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Anonymous voting is a voting method of hiding the link between a vote and a voter, the context of which ranges
from governmental elections to decision making in small groups like councils and companies. In this paper, we
propose a quantum anonymous voting protocol assisted by two kinds of entangled quantum states. Particularly,
we provide a mechanism of opening and permuting the ordered votes of all the voters in an anonymous manner;
any party who is interested in the voting results can acquire a permutation copy and then obtains the voting result
through a simple calculation. Unlike all previous quantum works on anonymous voting, our quantum anonymous
protocol possesses the properties of privacy, self-tallying, nonreusability, verifiability, and fairness at the same
time. In addition, we demonstrate that the entanglement of the quantum states used in our protocol makes an
attack from an outside eavesdropper and inside dishonest voters impossible. We also generalize our protocol to
execute the task of anonymous multiparty computation, such as anonymous broadcast and anonymous ranking.
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I. INTRODUCTION

The science of cryptography studies how to prevent valu-
able information from being leaked to unauthorized parties. In
practice, most cryptographic protocols are designed to protect
a message from being eavesdropped on by an adversary when it
is sent from one party to another. However, in some situations,
keeping the identity of the message’s senders private is just
as important as keeping the message secret. One example is
anonymous voting, in which each voter votes for one of the
candidates anonymously. Therefore, no one but the voter can
know for which candidate he or she voted. The context of
voting ranges from governmental elections to decision making
in rather small groups like councils and companies. To be reli-
able and useful in practice, voting protocols should have some
desirable properties (see [1] for more details) like privacy,
nonreusability, verifiability, fairness, and eligibility as follows.

(1) Privacy. Only the individual voter knows how he or she
votes.

(2) Nonreusability. Each voter can vote only once and
cannot change the vote of someone else.

(3) Verifiability. Each voter can verify whether his or her
vote has been counted properly but cannot prove to anyone
else how he or she has voted.

(4) Fairness. Nobody can obtain a partial vote tally before
the end of the protocol.

(5) Eligibility. Only eligible voters can vote.
In recent decades, a number of voting protocols pursuing

the above properties have been proposed. The first voting
protocol to guarantee voting privacy was proposed by Chaum
in 1981 [2]. Since then various voting protocols based on some
cryptographic primitives, such as homomorphic encryption
and blind signature, were proposed. Most of these voting
protocols adopt public-key cryptographic primitives like large-
integer factorization and a discrete logarithm. However, with
the advent of quantum algorithms, those voting protocols
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based on public-key cryptographic primitives are no longer
secure [3,4]. To battle with the power of a quantum computer,
quantum cryptography was born to encrypt information based
upon the principle of quantum mechanics. Surprisingly, some
of these fundamental principles like the no-cloning theorem
and the observer effect could guarantee unconditional security.
Since the first quantum key distribution protocol was proposed
in 1984 by Bennett and Brassard [5], a variety of quantum
cryptographic protocols have been proposed, including those
for key distribution [6], secret sharing [7,8], coin flipping
[9,10], private query [11–14], and so on.

In recent years, researchers have investigated how to use
quantum mechanics to preserve the anonymity of senders and
receivers in communication tasks. The first quantum protocol
to anonymously broadcast classical bits and qubits was
proposed by Christandl and Wehner [15]. Subsequently, much
attention has been paid to carrying out anonymous voting by
using the quantum principle. In 2007, Vaccaro et al. presented
a quantum anonymous voting protocol [16]. Subsequently,
several quantum anonymous voting protocols [17–19] based
on entangled states were put forward. Afterwards, Horoshko
and Kilin [20] devised a quantum anonymous voting protocol
which simply utilized single-particle qubit states to vote and
Bell states to check the anonymity. More recently, a series
of quantum anonymous voting protocols based on continuous
variables have been proposed [21]. However, these protocols
are function limited in two aspects: (1) most of them consider
only two candidates, and (2) most of them are designed to
achieve only the property of privacy, and other properties
are rarely pursued. In particular, the property of self-tallying
proposed in the classical voting protocol by Kiayias and Yung
[22] means anyone who is interested in the voting result
can tally votes by himself or herself. The functionality of
self-tallying avoids introducing a third party, thus reducing the
potential risk of security. As far as we know, no previous
quantum anonymous voting protocols have this property,
which requires at least one third party to tally votes, and most
of them neglect the cheating of a third party, e.g., if the third
party tampers with the voting results.
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Is there a quantum voting protocol which not only over-
comes the above limitations but also satisfies all these favorable
properties? We address this question in this paper. We
propose a quantum anonymous voting protocol for any number
of candidates meeting privacy, nonreusability, verifiability,
fairness, and self-tallying at the same time. With a slight
generalization, we show that our protocol can be used for
any anonymous multiparty computation (AMC) task. This
paper is structured as follows. In Sec. II, we introduce two
kinds of entangled quantum states which will be the key
resources in our protocol. We present our self-tallying quantum
anonymous voting (SQAV) protocol in Sec. III. Then we
analyze the security of our protocol in Sec. IV. In Sec. V,
we generalize our protocol to AMC and briefly discuss two
possible applications. Finally, we discuss the properties of
self-tallying, nonreusability, verifiability, and fairness that our
protocol satisfies in Sec. VI and draw a conclusion in the last
section.

II. QUANTUM RESOURCES OF THE PROTOCOL

The security of our SQAV protocol relies on the fact that
we use two classes of quantum multiparticle entangled states
to distribute the ballot boxes and index numbers to each voter.
In this section we introduce these states and some of their
properties which are quite useful in our protocol.

Consider a system in m levels with the computational
basis {|j 〉C,j = 0,1, . . . ,m − 1}. The Fourier basis {|j ′〉F ,j =
0,1, . . . ,m − 1}, which can be obtained by applying a Fourier
operation on a computational basis, is defined as

|j ′〉F = F |j 〉C = 1√
m

m−1∑
k=0

exp

(
2πijk

m

)
|k〉C. (1)

Now we give the first quantum entangled state in our
protocol, which has been dexterously applied to implement
the tasks of anonymous voting [18] and anonymous ranking
[23].

The m-level, n-particle state |Xn〉 is defined as

|Xn〉 ≡ 1

m
n−1

2

∑
∑n−1

k=0 jkmodm=0

|j0〉C |j1〉C · · · |jn−1〉C, (2)

where |jk〉 is the state of the j th particle in the computational
state and jk ∈ Zm := {0,1, . . . ,m − 1}.

|Xn〉 has the interesting property that it has the form of a
Greenberger-Horne-Zeilinger state in the Fourier basis,

|Xn〉 = 1√
m

m−1∑
j=0

|j ′〉F |j ′〉F · · · |j ′〉F . (3)

Therefore |Xn〉 has two nice properties. (1) When the state is
measured in the computational basis, the summation of the
outcomes of all particles modulo m is equal to zero. (2) When
the state is measured in the Fourier basis, the outcomes of
all particles are always the same. To take advantage of the
above two properties to protect the voting process from being
eavesdropped on or attacked, we need to use the following
result [23].

