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Quantum annealing aims to exploit quantum mechanics to speed up the search for the solution to optimization
problems. Most problems exhibit complete connectivity between the logical spin variables after they are mapped to
the Ising spin Hamiltonian of quantum annealing. To account for hardware constraints of current and future physi-
cal quantum annealers, methods enabling the embedding of fully connected graphs of logical spins into a constant-
degree graph of physical spins are therefore essential. Here, we compare the recently proposed embedding scheme
for quantum annealing with all-to-all connectivity by Lechner, Hauke, and Zoller (LHZ) [Sci. Adv. 1, e1500838
(2015)] to the commonly used minor embedding (ME) scheme. Using both simulated quantum annealing and
parallel tempering simulations, we find that for a set of instances randomly chosen from a class of fully connected,
random Ising problems, the ME scheme outperforms the LHZ scheme when using identical simulation parameters,
despite the fault tolerance of the latter to weakly correlated spin-flip noise. This result persists even after we intro-
duce several decoding strategies for the LHZ scheme, including a minimum-weight decoding algorithm that results
in substantially improved performance over the original LHZ scheme. We explain the better performance of the
ME scheme in terms of more efficient spin updates, which allows it to better tolerate the correlated spin-flip errors
that arise in our model of quantum annealing. Our results leave open the question of whether the performance of the
two embedding schemes can be improved using scheme-specific parameters and new error correction approaches.
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I. INTRODUCTION

Many important and hard optimization problems can be
mapped to finding the ground state of classical Ising models
[1,2]. The observation that such models can also be solved via
quantum annealing [3–5] has spurred a great deal of recent
interest in building special-purpose analog quantum devices
[6,7] with the hope of realizing quantum speedups [8]. In gen-
eral, all pairs of spins in the Ising Hamiltonian can be coupled,
resulting in long-range interactions, e.g., as in the Sherrington-
Kirkpatrick model [9–11]. A direct physical implementation
of such spin systems would require all-to-all connectivity, an
impossibility for analog devices with local hardware connec-
tivity. Instead, one must embed the logical problem defined
by the given Ising model into the available physical device
connectivity. This embedding represents long-range logical
interactions in terms of short-range physical interactions,
a process which introduces unavoidable trade-offs among
energy scales, hardware resources, and accuracy [12–18].

The first embedding technique used for quantum annealing
is due to Choi and involves a graph-theoretical construction
known as minor embedding (ME) [12,13]. In ME, the spins of
the given Ising problem with long-range interactions, which we
refer to as the logical spins, are replaced by chains of physical
spins with short-range interactions implemented on the device
hardware. Physical spins within a chain are induced to behave
as a single logical spin using strong ferromagnetic interactions
acting as energy penalties. The hardware connectivity graph
should allow for the minor embedding of complete graphs,
i.e., the latter should be obtainable from the former via edge
contractions. A well-known example is the “Chimera” graph
used in D-Wave quantum annealing devices [19].

Recently, Lechner, Hauke, and Zoller (LHZ) proposed
an elegant alternative embedding technique, realized on a
two-dimensional triangular-shaped grid [17]. In the LHZ
scheme, the relative alignment (parallel or antiparallel) of
pairs of logical spins is mapped to a physical hardware spin.
Both the logical local fields and the logical couplings are
mapped to local fields acting on the physical spins. This is
appealing, since it places the burden of implementing the
logical problem entirely on the implementation of local fields,
thus obviating the need for simultaneous control of local fields
and couplings. Couplings between the physical spins (acting
as energy penalties) must still be introduced to ensure that the
mapping is consistent.

Since in the LHZ scheme the logical spins are encoded re-
dundantly and nonlocally in the physical degrees of freedom, it
was suggested in Ref. [17] that the scheme includes an intrinsic
fault tolerance, with some similarities to the error robustness of
topological quantum memories [20]. This has been confirmed
by Pastawski and Preskill (PP) under the assumption of a
noise model of random spin-flips [21]. More specifically, PP
pointed out that the LHZ scheme may be viewed as a classical
low-density parity-check code that makes the scheme highly
robust against weakly correlated spin-flip noise.

