the scaling is mainly dominated
by the asymptotic behavior.

systems, the scaling is dominated by the noise while, for large
systems, the scaling is dominated by the asymptotic scaling.
Interestingly, the same phenomenon can be clearly observed
for the DW2X scaling, indicating that the total annealing time
of 20 μs is nonoptimal for systems up to

√
400 spins.

C. Analysis of the energy landscape

An important ingredient in assessing the value of weak-
strong cluster problems to detect quantum speedup is to study
in detail the dominant characteristics of the energy landscape.
In Refs. [30,77] it was shown that the structure of the overlap
distribution of spin glasses [41,42] mirrors salient features
in the energy landscape. Because there is no spatial order in
spin glasses, “order” is measured by comparing two copies
of the system with the same disorder (i.e., the same set of
interactions between the qubits and the same magnetic fields),
but simulated with independent Markov chains (i.e., each copy
starts from a different random initial condition). The spin
overlap is defined as

q = 1

n

n∑

j=1

σ
z,α
j σ

z,β

j , (11)

where the sum is over all sites n on the network and α

and β represent the two copies of the system. For a given
set of disorder Jx̄x̄ ′ , the overlap distribution P (q) will have
a unique structure at low, but finite, temperatures T � J ,
T > 0. Generally speaking, the number of peaks roughly
mirrors the number of dominant valleys in the (free-) energy
landscape [42]. The distance between peaks, as well as their
width, can be associated with the Hamming distance between
dominant valleys and their width, respectively. As shown in
Ref. [77], the more structure the distribution has, the larger the
typical computational complexity is. Furthermore, as shown
in [78], when the distribution only has one dominant peak,
there is either one dominant valley in the energy landscape
or a set of strongly overlapping valleys separated by thin
but tall barriers. In the latter case, the barriers are so thin
that the features in P (q) overlap strongly, i.e., the distribution
cannot differentiate the different valleys. However, if there are
multiple well-defined features, dominant valleys in the energy
landscape are separated by thick barriers.

Using parallel tempering Monte Carlo at low temperatures
[30], we have computed the overlap distribution for the
different weak-strong cluster networks. Because of the added
fields, there is no spin-reversal symmetry and the distributions
only show peaks for q > 0. We find two characteristic shapes
shown in Fig. 4: either the problems have a single dominant
narrow peak (compared to random spin-glass problems [30])
or multiple well-separated peaks. While the latter have energy
barriers that are too thick for any finite-range quantum
tunneling to be effective, the former potentially have thin
enough barriers to allow for finite-range tunneling in the
DW2X. Therefore, only problems that have single narrow
peaks might benefit from any finite-range tunneling. With
better statistics, it would be instructive to study the scaling
of both problem classes separately with QMC and SA for
systems considerably larger than the DW2X.
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FIG. 4. Three representative overlap distributions P (q) for differ-
ent problem sizes n. The y axes are in arbitrary units and rescaled such
that

∫ 1
0 P (q) = 1. While some instances have either one dominant

narrow valley or valleys with thin barriers that allow for finite-range
tunneling (top), others have multiple structures (middle and bottom),
suggesting that the valleys are separated by barriers that might be
too wide for any finite-range tunneling to be beneficial during the
optimization.

Figure 5 shows the fraction of problems with multiple
peaks against problems with single peaks. The fraction of
multipeak instances (problems with wide barriers in the energy
landscape) grows considerably with the problem size n, i.e.,
for large systems the spin-glass backbone dominates and thus,
asymptotically, finite-range tunneling becomes inefficient on
the DW2X. Loosely extrapolating the data in Fig. 5, we
estimate that this class of problem might show a change
in scaling already for the next D-Wave chip generation of
approximately 2000 qubits.
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FIG. 5. Ratio of single-peak to multipeak overlap distributions
as a function of the number of qubits n. For increasing system size,
multipeak instances with barriers too wide for finite-range tunneling
increase due to the influence of the spin-glass backbone. Note that
already for the largest system size studied, multivalley instances
dominate.