Theorem 1. An n-particle, m-level quantum state is in the
form of |Xn〉 if and only if both of the following conditions are

true: (1) when each particle is measured in the computational
basis, the sum over all n measurement outcomes modulo m is
equal to zero; (2) when each particle is measured in the Fourier
basis, the measurement outcomes are all the same.

The other quantum entangled states we will use in the voting
protocol are defined as follows.

An n-level, n-particle singlet state |Sn〉 is defined as

|Sn〉 ≡ 1√
n!

∑
S∈Pn

n

(−1)τ (S)|s0〉|s1〉 · · · |sn−1〉. (4)

Here Pn
n is the set of all permutations of Zn := {0,1, . . . ,n −

1}, and S is a permutation (or sequence) in the form S =
s0s1 · · · sn−1. τ (S), called the inverse number, is defined as
the number of transpositions of pairs of elements of S that
must be composed to place the elements in canonical order,
012 · · · n − 1.

|Sn〉 is n-lateral rotationally invariant, which means the
measurements of all particles are all different in any basis [24].
In Appendix A, we give a proof of this property. Specifically,

|Sn〉C = eiφ|Sn〉F , (5)

where φ is a phase factor. This property will be exploited to
ensure the security of our voting protocol based on Theorem 2.

Theorem 2. An n-particle, n-level quantum state is in the
form of |Sn〉 if and only if the following condition is satisfied:
whenever the state is measured in the computational basis
or the Fourier basis, the permutation of the outcomes of n

particles {s0,s1, . . . ,sn−1} is a random element of the set Pn
n .

We give a proof of Theorem 2 in Appendix B.

III. QUANTUM ANONYMOUS VOTING PROTOCOL

We first briefly outline our quantum anonymous voting
protocol before delving into details. Assume there are n voters
labeled V0,V1, . . . ,Vn−1. Each voter can vote for m candidates
labeled by integer 0,1, . . . ,m − 1. Our protocol consists of
three steps. First, a number of n-particle entangled states |Xn〉
are distributed to n voters, with each voter holding one particle
for each state. After a security test to check for eavesdropping,
each voter obtains n random numbers, called ballot numbers,
from n secret “ballot boxes” by measuring the remaining n

states |Xn〉. Second, a number of n-particle entangled states
|Sn〉 are distributed to n voters, and each voter also holds one
particle for each state. After a security test, each voter gets a
random number, called the index number, through measuring
the remaining one state |Sn〉, which determines which ballot
box each voter will use for voting. Finally, each voter casts
a vote to his or her indicated ballot box anonymously, and
all voters open all ballot boxes at the same time. By this
method, a random permutation of all votes appears, and any
party who is interested in the voting result can obtain a copy of
the permutation, thus learning the voting result. The details of
our protocol are presented as follows, and the communications
in our protocol are shown in Fig. 1. It is noted that all classical
communication in the protocol takes place using pairwise
authenticated channels.

022333-2



SELF-TALLYING QUANTUM ANONYMOUS VOTING PHYSICAL REVIEW A 94, 022333 (2016)

FIG. 1. Communications in our protocol. For simplicity, com-
munications in the eavesdropping checks are not considered. The
dashed lines represent quantum channels, and the solid lines represent
classical simultaneous broadcast channels.

A. Procedure of the protocol

Step 1. Distributing secret ballot boxes

(1.1) Prepare quantum states. One of n voters is chosen
randomly to prepare n + nδ0 copies of quantum state |Xn〉,
where δ0 is the security strength. Without loss of the generality,
we assume V0 is appointed as the distributor. The j th
copy of state |Xn〉 lives in the Hilbert space of n particles,
pj,0,pj,1, . . . ,pj,n−1. Therefore we have a particle matrix pj,k

with 0 � j � n + nδ0 − 1,0 � k � n − 1.
(1.2) Distribute to each voter. The distributor V0

sends each column of the particle matrix, Sk =
{p0,k,p1,k, . . . ,pn+nδ0−1,k}, to each voter Vk (V0 keeps S0).

(1.3) Perform security test. After each voter has received his
or her particle sequence, each voter as the checker performs
the security check processes to ensure the state distributed is
intact. Starting from voter V0 (the order does not matter), he
or she randomly picks out δ0 particles as the test particles,

�p0
test = pi0,0pi1,0 . . . piδ0−1,0. (6)

V0 also needs to choose randomly from the computational
basis or Fourier basis with uniform distribution for each test
state, in which he or she will measure his or her test particles
with the chosen basis. Then he or she publishes the row index
of his or her test particles and the measurement basis he or she
chose to do the measurement. After receiving this information,
all other voters are required to measure their particles with the
same row index,

�pk
test = pi0,kpi1,k . . . piδ0−1,k, k = 1,2, . . . ,n − 1, (7)

in the basis picked by the checker V0. In other words, the
i0th,i1th, . . . ,iδ0−1th copies of |Xn〉 are samples and measured
in either the computational basis or Fourier basis. Then all
voters send their measurement outcomes to the checker V0 in
the order designed by V0. Let’s label the result of measuring
each test particle as rij ,k . If V0 chooses the computational

basis, he or she then needs to check if
∑n−1

j=0 rij ,kmod m = 0.
If V0 chooses the Fourier basis, he or she needs to verify
whether rij ,0,rij ,1, . . . ,rij ,n−1 are all same. If the test is failed,
V0 informs the other voters to abort the protocol. If the
test is passed, the same test procedure is performed by the

next checker. The same procedure is repeated until the test
performed by each voter is passed or the protocol is aborted in
some intermediate step.

(1.4) Generate ballot numbers. If the security test is
successful, each voter now has n particles left after discarding
all test particles. Each voter then measures his or her remaining
n particles in the computational basis. This will generate n

ballot numbers for each voter. Ballot numbers of all voters
form a ballot matrix, rj,k ∈ {0,1, . . . ,m − 1}. The kth column
contains n private ballot numbers for Vk . Since the security is
passed, each remaining copy of |Xn〉 is intact, and according
to Theorem 1, ballot numbers must satisfy the condition

n−1∑
k=0

rj,kmod m = 0 (8)

for j = 0,1, . . . ,n − 1.