While allowing for a rigorous analytical treatment, weakly
correlated random spin-flips are unfortunately not the most
relevant errors in quantum annealing, the algorithm for which
the LHZ scheme was proposed. In adiabatic quantum com-
puting and quantum annealing, a time-dependent Hamiltonian
evolves a system from an easily prepared and trivial ground
state to the nontrivial ground state of the Hamiltonian of
interest. In a closed system, the adiabatic theorem provides
a guarantee that the probability of dynamical excitations can
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be made arbitrarily small if the evolution is sufficiently slow
relative to the inverse of the minimum gap [22–24]. Under the
favorable assumption of weak system-environment coupling,
decoherence in open-system, finite temperature quantum
annealing takes place in the instantaneous energy eigenbasis
[25–27]. In both the closed and open-system cases, errors may
occur throughout the evolution, resulting in the generation of
final-time excited states that differ from the ground state by a
large number of spin-flips, that are neither random nor weakly
correlated [28–31], as also recognized in Ref. [21].

Motivated by these considerations, here we study whether
the ME or the LHZ scheme is preferable under a realistic noise
model for quantum annealing. This is particularly pertinent
since the LHZ scheme would require the development of a
new quantum annealing architecture, while the ME scheme
has already been experimentally implemented in numerous
studies, e.g., Refs. [32–39]. We employ simulated quantum
annealing (SQA) [40,41], a quantum Monte Carlo method
that iteratively updates an approximation to the instantaneous
quantum Gibbs state governed by the time-dependent system
Hamiltonian [Eq. (2) below]. While it is not a completely faith-
ful description of the annealing process since it neglects unitary
dynamics, it is the method of choice for large-scale simulations
of stoquastic (sign-problem free) quantum annealing [42] and
has been used to successfully describe experiments on D-Wave
devices [43–47]. Our SQA simulations aim to model the
behavior of two quantum annealing devices implementing the
same annealing schedule with identical physical parameters,
but with different Hamiltonians, representing the ME and LHZ
embedded problem Hamiltonians, respectively. In addition to
SQA, we also use parallel tempering (PT) [48,49], a highly
efficient variant of classical Monte Carlo that enables us to
focus purely on the classical Hamiltonian, independently of
the quantum evolution that takes place during the annealing.

For the range of parameters and problem sizes studied, we
find that the ME scheme outperforms the LHZ scheme for the
majority of instances studied. Using PT simulations on the
final (classical) Hamiltonian, we show that the two schemes
perform similarly when the number of updates is sufficiently
large. We interpret this to mean that the difference between
the two schemes arises from more efficient SQA updates for
the ME Hamiltonian, arising during the evolution governed
by the intermediate (quantum) Hamiltonian. Our results imply
that the LHZ scheme does not necessarily exhibit an intrinsic
fault tolerance against a noise model that is appropriate for
quantum annealing.

The rest of this paper is organized as follows. In Sec. II we
describe the ME and LHZ schemes for embedded quantum
annealing in more detail, as well as errors and majority vote
decoding. We present our SQA and PT results in Sec. III, where
we compare the ME and LHZ schemes subject to majority
vote decoding. In Sec. IV we consider several other decoding
strategies for the LHZ scheme. In particular, we describe how
to map the decoding of the LHZ scheme to the decoding of a
fully connected, quadratic Sourlas code [50,51]. This allows us
to define minimum-weight (MWD) and maximum-likelihood
(MLD) decoding strategies, the latter being optimal in the case
of errors generated by random spin-flips. We also consider the
belief propagation strategy proposed in Ref. [21]. We conclude
and provide a broader discussion of our results in Sec. V.
Additional details are provided in the Appendix.