V. CONCLUSIONS

In this work, we study in detail and complement recent
results by Google Inc. [47] on the DW2X quantum annealer.
Their results show for the first time that a quantum annealing
machine can outperform conventional computing technologies
for a particular class of problems. However, to enable a more
detailed comparison, we first expand the notion of “limited
quantum speedup” introduced in [23]. In particular, to perform
a fair assessment of the results of [47], we introduce the
notion of “limited sequential quantum speedup” which refers
to a speedup over the best-known sequential algorithms, as
well as “tailored and nontailored quantum speedup.” The
latter categories encompass numerical approaches that are
not sequential and either exploit the (known) structure of the
optimization problem to be solved or are generic. A strong
yet fair indication for limited quantum speedup would be to
outperform the best-known generic algorithm. In the case of
the DW2X when optimizing the weak-strong cluster networks,
our results show that while the DW2X (as well as quantum
Monte Carlo) has a better scaling compared to sequential
methods, tailored (as well as nontailored) algorithms show
a better asymptotic scaling.

Furthermore, as part of the study, we show that the role of
the noise is not marginal in the extrapolation of the asymptotic
computational scaling for large system sizes. More precisely,
we explain the sudden change of scaling of the computational
time of the DW2X device (and the consequent effect of a
“double scaling”) by comparing the quantum annealer with
a noisy two-energy level model with a nonoptimal annealing
schedule. In both cases, the true asymptotic scaling is hidden
by an initial (and more favorable) scaling that later turns to the
true asymptotic scaling.

Finally, we study the dominant features in the energy
landscape of the weak-strong cluster network problems. Our
results suggest that the spin-glass backbone might dominate
the scaling already for systems with twice as many qubits as
the current-generation DW2X machine. As such, the favorable
speedup currently found both on quantum Monte Carlo
simulations as well as the DW2X device might asymptotically
approach towards the scaling of the other sequential methods.

While one might see the results of [47] post a detailed
analysis presented in this paper as discouraging, we emphasize
that this is a careful study that has shown strong results in favor
of quantum annealing approaches both on analog quantum
annealing machines as well as quantum simulations. Although
there is a clear evidence that random problems (e.g., spin
glasses [23]) might not be well suited for quantum annealing
to excel, tailored problems [30] are of clear importance in
the quest of quantum speedup. Determining the application
domain where quantum annealing machines will surpass
the capabilities of current silicon-based technologies is of
paramount importance across disciplines, and the work by
the Google Inc. team has given the first strong indications in
which directions to search.
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APPENDIX A: ANALYSIS OF THE COMPUTATIONAL
SCALING

In the main text, we define the computational time Ttts for
a given classical or quantum heuristic as the time to find a
solution with 99% probability [29,55] as

Ttts = Tann
log10(1 − s)

log10[1 − psucc(Tann)]
, (A1)

where s = 0.99, Tann is annealing or running time and
psucc(Tann) is the probability of success at a given Tann. For
the weak-strong cluster model, it is expected that Ttts will
scale exponentially with the system size n as

Ttts ≈ poly(n) 10a+b
√

n = 10a+b
√

n+c log10(
√

n), (A2)

with nc/2 is the dominant term of the polynomial prefactor
poly(n). To determine the values of parameters a, b, and c in
Eq. (A1) we either use a linear fit f (x) = a + b

√
n, i.e., it

is assumed that the term c is negligible, or a log-corrected fit
f (x) = a + b

√
n + c log10 (

√
n). In Fig. 2 of the main text,

we report the dominant asymptotic scaling exponent b of Ttts in
Eq. (4) for the classical or quantum heuristics presented in this
paper, while in Fig. 6 we report the values of the parameters
a and c. Figures 7 and 8 show how well either the linear
regression or the log-corrected regression fit the experimental
and numerical data, respectively.