Step 2. Distributing secret indexes

(2.1) Prepare quantum states. Similar to step (1.1), one of
the n voters is chosen randomly to prepare 1 + nδ1 copies of
quantum state |Sn〉, where δ1 is the security strength. The j th
copy of state |Sn〉 lives in the Hilbert space of n particles,
tj,0,tj,1, . . . ,tj,n−1. Therefore we have a particle matrix tj,k
with 0 � j � nδ1,0 � k � n − 1.

(2.2) Distribute to each voter. The distributor sends each
column of the particle matrix, Tk = {t0,k,t1,k, . . . ,tnδ1,k}, to the
voter Vk .

(2.3) Perform security test. After each voter has received
his or her particle sequence, each voter performs the security
check processes to ensure the state distributed is intact. Starting
from voter V0 (the order does not matter), he or she randomly
picks out δ1 particles as the test particles,

�t0
test = ti0,0,ti1,0, . . . ,tiδ1−1,0. (9)

V0 also needs to choose randomly from the computational
basis or Fourier basis with uniform distribution for each test
particle, in which he or she will measure his or her test particle
with the chosen basis. Then he or she publishes the row index
of his or her test particles and the corresponding measurement
basis he or she chose to do the measurement. After receiving
this information, all other voters are required to measure their
particles with the same row index,

�t ktest = ti0,k,ti1,k, . . . ,tiδ1−1,k (10)

for k = 0,1,2, . . . ,n − 1 in the basis picked by the checker V0

and send their measurement outcomes to the checker V0 in the
order appointed by V0. That is, the i0th,i1th, . . . ,iδ1−1th copies
of |Sn〉 are measured in either the computational basis or the
Fourier basis. Label the result of measuring each test particle
as dij ,k . Regardless of whether V0 chooses the computational
basis or the Fourier basis, he or she then needs to check if
{dij ,0,dij ,1, . . . ,dij ,n−1} ∈ Pn

n according to Theorem 2. If the
test is successful, the same test procedure is performed by
the next checker. If the test fails, V0 informs the other voters
to abort the protocol. The same procedure is repeated until
the test performed by each voter is passed or the protocol is
aborted in some certain intermediate step.

(2.4) Generate index numbers. If the security test is
successful and then discards all test particles, each voter
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now has only one particle left. Each voter then measures
his or her particle in the computational basis. This will
generate an index number for each voter. Index numbers of all
voters form an index array, dk ∈ {0,1, . . . ,m − 1}. dk indicates
anonymously that the dkth ballot box is the box Vk should use
to cast the vote. Since the security has been tested, the only
remaining copy of |Sn〉 is intact according to Theorem 2. Here
d0,d1, . . . ,dn−1 ∈ Pn

n .

Step 3. Vote casting

(3.1) Vote casting. After steps 1 and 2, each voter Vk has n

ballot numbers r0,k,r1,k, . . . ,rn−1,k and one index number dk .
Now voter Vk votes for the candidate vk ∈ {0,1, . . . ,m − 1}
by adding vk to rdk,k . He or she then renews ballot numbers
r ′
jk = (r ′

0,k,r
′
1,k, . . . ,r

′
n−1,k), in which

r ′
j,k =

{
rj,k + vkmod m if j = dk,

rj,k if j �= dk.
(11)

All voters publish all the updated ballot numbers through
simultaneous broadcast channels [25–27]. At last we have a
vote matrix r ′

j,k which is available for every party at the same
time.

Here we briefly discuss how does simultaneous broadcast
work and be implemented in our protocol. A regular broadcast
channel is an authentic broadcast channel in which the sender is
confident that the receivers receive the same value sent from the
sender and the receivers know the identity of the sender. In con-
trast, a simultaneous broadcast channel allows the participants
to simultaneously announce their values independently in the
way that no participant can announce his/her value based on the
values broadcast by other participants. Our protocol utilizes the
simultaneous broadcast channel to announce the updated ballot
numbers r ′

jk in step (3.2) to avoid the possibility that the voter
who lastly announces the values can change his/her values
to his/her benefit. However, it is required that the number of
honest voters to be at least half of the number of all voters
in the simultaneous broadcast scheme [26]. Here we give an
alternative simultaneous broadcast scheme by using the regular
broadcast channel, which is more suitable for our protocol
and, more importantly, does not limit the number of honest
voters. This scheme is consisted of two steps: (1) each voter
Vj announces his/her updated ballot numbers r ′

jk in an order
only known to himself/herself; (2) after announcement each
voter announces the right order of updated ballot numbers. If
the voter who is the last one to announce the order of his/her
updated ballot number does not announce a right order for
cheating, the other voters can not pass the security check in
step (3.3) and the protocol will be aborted.

(3.2) Self-tallying. With the vote matrix, each party who
is interested in the voting result can count the votes for each
candidate. They take the summation of each row,

Rj =
n−1∑
k=0

r ′
j,kmod m (12)

=
n−1∑
k=0

rj,k + vk0 mod m. (13)

TABLE I. A simple example of SQAV with n = 4 and m = 3.
Each voter adds his or her votes to the ballot assigned by his or
her index number. The tallying results are calculated according to
Eq. (12).

V0 V1 V2 V3 Rj

r ′
0,k 0 1+2 2 0 2

r ′
1,k 2+1 2 1 1 1

r ′
2,k 1 0 2 0+0 0

r ′
3,k 0 1 1+1 1 1

Here dk0 = j . Therefore {R0,R1, . . . ,Rn−1} is a permutation
of the votes {v0,v1, . . . ,vn−1}. The number of votes candidate
Vi got is given by

Ni =
∑
Rj =i

1 (14)

for i = 0,1, . . . ,m − 1.

(3.3) Security check. Each voter Vk needs to verify that
Rdk

= vk . If the answer is yes, his or her vote has been counted
correctly; otherwise, the protocol is aborted since the voting
step has been compromised.

B. Example

To illustrate the protocol, we give a simple example
(see Table I) with n = 4 voters and m = 3 candidates. For
simplicity, we assume no eavesdropping or attack happened.
Thus we ignore the security tests [steps (1.3), (2.3), and (3.3)].
After executing step 1, suppose the ballot matrix held by four
voters is

rj,k =

⎛⎜⎝0 1 2 0
2 2 1 1
1 0 2 0
0 1 1 1

⎞⎟⎠. (15)

After step 2, assume the index numbers are

(d0,d1,d2,d3) = (1,0,3,2). (16)

Then in step 3, assume the four voters V0,V1,V2, and V3 cast
votes

(v0,v1,v2,v3) = (1,2,1,0). (17)

The voting and self-tallying processes are described in Table I.
The final published results are

(R0,R1,R2,R3) = (2,1,0,1), (18)

which is indeed a permutation of the votes vk as we expected.