II. EMBEDDED QUANTUM ANNEALING

In quantum annealing one encodes the solution of a hard
combinatorial optimization problem into the ground state of a
classical Ising Hamiltonian:

HP =
∑

i

hiσ
z
i +

∑
i<j

Jij σ
z
i σ z

j . (1)

Hard problems typically result in highly frustrated spin
systems with a spin-glass phase at low temperatures [52]. A
quantum annealing device attempts to solve for the ground
state of Eq. (1) by implementing the following time-dependent
Hamiltonian:

H (t) = A(t)HX + B(t)HP , t ∈ [0,tf ], (2)

where HX = −∑
i σ

x
i is the “driver” term whose ground state

is a uniform superposition in the computational basis that
initializes the computation. The annealing schedule is specified
by the functions A(t) and B(t), where typically A(0) � B(0)
and A(tf ) � B(tf ). The most general optimization problem
on N binary variables is defined on an all-to-all connectivity
problem Hamiltonian HP graphically represented in Fig. 1(a).

The construction of a physical device that implements the
system described by Eq. (2) with all-to-all connectivity can be
technically demanding because it requires the implementation
of long-range interactions. While in trapped ions long-range
interactions are unproblematic [53], not all physical implemen-
tations support such interactions; e.g., in most superconducting
and semiconducting devices interactions are hard-wired and
quasilocal [19,54–56], and for ultracold gases in optical lattices
interactions are determined by the geometry [57]. Schemes
that approximate long-range interactions with short-range
interactions are thus desirable for certain implementations.
The ME and LHZ schemes are both designed to address this
challenge, as we briefly review next.

A. Minor embedding scheme

The ME scheme replaces long-range interactions between
logical qubits by short-range interactions between chains (or
clusters) of physical qubits, where each chain represents
a logical qubit and, correspondingly, replaces the logical
problem Hamiltonian HP [Eq. (1)] by a minor-embedded
Hamiltonian H ME

P . Physical qubits belonging to the same
logical-qubit chain are connected by strong ferromagnetic
interactions (acting as energy penalties), which lowers the
energy of configurations where these qubits are aligned at the
end of the anneal. “Broken” chains (where not all members
of a chain are aligned) do not correspond to logical states and
must be corrected, e.g., by majority vote. For a more formal
and complete exposition of ME see, e.g., Ref. [16].

We consider here a particular ME on “Chimera” graphs.
Chimera is a degree-six graph formed from the tiling of an
L × L grid of K4,4 cells. Despite its low degree and near
planarity, an L × L Chimera graph allows for the minor
embedding of an all-to-all logical problem HP defined on
N = 4L logical qubits where each logical qubit is represented
by a chain of �N/4� + 1 physical qubits. Figure 1(b) depicts a
minor embedded Hamiltonian H ME

P of the all-to-all Hamil-
tonian HP of Fig. 1(a) on a Chimera subgraph. Blue and
red thin links correspond to physical couplers representing
the logical interactions of HP , while black couplers represent
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FIG. 1. All-to-all connectivity and its representation using the ME and LHZ schemes. (a) A complete graph of 12 logical qubits. Brown
(solid) and blue (dashed) lines correspond to types of couplings (e.g., ferromagnetic and antiferromagnetic). (b) ME of the all-to-all Hamiltonian
shown in (a). Brown (solid) and blue (dashed) lines are the physical realizations of the logical couplings. Black lines are the energy penalties
within the logical chains. (c) LHZ implementation of the same Hamiltonian. Red circles and blue octagons represent physical qubits with either
negative (ferromagnetic) or positive (antiferromagnetic) local fields. Small black dots and lines represent three- and four-body energy penalties.

strong ferromagnetic interactions that couple physical qubits
belonging to the same logical chain. Note in particular that
while the full Chimera graph would have 8L2 = N2/2 spins,
the embedding of the complete graph of size N only uses
N (�N/4� + 1), i.e., about half of these spins. For a more
detailed description of the ME scheme on Chimera graphs
see, e.g., Refs. [12,13].