APPENDIX B: HYBRID CLUSTER METHOD (HCM)

The hybrid cluster method (HCM) is a Metropolis sampling
technique where “clusters” are updated instead of single spins.
The outline of HCM is simple: given a set of connected K spin
domains {Di}i=1, ..., K such that their union is the whole system,
clusters are created using the Wolff rule [79] inside a randomly
chosen domain Di . Then, the cluster is flipped by following
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FIG. 6. Values for the remaining fit parameters a and c for either
the log-corrected fit a + b

√
n + c log10(

√
n) or the linear fit a + b

√
n.

In the panels, bars represent the confidence interval.

a Metropolis updated by considering only couplings outside
the selected domain (see [34] for more details). HCM was
initially developed to improve the thermalization of highly
structured systems such as embedded systems because it
preserves the detailed balance [34] condition. Additionally,
HCM can be used as a random heuristics for finding ground
states efficiently.

In the weak-strong cluster model, domains Di are identified
as unit cells of the chimera graph. Because spins inside
unit cells are ferromagnetically coupled, they are likely to
act as a single cluster in the low-temperature regime. The
system is therefore started from an initial high temperature
1/Tini = βini = 0.5 and then cooled to the final temperature
1/Tend = βend = 3. For the simulations, a linear schedule (in
the inverse temperature β) with M steps has been used, where
M is optimized by minimizing Eq. (A1). At each step, a full
update of the system is made.

Table I lists the simulation parameters used to compute the
time to solution in Fig. 2 of the main text.

APPENDIX C: ISOENERGETIC CLUSTER
ALGORITHM (ICM)

The isoenergetic cluster method (ICM) is a rejection-free
cluster algorithm for spin glasses that greatly improves ther-
malization [52]. The main idea of ICM consists in restricting
Houdayer cluster moves [80] to temperatures where cluster
percolation is hampered by the interplay of frustration and
temperature. As such, one is able to extend the Houdayer
cluster algorithm from two-dimensional spin glasses (for
which the Houdayer algorithm was originally designed for)
to any topology and/or space dimension. More precisely, M
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TABLE I. Parameters of the simulation using the hybrid cluster
method (HCM) on the chimera topology. M represents the optimal
number of inverse temperature steps for the thermal annealing.

System size (n) βini βend M

192 0.5 3 5
300 0.5 3 6
520 0.5 3 8
720 0.5 3 11
992 0.5 3 14

copies of the system are run at the same temperature. The
q-space intersection between two random replicas α and β is
then defined as qj = σ

z,α
j σ

z,β

j [52]. Within the overlap space
(q space), the system has two domains: sites with qj = 1
and the sites with qj = −1. In ICM, clusters are defined
as the connected parts of these domains. Once the clusters
are created, a random site with qj = −1 is chosen and the
corresponding cluster flipped. Because the total energy of the
two copies of the system is unchanged by this transformation,
the acceptance of the cluster move is rejection free. One of the
main advantages of ICM is that it allows for a more extensive
exploration of the energy landscape by classically teleporting
across energy barriers. Note that the cluster updates obey
detailed balance and are only ergodic after being combined
with Monte Carlo lattice sweeps. The method is used to
improve the sampling of parallel tempering Monte Carlo (PT)
[81–83] which is the current state-of-the-art simulation method
for spin glasses.

Although the aforementioned approach is designed to
quickly thermalize a frustrated system at finite temperatures,
the method can be adjusted to act as a heuristic to find ground-
state configurations [84,85] (PT+ICM). To do this, the lowest
temperature of the simulation is chosen low enough such that
the different copies of the system at different temperatures
occasionally dip into the ground state. To verify whether the
true ground state has been reached, two criteria are adopted:
first, the same minimum-energy state has to be reached from
four replicas at the minimum temperature Tmin. Second, this
state has to be reached during the first 25% of the sweeps in all
four copies. These conditions are satisfied for the parameters
listed in Table II.