IV. PRIVACY ANALYSIS

Privacy is the primary property of a SQAV protocol. In
this section, we focus on discussing the privacy of our SQAV,
and other properties will be given in Sec. VI. Generally, the
top priority is to protect the privacy of each voter. That is, no
outsider or voter should know which vote is cast by whom
except the one he or she cast. In our SQAV, the attacker
could be an outside eavesdropper, one dishonest voter [28,29],
or an adversary which includes some dishonest voters. If an
attacker successfully eavesdrops on the ballot random numbers
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or the index number of voter Vk without being detected, he or
she can easily know which candidate Vk votes for. Therefore
preserving privacy in our SQAV requires preventing ballot
numbers and index numbers from being eavesdropped on. The
security tests in steps (1.3) and (2.3) are designed to protect
the ballot matrix, the index array, and the voting process from
being compromised.

A. Outside eavesdropper

As an outside eavesdropper, Eve could intercept Sk or Tk

during step (1.2) or (2.2). Let’s consider the case that Eve
intercepts arbitrary x particles in Sk . If x < n, then there is a
chance that all x particles happen to be among the n particles
which are not included in the tests. Actually, the probability of
this happening is

Pe =
(

n

x

)/(
n + nδ0

x

)
= n!

(n − x)!

(n + nδ0 − x)!

(n + nδ0)!

=
n−x+1∏

k=n

k

k + nδ0
(19)

∼ O

((
1

δ0

)x)
, (20)

which approaches zero if we make the security strength δ0 large
enough. Actually, the more particles Eve intercepts, the faster
the probability that she could pass the security check goes to
zero. Similarly, we could argue that the probability of Eve
intercepting and modifying Tk in step 2 without being found
is negligible. Therefore, for large enough δ0,δ1, the disturbed
particles cannot escape from the security tests in steps (1.3)
and (2.3).

Let’s consider another scenario. Assume Eve intercepts and
modifies pj0,k in Sk , thus changing the j0th copy of |Xn〉.
Suppose that the new state due to Eve’s disturbance is |φe〉.
The probability that all security tests in step (2.3) are passed is

Pe = (
1
2PC + 1

2PF

)nδ0
, (21)

where

PC =
∑

∑
k jkmodm=0

|〈φe|j0,j1, . . . ,jn−1〉C |2, (22)

PF =
m−1∑
j=0

|〈φe|j,j, . . . ,j 〉F |2. (23)

Since 〈φe|Xn〉 �= 1 according to Theorem 1, PC + PF < 1.
Therefore, for large enough δ0,

Pe → 0. (24)

The argument for Eve modifying the index number is similar.
Eve cannot pass the security tests if δ1 is large enough based
on Theorem 2. In summary, as long as the security strengths
δ0,δ1 are large enough, the attack from an outside eavesdropper
can be prevented. It should be noted that the security analysis
applies to the case where δ0 and δ1 are infinite, and a more
careful analysis, for the practical finite case, that can bound

the probabilities of passing security tests for different types of
cheating when δ0 and δ1 increase, deserves to be performed in
our future work.

B. Dishonest voters and ballot numbers

In step 1, to gain the information of ballot numbers of
honest voters, the dishonest voters could cooperate to attack
the particles during their transmission in step (1.2) and could
announce the wrong results to avoid being detected by the
honest voters in step (1.3). Since V0 is the only voter who
prepares and distributes the quantum states, it seems that V0

plays a different role from the other voters. To analyze the
possible attacks from dishonest voters in more detail, two cases
are considered: (1) V0 is honest, and (2) V0 is dishonest.

For case 1, without loss of generality, we suppose there are
l dishonest voters, Vi0 ,Vi1 , . . . ,Vil−1 . The most general attack
by the dishonest voters is that they intercept some particles
during the transmission from V0 to honest voters, and then
they perform a unitary operation (attack operation) on the
intercepted particles and an auxiliary system to yield a new
state, denoted by |�〉, of the composite system. To avoid being
detected by the honest voters in step (1.3) when they measure
their particles with the Fourier basis and the measurement
outcomes are required to be the same, |�〉 should be in the form

|�〉 =
∑m−1

j=0 |j ′〉0|j ′〉j0 · · · |j ′〉jn−l−2 |φj 〉√
m

, (25)

where |φj 〉 are the unnormalized states of the composite
system (denoted by E0) of l particles sent from V0 to the
dishonest voters and the auxiliary system and the subscripts
0,j0,j1, . . . ,jn−l−2 represent the particles held by honest
voters V0,Vj0 ,Vj1 , . . . ,Vjn−l−2 . It can be rewritten in the
computational basis as

|�〉 =
m−1∑

k0,kj0 ,...,kjn−l−2 =0

|k0〉
∣∣kj0

〉 · · · ∣∣kjn−l−2

〉
m

n−l+1
2

⊗ ∣∣ϕk0kj0 ···kjn−l−2

〉
, (26)

where |ϕk0kj0 ···kjn−l−2
〉 = ∑m−1

j=0 exp (
2πij (k0+kj0 +···+kjn−l−2 )

m
)|φj 〉

is the unnormalized state vector of system E0. The
dishonest voters could measure the system E0 and obtain
some |ϕk0kj0 ···kjn−l−2

〉 to infer the measurement outcomes
k0kj0 · · · kjn−l−2 of honest voters in step (1.4). From the
form of |ϕk0kj0 ···kjn−l−2

〉, it is easy to see that, for any two
different outcomes k0kj0 · · · kjn−l−2 and k′

0k
′
j0

· · · k′
jn−l−2

such
that k0 + kj0 + · · · + kjn−l−2 = k′

0 + k′
j0

+ · · · + k′
jn−l−2

mod m,
|ϕk0kj0 ···kjn−l−2

〉 = |ϕk′
0k

′
j0

···k′
jn−l−2

〉. This means that the dishonest
voters can only, at most, know the information about the
sum k0kj0 · · · kjn−l−2 mod m by measuring the system E0.
However, this attack is trivial in the sense that without any
eavesdropping attack a dishonest voter can cooperate to
directly infer the sum of measurement outcomes (ballot
numbers) of honest voters after executing step (1.4).

For case 2, in which V0 is dishonest, we assume there are
l other dishonest voters Vi0 ,Vi1 , . . . ,Vil−1 . The most general
attack for them is similar to case 1. The only difference could
be that the dishonest voters can directly prepare and distribute
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fake states to the honest voters instead of intercepting the
particles. To avoid being detected by honest voters, these states
should be in a form similar to Eq. (25) or (26). From the above
analysis for case 1, it is not hard to draw the same conclusion
as in case 1 that, in order to avoid being detected, the dishonest
voters can only perform a trivial attack to obtain the sum of
ballot numbers of the honest voters.