B. Lechner-Hauke-Zoller scheme

In the LHZ scheme, the embedded Hamiltonian H LHZ
P is

defined on K = (N2 ) physical qubits corresponding to the K

logical interactions of the original problem Hamiltonian HP .
The logical couplings Jij ≡ Jk are mapped to local fields
applied to the physical qubits (we denote the physical qubit’s
value in the computational basis by qk ≡ qi,j = ±1). The
value of a physical qubit in the LHZ scheme encodes the
relative alignment of the corresponding pair of logical qubits:
A physical qubit pointing up (down) corresponds to an aligned
(antialigned) logical pair. Since K > N , the physical system
includes physical states that do not correspond to logical states,
similarly to what happens in the ME case. The appearance of
these spurious states is suppressed by imposing a sufficient
number of constraints (energy penalties). These constraints
are designed to favor an even number of spin-flips around any
closed loop in the logical spins in order to induce a consistent
mapping. The form of the LHZ Hamiltonian we consider here
is as follows [17]:

H LHZ
P =

∑
k∈VLHZ

Jkσ
z
k +

∑
c∈VC

Cc, (3)

where Cc = −λσ z
cu

σ z
cd

σ z
cl
σ z

cr
are four-body interactions be-

tween the physical qubits. In addition, three-body interactions
appear at the LHZ graph edges, as shown in Fig. 1(c). Both

the three- and four-body interactions can be replaced by
two-body interactions by coupling to ancilla qutrits [17]. VLHZ

represents the vertex set of the LHZ physical graph depicted in
Fig. 1(c) by circles, with K = |VLHZ| and where VC represents
the C = |VC | = (N − 1

2 ) constraint interactions shown as black
dots. Local fields hi can be included by representing them as
couplings to an additional ancilla qubit, via hiσ

z
i → hiσ

z
0 σ z

i .

C. Leakage errors in embedded quantum annealing

Due to the fact that in both the ME and LHZ schemes a
problem Hamiltonian defined on N logical qubits is embedded
into a system with O(N2) physical qubits, the physical system
has a much larger number of physical states (∼2N2

) than the
original logical system (∼2N ). This allows for “leakage”:
broken chains in the ME scheme or physical states with
unsatisfied constraints in the LHZ scheme that appear because
of thermal and dynamical errors occurring during the annealing
process. Such leakage states do not directly correspond to a
logical state (see Fig. 10 in Appendix A for typical examples of
leakage states one expects in the LHZ scheme for the random
weakly correlated errors model and for finite-temperature
open-system quantum annealing).

A leaked physical state must be decoded, i.e., it must
be mapped back to a logical state. This decoding can be
considered as partial error correction in the sense that it
recovers a logical state but it does not guarantee the recovery of
the logical ground state. Next, we briefly review majority vote
decoding; additional decoding schemes for the LHZ scheme
will be considered in Sec. IV.

D. Majority vote decoding of the ME scheme

A minor-embedded logical qubit i is encoded into a set
of physical qubits {ai}nA

a=1. Majority vote decoding (MVD) of
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logical qubit i consists of computing

q̄i = sgn
nA∑

a=1

qai
, (4)

where qai
represents the measured value of physical qubit

ai in the computational basis. In addition to its being used
routinely in decoding minor embedded quantum annealing
[58–62], MVD has been successfully used in the context of
quantum annealing correction (QAC) [30,31,63] and hybrid
minor-embedded implementations of QAC [16,64].

MVD relies on the assumption that the decoded values
{q̄i} are the most likely to recover the logical ground state.
However, this is not ensured due to the complex way errors are
generated in quantum annealing. Alternatives such as energy
minimization, which tends to be a better strategy for quantum
annealing, have been explored as well [16] but will not be
further considered here.

E. Majority vote decoding of the LHZ scheme

In the absence of leakage, any spanning tree (i.e., a graph
where there is a path connecting all vertices but any two
vertices are connected by exactly one path) on the logical
graph can be used to reconstruct a logical configuration
from the values of the physical qubits. In the presence of
leakage, however, different spanning trees may decode the
same physical state to different logical states. A simple
decoding technique is to perform a majority vote on nT logical
states decoded from random spanning trees [17]:

q̄i = sgn
nT∑
t=1

q̄t,i , (5)

where q̄t,i represents the decoded value of logical qubit i

retrieved from spanning tree t (see Appendix A for further
details and examples).