We have also combined ICM with the replica Monte Carlo
algorithm (RMC+ICM) [86]. The RMC algorithm is based
on three basic steps: first, R replicas of the system are run
at different temperatures {T1,T2, . . . ,TR}. Second, a site is
picked at random and the associated cluster (which is defined

TABLE II. Parameters of the simulation using the isoenergetic
cluster method (ICM) on the chimera topology. Tmin (Tmax) is the
lowest (highest) temperature simulated, and NT is the total number
of temperatures used in the parallel tempering and replica Monte
Carlo methods. Isoenergetic cluster moves only occur for the lowest
Nc temperatures simulated.

System size (n) Tmin Tmax NT Nc

180, 296, 489, 681, 945 0.2279 2.5000 21 5

through the overlap of the systems at nearby temperatures) is
created. Third, a Metropolis update is performed to flip the
cluster. Replica Monte Carlo is extremely efficient in two-
dimensional or quasi-two-dimensional spin glasses, reducing
the correlation time enormously compared to single spin flips
[86]. However, in higher space dimensions, its performance is
comparable to parallel tempering Monte Carlo. The parameters
for the simulations are reported in Table II.

APPENDIX D: POPULATION ANNEALING MONTE
CARLO (PA)

Population annealing (PA) Monte Carlo is a sequential
Monte Carlo algorithm to compute equilibrium states of
systems with rugged energy landscapes [60–63,87]. PA is
closely related to simulated annealing in that the system is
prepared at a high temperature and then annealed to a low
target temperature. However, instead of simulating one system,
in population annealing R copies of the system are simulated in
parallel. At each temperature step, the population of replicas
is resampled such that they represent (at any temperature)
a faithful Boltzmann distribution for that given temperature.
Once the replicas have been resampled, replicas are updated
using Metropolis sampling. In Ref. [62] it was shown that
PA can be used as an optimization heuristic that clearly
outperforms simulated annealing.

In the actual simulations, we simulate each problem at
a working population of size R and measure the success
probability p to find the ground states via M-independent
runs. The probability p is then used to calculate the critical
population size Rc for a 99% success probability as Rc =
R log10(0.01)/ log10(1 − p). This can be further transformed
to the amount of work in Monte Carlo lattice sweeps, and
thus a physical time. Here, we use NT temperatures evenly
distributed in β = 1/T ∈ [0, 1], and at each temperature,
NS = 10 Monte Carlo sweeps are applied to each replica.
Table III lists the parameters of the simulation.

APPENDIX E: SUPER-SPIN HEURISTIC (SS)

The weak-strong cluster model introduced in Ref. [47] is a
highly structured problem. In particular, K4,4 unit cells of the
chimera graph are ferromagnetically coupled and biased by
a strong external field. Hence, spins belonging to the same
unit cell are likely to be aligned in the ground state. The

TABLE III. Simulation parameters for population annealing
Monte Carlo (PA): number of spins n, working population size R,
number of temperatures NT , and number of independent runs M . For
all the simulations, temperatures are evenly chosen in the interval
β = [0, 1] and the number of sweeps applied to each replica is fixed
to NS = 10.

System size (n) R NT M

180 102 100 200
296 3 × 102 100 200
489 104 200 200
681 105 300 200
945 3 × 106 300 55
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super-spin (SS) approach takes advantage of the structure
of the weak-strong clusters by identifying a single K4,4 cell
as a “super-spin.” The resulting “logical” model is therefore
a considerably smaller two-dimensional spin-glass problems
with external fields. Each of these logical spins is then coupled
to an external local field. For the example shown in Fig. 1,
the original problem size of n = 224 spins is reduced to a
spin-glass problem of only 224/8 = 28 spins that is trivial to
optimize.

The time to solution of the SS approximation is then
computed by applying the ICM+PT heuristic introduced in
Appendix C. Because the SS approximation does not take into
account the detailed structure of the strong-weak clusters, it
is expected to be the fastest among the different heuristics
used. Indeed, as shown in Fig. 2, results using SS are not
only the fastest, but also represent the algorithm with the best
computational scaling.

APPENDIX F: OTHER ALGORITHMS USED
(QMC, SA, AND HFS)

For details on the quantum Monte Carlo (QMC) and
simulated annealing (SA) results, simulation parameters and

TABLE IV. Parameters used for the numerical integration of the
Schrödinger equation of the two-energy level model in Eq. (9).