C. Dishonest voters and index numbers

In step 2, to eavesdrop on the information of index numbers
of honest voters, the dishonest voters could also attack the
particles during their transmission in step (2.2) and announce
the wrong results to avoid being detected by the honest voters
in step (2.3). Just as we analyzed eavesdropping on the ballot
numbers in the last section, we also consider two cases: (1) V0

is honest, and (2) V0 is dishonest.
For case 1, we also assume there are l dishonest voters,

Vi0 ,Vi1 , . . . ,Vil−1 . The most general attack for them is that they
first intercept some transmitted particles in step (2.2), entangle
them with an auxiliary system prepared in advance, and then
return the corrupted particles to honest voters. The state of the
whole composite system is denoted by |�〉. To elude detection
in step (2.3), it is required that all the measurement outcomes
should be distinct when measuring each particle held by honest
voters in the Fourier basis, and thus |�〉 should be of the form

|�〉 =
∑

S∈Pn−l
n

(−1)τ (S)F⊗(n−l)|S〉√∣∣Pn−l
n

∣∣ ⊗ |uS〉, (27)

where S = s0sj0 · · · sjn−l−2 . |uS〉 are the unnormalized states
of composite system (denoted by E1) of l particles sent
to the dishonest voters and auxiliary system. Pn−l

n =
{x0x1 · · · xn−l−1|x0,x1, . . . ,xn−l−1 ∈ Zn,∀ j �= k,xj �= xk} is
the set of all the (n − l) permutations of Zn, and |Pn−l

n | = n!
l! is

its size. Pn−l
n can be divided into

(
n

n−l

) = n!
(n−l)!l! subsets, each

of which corresponds to the set of all (n − l)! permutations
of a (n − l) combination of Zn. In addition, any two states
|uS0〉 and |uS1〉 such that S0 ∈ Pn−l,w0

n ,S1 ∈ Pn−l,w1
n , and w0 �=

w1 should be orthogonal to each other, i.e., 〈uS0 |uS1〉 = 0.
If not, the dishonest voters cannot deterministically know
subset Pn−l,w

n , which contains the honest voters’ measurement
outcomes, and thus they cannot announce the correct measure-
ment outcomes to avoid being detected. Rewriting |�〉 in the
computational basis, we have

|�〉 = n− n−l
2√∣∣Pn−l

n

∣∣
∑

T ∈Rn−l
n

|T 〉 ⊗ |vT 〉, (28)

where T = t0tj0 · · · tjn−l−2 . Rn−l
n = {x0x1 · · · xn−l−1|

x0,x1, . . . ,xn−l−1 ∈ Zn}, and

|vT 〉 =
∑

S∈Pn−l
n

(−1)τ (S) exp

(
2πi

(
s0t0 + ∑n−l−2

k=0 sjk
tjk

)
n

)
|uS〉

=
∑
w

∑
S∈Pn−l,w

n

(−1)τ (S)

× exp

(
2πi

(
s0t0 + ∑n−l−2

k=0 sjk
tjk

)
n

)
|uS〉.

{|vT 〉} are the unnormalized state vectors of system E1. To
avoid being detected by the honest voters who measure their
particles in the computational basis in step (2.3) in which
the measurement outcomes are required to be distinct, two
conditions should be satisfied: (a) in Eq. (28) there are
no terms |vT 〉 for T /∈ Pn−l

n , or, equivalently, T ∈ Qn−l
n =

{x0x1 · · · xn−l−1|x0,x1, . . . ,xn−l−1 ∈ Zn,∃j �= k,xj = xk}; (b)
any two states |vT0〉 and |vT1〉 for T0 ∈ Pn−l,w0

n ,T1 ∈
Pn−l,w1

n , and w0 �= w1 should be orthogonal to each
other, i.e., 〈vT0 |vT1〉 = 0. Here we focus on analyzing
what |�〉 [in Eq. (28)] should be to satisfy condition
(a). Since 〈uS0 |uS1〉 = 0 for S0 ∈ Pn−l,w0

n ,S1 ∈ Pn−l,w1
n , and

w0 �= w1, condition (a) is equivalent to the one where∑
S∈Pn−l,w

n
(−1)τ (S) exp(

2πi(s0t0+
∑n−l−2

k=0 sjk
tjk )

n
)|uS〉 = 0 for arbi-

trary w and arbitrary T ∈ Qn−l
n . To satisfy this condition, for

arbitrary w, all |uS〉 such that S ∈ Pn−l,w
n should be equal

(denoted by |uw〉), which is implied by the Corollary 1 in
Appendix B. Thus |vT 〉 can be rewritten as

|vT 〉 =
∑
w

∑
S∈Pn−l,w

n

(−1)τ (S)

× exp

(
2πi

(
s0t0 + ∑n−l−2

k=0 sjk
tjk

)
n

)
|uw〉. (29)

Once the dishonest voters successfully elude the
eavesdropping-check process in step (2.3), they could
measure the system E1 and get some |vT 〉 to infer the index
numbers T = t0tj0 , . . . ,tjn−l−2 of honest voters in step (2.4).
However, from the form of |vT 〉 in Eq. (29), it is easy to
verify that for any two sequences T0,T1 which are in the same
subset Pn−l,w

n , |vT0〉 = |vT1〉. Therefore the dishonest voters
can, at most, know the information about which subset (i.e.,
w) the honest voters’ index numbers are in. However, this
general entangle-measure attack is trivial in the sense that
the dishonest voters can cooperate to obtain this information
without any attack.

For case 2, in which V0 is dishonest, the general attack
performed by the dishonest voters would be the same as in
case 1 except that the dishonest voters would prepare and
distribute the fake states in a form similar to Eq. (27) to the
honest voters instead of intercepting the particles in step (2.2).
According to the analysis in case 1, we can conclude that the
dishonest voters cannot obtain the index numbers of honest
voters without being detected.

V. GENERALIZATION TO ANONYMOUS
MULTIPARTY COMPUTATION

One important feature of SQAV is to make each vote
open without any relation to any voter. Actually, it provides
a mechanism to implement a class of multiparty tasks.
That is, as used for voting, our protocol can be used for
multiparty tasks which require broadcasting the data of each
party anonymously. Therefore we define a more general class
of problem, anonymous multiparty computation (AMC), as
follows.

Definition 1. Anonymous multiparty computation is a
task to compute a function of the form f (y0

0 , . . . ,y
i0−1
0 ,

y0
1 , . . . ,y

i1−1
1 ,y0

n−1, . . . ,y
in−1−1
n−1 ) by n parties. The function f
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is invariant under the permutation of integer inputs {yi
k}. Each

party Pk feeds y0
k , . . . ,y

ik−1
k in the function anonymously and

obtains the result without assistance from any other person.
All the inputs are bounded by 0 � yk < m.

The protocol for AMC is very similar to that for SQAV.
(1) P0 prepares n̄ + nδ2 copies of m-level, n-particle state

|Xn〉, where n̄ = ∑n−1
k=0 ik . Then P0 keeps the column S0 to

himself or herself and then distributes Sk to Pk . Here the
particle columns Sk are defined as in step (1.2) of our previous
quantum anonymous voting protocol. After distribution, each
party Pk executes the security test procedure in step (1.3). If
all n tests are passed, each party Pk measures his or her n̄

particles, so again there is a ballot column

rj,k =

⎛⎜⎜⎝
r0,k

r1,k

...
rn̄−1,k

⎞⎟⎟⎠. (30)

(2) P0 prepares 1 + nδ3 copies of |Sn̄〉 and distributes
particle columns T∑k−1

t=0 it
, . . . ,T∑k

t=0 it−1 to Pk (k � 1), while
keeping the particle columns T0, . . . ,Ti0−1. Here the particle
columns Tk are defined as in step (2.2) of our previous quantum
anonymous voting protocol. In order to protect the process
from attack, each party is required to choose δ3 copies of |Sn̄〉
to examine if |Sn̄〉 is intact. If all tests are passed, each party Pk

measures the remaining particles with the computation basis,
and then there are index arrays d∑k−1

t=0 it ,k
, . . . ,d∑k

t=0 it−1,k , where
di,k ∈ {0,1, . . . ,n̄ − 1}.

(3) Finally, each party adds his or her data to the ballot
number decided by the corresponding index number, and we
have a data matrix r ′

j,k . Finally, every party can calculate

Rj =
n∑

k=0

r ′
j,k mod m, (31)

where {Rj } is a permutation of all the data
⋃

yi
j . Therefore all

the data are broadcasted anonymously.
(4) With holding all data, each party can obtain the result

of

f
(
y0

0 , . . . ,y
i0−1
0 ,y0

1 , . . . ,y
i1−1
1 ,y0

n−1, . . . ,y
in−1−1
n−1

)
through simple calculation by himself or herself.

Actually, AMC is a subclass of a secure multiparty
computation (SMC) problem, in which a number of parties also
jointly compute a function over their inputs while the inputs
are kept private. SMC focuses on the function result without
publication of all inputs. To illustrate it, we give a simple
example in which three parties want to jointly compute the
function f (y0,y1,y2) = y0 + y1 + y2 over their inputs y0,y1,
and y2. Suppose y0 = 2,y1 = 3,y2 = 6; by SMC, the parties
have the result f (y0,y1,y2) = 11. However, each party can
only know the sum of the inputs of the other two parties. By
AMC, in addition, to obtain the result f (y0,y1,y2) = 11, every
party also gets a permutation of the original inputs of the others.
For example, each party knows (3,6,2), but the index of each
party’s input is known only to himself or herself. As a result,
P0 knows (y1,y2) = (3,6) or (6,3),P1 knows (y0,y2) = (2,6)
or (6,3), and P2 knows (y0,y1) = (2,3) or (3,2). In fact, for

some particular tasks, the function result leads to opening
all inputs. In this sense, there is no difference between
AMC and SMC. In the following, we give two examples to
explain this.

A. Anonymous broadcast

The simplest application of AMC is to implement anony-
mous broadcast (AB). AB channels are primitives of many
anonymous communication protocols.

An anonymous n-party broadcast task [15] is to publish the
datum yk ∈ {0,1, . . . ,m − 2} held by sender Pk anonymously,
and all parties obtain yk at the same time. In this scenario,
the protocol is basically the same as SQAV with m candidates
and n voters. If a sender would like to broadcast message y,
he or she just needs to “vote” for “candidate” y following the
protocol in Sec. III. However, if a party does not want to send
any message, he or she just needs to vote for candidate m − 1.
Finally, each Rk ∈ {0,1, . . . ,m − 2} will be the message sent
by one of the senders. Therefore each sender broadcasts the
intended message anonymously.

B. Anonymous ranking

Anonymous ranking (AR) [23] is an important problem
in AMC and has significant practical applications [23].
An AR task generally involves two steps. (1) Each party
needs to broadcast his or her data yk = {y0

k ,y
1
k , . . . ,y

ik−1
k } to

the community anonymously. (2) Each party can rank the
published data by himself or herself and obtain the rank of
his or her data anonymously. Obviously, the first step could
be done safely using our AMC protocol. Finally, similar to
self-tallying in SQAV, self-ranking is obtained.

VI. DISCUSSION

We discuss in detail how our SQAV ensures privacy in
Sec. IV. However, in addition to being able to maintain privacy
for each voter, our protocol has several other nice properties
which are not fulfilled by other existing protocols [16–21] at
the same time.

(1) Self-tallying. In our protocol, any voter or other third
party who is interested in voting results can tally the votes by
himself or herself by counting the votes in {Rj } in step (3.2).
Through simple calculation, they can obtain the voting result.

(2) Nonreusability. In our voting protocol, no voter cannot
cast more than one vote. More specifically, a voter cannot vote
for one candidate more than once or vote for more than one
candidate. Suppose voter Vk wants to vote twice, vk and ve, in
step (3.1). To do so, he or she first casts vk to the ballot box
determined by his or her index number, dk , as usual. Then he or
she casts ve to another ballot box labeled by de. However, since
the index array {dk} is a permutation ofZn,de must be the index
number of another voter Vj . Therefore Vj will find that Rdj

=
vj + ve �= vj mod m and knows that someone cheated, thus
aborting the voting protocol. Our protocol ensures that each
voter only has one vote, and he or she can only use
it once.

(3) Verifiability. In step (3.3) of our protocol, each voter
can verify if his or her vote has been modified by attackers. As
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long as Vk finds Rdk
�= vk , he or she knows that his or her vote

has not been counted correctly.
(4) Fairness. If a voter could know some useful information

about other votes beforehand, he or she might change his or her
mind, thus voting for another candidate to his or her benefit. In
our protocol, the voters vote only in step 3, and the vote tally
is obtained by doing statistics on Rk , which is the sum over the
numbers r ′

j,k . However, the numbers r ′
j,k are announced via

simultaneous broad channels in step (3.1), which means that a
voter cannot acquire the other voters’ information on r ′

j,k and
thus cannot obtain a partial vote tally beforehand. Therefore,
fairness can be maintained.