System size (n) Schedule Tmax δt

1, 2, . . . , 16 Linear 500 0.01

algorithmic details we refer the reader to Ref. [47]. The
Hamze–de Freitas–Selby (HFS) algorithm [65,66] is explained
in detail in Ref. [88].

APPENDIX G: TWO-ENERGY LEVEL SYSTEM

The calculation of the probability of success psucc(n, Tann)
for the two-energy level model in Eq. (9) has been done by
a numerical integration of the Schrödinger equation using a
a nonoptimal (linear) schedule with a total annealing time of
Tann = 500. For the integration, we have discretized the time
using δt = 0.01 for all the system sizes n = 1, 2, . . . , 16.
The time discretization has been chosen so that there were
no appreciable changes in psucc(n, Tann) by decreasing δt .
Table IV reports the parameters used for the two-energy level
model.
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[34] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas,
and V. Smelyanskiy, Quantum Optimization of Fully Connected
Spin Glasses, Phys. Rev. X 5, 031040 (2015).

[35] W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar,
Quantum annealing correction with minor embedding, Phys.
Rev. A 92, 042310 (2015).

[36] Z. Zhu, A. J. Ochoa, S. Schnabel, F. Hamze, and H. G.
Katzgraber, Best-case performance of quantum annealers on
native spin-glass benchmarks: How chaos can affect success
probabilities, Phys. Rev. A 93, 012317 (2016).

[37] P. Bunyk, E. Hoskinson, M. W. Johnson, E. Tolkacheva,
F. Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting,
and J. Whittaker, Architectural considerations in the design of
a superconducting quantum annealing processor, IEEE Trans.
Appl. Supercond. 24, 1 (2014).

[38] Quantum Error Correction, edited by D. A. Lidar and T. A. Brun
(Cambridge University Press, Cambridge, UK, 2013).

[39] A. Perdomo-Ortiz, B. O’Gorman, J. Fluegemann, R. Biswas, and
V. N. Smelyanskiy, Determination and correction of persistent
biases in quantum annealers, arXiv:1503.05679.

[40] A. Perdomo-Ortiz, J. Fluegemann, R. Biswas, and V. N.
Smelyanskiy, A Performance Estimator for Quantum Annealers:
Gauge selection and Parameter Setting, arXiv:1503.01083.

[41] K. Binder and A. P. Young, Spin glasses: Experimental facts,
theoretical concepts and open questions, Rev. Mod. Phys. 58,
801 (1986).

[42] D. L. Stein and C. M. Newman, Spin Glasses and Complexity,
Primers in Complex Systems (Princeton University Press,
Princeton, NJ, 2013).

[43] S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer,
Optimized simulated annealing for Ising spin glasses, Comput.
Phys. Commun. 192, 265 (2015) (see also ancillary material to
arXiv:1401.1084).

[44] S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer,
Optimized simulated annealing for Ising spin glasses, ancillary
material to Ref. [43].

[45] Note that the “slight” advantage found in Ref. [30] for the
D-Wave 2 quantum annealer over classical simulated annealing
has to be seen in a relative sense. While the D-Wave 2 quantum
annealer failed to solve most problems, it performed better
for problems with thinner energy barriers. Furthermore, if the
criterion for success is relaxed to include the k lowest-energy
states, the performance of the D-Wave 2 improved noticeably in
comparison to classical simulated annealing.

[46] A. Lucas, Ising formulations of many NP problems, Front. Phys.
12, 5 (2014).

[47] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush,
V. Smelyanskiy, J. Martinis, and H. Neven, What is the
Computational Value of Finite Range Tunneling? Phys. Rev.
X 6, 031015 (2016).

[48] M. Suzuki, Quantum Monte Carlo Methods in Condensed
Matter Physics (World Scientific, Singapore, 1993).

[49] A. K. Hartmann and H. Rieger, Optimization Algorithms in
Physics (Wiley-VCH, Berlin, 2001).
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