VII. CONCLUSION

We have presented a quantum protocol for implementing
the task of anonymous voting with the help of two entangled
quantum states, |Xn〉 and |Sn〉. Through our protocol, any
individual party can acquire a permutation of all the votes,
which means anyone can tally the votes without resorting to a
third party. The protocol has been demonstrated to possess the
properties of privacy, self-tallying, nonreusability, verifiability,
and fairness. We also generalize our SQAV to the more
general AMC task. Our generalized protocol can let each party
broadcast his or her data anonymously and safely to be further
fed into the AMC function.

An interesting open question is whether our protocol can be
used to implement more tasks on AMC or SMC. This deserves
further investigations in the future.
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APPENDIX A: PROOF |Sn〉 IS n-LATERAL
ROTATIONALLY INVARIANT

Property 1. An n-dimensional quantum state on Hilbert
space Hn is the superposition of computational basis
{|i〉C |i = 0,1, . . . ,n − 1}. Consider state |Sn〉 of n such parti-
cles on H⊗n

n in the following form:

|Sn〉 =
∑
S∈Pn

n

(−)τ (S)|S〉 (A1)

≡
∑
S∈Pn

n

(−)τ (S)|s0s1, . . . ,sn−1〉. (A2)

Consider another basis {|i ′〉} connected with the computational
basis by a unitary transformation U , where

|i〉 =
∑

j

Uji |j ′〉. (A3)

Then in this new basis the state |Sn〉 takes the same form up to
a global phase factor φ. That is,

|Sn〉 = eiφ
∑

M∈Pn
n

(−)τ (M)|M ′〉 (A4)

≡ eiφ
∑

M∈Pn
n

(−)τ (M)|m′
0m

′
1 · · ·m′

n−1〉. (A5)

Here Pn
n = {x0x1 · · · xn−1|x0,x1, . . . ,xn−1 ∈ Zn,∀ j �=

k,xj �= xk}, and the phase factor is given by

eiφ = det(U ). (A6)

Proof. Expanding Eq. (A2) in the new basis by using the
unitary transformation Eq. (A3), we have

|Sn〉 =
∑
S∈Pn

n

(−)τ (S)
n−1∑
m0=0

Um0,s0 |m′
0〉 ⊗ · · · ⊗

×
n−1∑

mn−1=0

Umn−1,sn−1 |m′
n−1〉 (A7)

=
⎛⎝ ∑

M∈Pn
n

+
∑

M /∈Pn
n

⎞⎠
×

⎡⎣∑
S∈Pn

n

(−)τ (S)Um0,s0Um1,s1 · · · Umn−1,sn−1

⎤⎦|M〉 (A8)

=
⎛⎝ ∑

M∈Pn
n

+
∑

M /∈Pn
n

⎞⎠ det
(
Umj ,si

)|M〉 (A9)

if M /∈ Pn
n ,∃ s �= t , such that ms = mt ; then there are two

identical columns for matrix Umj ,si
. This means Ums,si

=
Umt ,si

. Therefore det Umj ,si
= 0, and we have

|Sn〉 =
∑

M∈Pn
n

det
(
Umj ,si

)|M〉

=
∑

M∈Pn
n

(−)τ (M) det
(
Uj,si

)|M〉

=
∑

M∈Pn
n

(−)τ (M) det(U )|M〉

= eiφ
∑

M∈Pn
n

(−)τ (M)|M〉 (A10)

�

APPENDIX B: PROOF OF THEOREM 2

To prove Theorem 2, we first give two lemmas and one
corollary.

Lemma 1. Let q be an arbitrary element of
{1,2, . . . ,n − 1}, and let s0,s1, . . . ,sq−1 ∈ Zn be distinct. If∑q−1

j=0 exp( 2πisj t

n
)αj = 0 always holds for any t ∈ Zn, we have

α0 = α1 = · · · = αq−1 = 0.
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Proof. If
∑q

j=0 exp( 2πisj t

n
)αj = 0 always holds for any t ∈

Zn, we have linear equations

A

⎛⎜⎜⎝
α0

α1
...

αq−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
...
0

⎞⎟⎟⎠, (B1)

where A is an n × q matrix with elements Ajk =
exp( 2πi(j−1)sk

n
) = [exp( 2πisk

n
)]j−1. Taking the first q rows of

A as a new square matrix A with size q × q, it is easy to see
that A is a Vandermonde matrix [30]. Since s0,s1, . . . ,sq−1

are distinct, the determinant of A is nonzero, and thus the
rank of A is q. Consequently, Eq. (B1) has only the solution
α0 = α1 = · · · = αq−1 = 0.

Lemma 2. Let m be an arbitrary element of {2,3, . . . ,n},
Rm

n = {x0x1 · · · xm−1|x0,x1, . . . ,xm−1 ∈ Zn}, Pm
n = {x0x1 · · ·

xm−1|x0,x1, . . . ,xm−1 ∈ Zn,∀ j �= k,xj �= xk}, and Qm
n =

{x0x1 · · · xm−1|x0,x1, . . . ,xm−1 ∈ Zn,∃ j �= k,xj = xk}. Ap-
parently, Pm

n ∩ Qm
n = ∅ and Rm

n = Pm
n ∪ Qm

n . Divide Pm
n into(

n

m

) = n!
(n−m)!m! subsets, each of which corresponds to the set

of all m! permutations of an m combination of Zn, denoted by
Pn,w

n [w = 0,1, . . . ,
(

n

m

) − 1]. For an arbitrary subset Pm,w
n , if

the equation∑
S∈Pm,w

n

(−1)τ (S)
m−1∏
j=0

exp

(
2πisj tj

n

)
βS = 0 (B2)

holds for any t0t1 · · · tm−1 ∈ Qm
n , we have that all βS for S ∈

Pm,w
n are equal.

Proof. We use the method of induction to prove this lemma.
For m = 2, suppose P2,w

n = {ŝ0ŝ1,ŝ1ŝ0} with
ŝ0 < ŝ1,Q2

n = {t0t1|t0 = t1 = t ∈ Zn}, and the equation∑
s0s1∈P2,w

n
(−1)τ (s0s1) exp( 2πi(s0t0+s1t1)

n
)βs0s1 = 0 holds for any

t0t1 ∈ Q2
n. Since t0 = t1 = t , the equation can also be written

as exp( 2πi(ŝ0+ŝ1)t
n

)βŝ0 ŝ1 − exp( 2πi(ŝ0+ŝ1)t
n

)βŝ1 ŝ0 = 0. Obviously,
βŝ0 ŝ1 = βŝ1 ŝ0 is obtained.

We assume that, for m = k and an arbitrary subset Pk,w
n , if Eq. (B2) always holds for any t0t1 · · · tk−1 ∈ Qk

n, all βs0s1···sk−1

for s0s1 · · · sk−1 ∈ Pk,w
n are equal. Now we analyze the case for m = k + 1. We suppose the (k + 1) combination is Pk+1,w

n ,
corresponding to the set Ŝ = {ŝ0,ŝ1, . . . ,ŝk}, with ŝ0 < ŝ1 < · · · < ŝk . Namely, Pk+1,w

n is the set of all (k + 1)! permutations of
Ŝ. In this case, observing that sp (p ∈ {0,1, . . . ,k}) can take each value from Ŝ in Eq. (B2), the equation can be written as

k∑
l=0

[ ∑
S∈Pk+1,w

n ,sp=ŝl

(−1)τ (S) exp

(
2πiŝl tp

n

) k∏
j=0,j �=p

exp

(
2πisj tj

n

)
βS

]
= 0. (B3)

Noting that (−1)τ (S) = (−1)l−p(−1)τ (s0···sp−1sp+1···sk ), Eq. (B3) can also be written as

k∑
l=0

(−1)l−p exp

(
2πiŝl tp

n

)⎡⎣ ∑
S∈Pk+1,w

n ,sp=ŝl

(−1)τ (s0···sp−1sp+1···sk )
k∏

j=0,j �=p

exp

(
2πisj tj

n

)
βS

⎤⎦ = 0. (B4)

We now prove that, if Eq. (B4) holds for any t0t1 · · · tk ∈ Qk+1
n , all βS for S ∈ Pk+1,w

n are equal. Especially, when
t0 · · · tp−1tp+1 · · · tk ∈ Qk

n is fixed and tp takes every value from Zn, Eq. (B4) always holds. Hence, according to Lemma 1,
we can derive that for arbitrary l ∈ {0,1,2, . . . ,k},

∑
S∈Pk+1,w

n ,sp=ŝl

(−1)τ (s0···sp−1sp+1···sk )
k∏

j=0,j �=p

exp

(
2πisj tj

n

)
βs0s1···sk

= 0. (B5)

Here Eq. (B5) holds for arbitrary t0 · · · tp−1tp+1 · · · tk ∈ Pk,w
n . Based on the previous assumption for the case m = k, all βS for

S ∈ Pk+1,w
n and sp = ŝl are equal. If Eq. (B2) holds for any t0t1 · · · tk ∈ Qk+1

n when m = k + 1,l and p can take arbitrary values
from {0,1,2, . . . ,k}, we can draw the conclusion that all βS for S ∈ Pk+1,w

n are equal.
By mathematical induction above, we can derive that for an arbitrary m ∈ {2, . . . ,n}, if Eq. (B2) holds for any t0t1 · · · tm−1 ∈

Qm
n , all βs0s1···sm−1 for s0s1 · · · sm−1 ∈ Pm,w

n are equal.
Now we give a corollary of Lemma 2 below.
Corollary 1. Let m,Rm

n ,Pm
n , and Qm

n be defined in Lemma 2. For an arbitrary subset Pm,w
n , if the equation

∑
s0s1···sm−1∈Pm,w

n

(−1)τ (s0s1···sm−1)
m−1∏
j=0

exp

(
2πisj tj

n

)
�βs0s1···sm−1 = �0 (B6)

holds for any t0t1 · · · tm−1 ∈ Qm
n , where �βs0s1···sm−1 are vectors and �0 is a zero vector, all �βs0s1···sm−1 for s0s1 · · · sm−1 ∈ Pm,w

n are
equal.

The only difference between this corollary and Lemma 2 is that βs0s1···sm−1 is generalized to the vector �βs0s1···sm−1 . Hence the
corollary can be directly proved.

Now we use Lemma 2 to prove Theorem 2.
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Proof. Restricting the measurement basis to the computation basis or Fourier basis, the necessity of our theorem can be directly
obtained from Property 1.

Now we prove the sufficiency. On the one hand, to satisfy the condition that all the measurement outcomes are distinct when
measuring each particle of |�〉 in the Fourier basis, |�〉 must be in the form

|�〉 =
∑
S∈Pn

n

(−1)τ (S)βS(F |s0〉) ⊗ · · · ⊗ (F |sn−1〉)

=
∑
S∈Pn

n

(−1)τ (S)βS

(∑
t0

exp
( 2πis0t0

n

)
√

n
|t0〉

)
⊗ · · · ⊗

(∑
tn−1

exp
( 2πisn−1tn−1

n

)
√

n
|tn−1〉

)

=
∑

t0,t1,...,tn−1

∑
S∈Pn

n

⎡⎣ (−1)τ (S)

n
n
2

n−1∏
j=0

exp

(
2πisj tj

n

)
βS

⎤⎦|t0t1 · · · tn−1〉, (B7)

where S = s0s1 · · · sn−1. On the other hand, to meet the
condition that all the measurement outcomes are distinct when
measuring each particle of |�〉 in the computational basis, the
terms

∑
S∈Pn

n
[βS

∏n−1
j=0 exp( 2πisj tj

n
)] for t0t1 · · · tn−1 ∈ Qn

n are
required to be equal to zero. From Lemma 2 (when m = n), to
satisfy this requirement, we can see that all βS for S ∈ Pn

n are
equal. Moreover, to keep normalization of |�〉, we have

βS = 1√
n!

. (B8)

For any t0t1 · · · tn−1 ∈ Qn
n, according to the definition of the

square matrix determinant,
∑

S∈Pn
n

(−1)τ (S)

n
n
2

∏n−1
j=0 exp( 2πisj tj

n
) is,

in fact, the determinant of the n × n matrix V with elements

V jk = exp(
2πitj k

n
)√

n
. Namely,

∑
S∈Pn

n

(−1)τ (S)

n
n
2

n−1∏
j=0

exp

(
2πisj tj

n

)
= det(V ). (B9)

Transposing pairs of rows of V to generate a new n × n matrix

Ṽ with elements Ṽjk = exp( 2πijk

n
)√

n
, we have

det(V ) = (−1)τ (t0t1···tn−1) det(Ṽ ). (B10)

Inserting Eqs. (B8), (B9), and (B10) into Eq. (B7) and
discarding the terms for t0t1 · · · tn−1 ∈ Qn

n in Eq. (B7), we have

|�〉 =
∑
T ∈Pn

n

(−1)τ (T )

√
n!

|T 〉, (B11)

up to the global factor det(Ṽ ), where T = t0t1 · · · tn−1. There-
fore |�〉 has the same form as |Sn〉, and Theorem 2 is proved.
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