III. RESULTS FOR MAJORITY VOTE DECODING

In order to compare the ME and LHZ schemes,
we first generated a set of 100 logical random in-
stances on complete graphs {K8,K16} with couplings Jij ∈
{±0.1,±0.2,±0.3, . . . ,±1} chosen uniformly at random and
all logical local fields set to zero. For each instance, we
constructed the embedded physical Hamiltonians H ME

P and
H LHZ

P . For each instance and embedding scheme, we ran SQA
[40,41] using the quantum annealing Hamiltonian Eq. (2)
with the same annealing schedule, temperature, and number
of Monte Carlo sweeps. A single sweep involves applying a
Wolff cluster update along the imaginary time direction for all
spatial quantum Monte Carlo slices (see Appendix B for more
details on SQA).

The annealing schedule sets the effective energy scale
of the Hamiltonian [Eq. (2)], and the ratio of this scale to
the temperature changes during the anneal. The annealing
schedule can play a crucial role in determining the performance
of the adiabatic algorithm and, in principle, can be optimized
separately for the ME and LHZ schemes. Furthermore, the ME
and LHZ schemes may benefit from controlling the constraints
(the chains in the ME case, and the four-body terms in the LHZ

case) using an independent annealing schedule. We do not
address these issues in this work and leave the exploration of
possible improvements using these strategies for future work.

In order to understand the role of the purely classical
Hamiltonians H ME

P and H LHZ
P in the success of each scheme,

we used parallel tempering (PT) [48,65]. For sufficiently long
run times, PT samples from the classical thermal (Gibbs)
state. If the temperature is sufficiently low, then PT samples
predominantly from the ground state, and hence it can be used
as a solver to find the ground state of the classical Hamiltonian.
PT is a more efficient algorithm than simulated annealing [66]
for both the sampling and solver tasks (see Appendix B for
more details on PT). Here we use PT as a sampler on the
ME and LHZ Hamiltonians, whereby we run PT with a long
but fixed runtime, while restricting it to single-spin updates in
order to keep the algorithm as close to the SQA implementation
as possible for both the ME and LHZ schemes.1 At sufficiently
large penalty values, we expect the leakage states to be
completely decoupled from the low-lying levels in both the
ME and LHZ schemes. The low-energy physical states are
then equivalent to the low-energy logical states, which are the
same for the two schemes, so at sufficiently low temperatures
we expect the PT success probabilities for both schemes to
coincide. As we increase the temperature but keep the run
time constant, we expect deviations between the two schemes
to emerge. This allows us to compare how well each scheme
performs in recovering the logical ground state from the
low-energy physical states.

In this section we perform the comparison between the ME
and LHZ schemes using only majority vote decoding before
considering more sophisticated decoding strategies in Sec. IV.
MVD allows us to equalize the decoding effort between the
two schemes.

A. Comparing ME and LHZ via simulated quantum annealing

Figure 2 shows scatter plots comparing the ME and LHZ
schemes on SQA-generated states. For both the ME and LHZ
cases we ran SQA simulations over a wide range of energy
penalty values and, for each instance, chose the value that
maximizes the success probability, which we refer to as the
optimal penalty value. In both cases, we used majority-vote
decoding as described in Secs. II D and II E. In the ME
case, logical values were obtained with a majority vote on
nA = �N/4� + 1 = 3 and 5 physical qubits, corresponding,
respectively, to the length of the chains required to minor-
embed K8 and K16. Figure 2 clearly shows an advantage for
the ME scheme over the LHZ scheme using majority vote
decoding, with the advantage growing as the problem size
increases from K8 to K16.

The number of sweeps is fixed in Fig. 2; to test the depen-
dence on this number, Fig. 3 shows the success probability for a

1Cluster updates that take into account the geometry of each
embedding scheme are likely to help speed up the convergence
of PT to the Gibbs state for both the ME and LHZ schemes. For
example, cluster updates associated to the flip of a logical qubit (a
chain in the ME case and a cluster consisting of all physical qubits
{qi,j ,qk,i}(j>i,k<i) for logical qubit q̄i in the LHZ case).
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FIG. 2. Relative performance of the ME and LHZ schemes. Shown are scatter plots of success probabilities for 100 random (a) K8 and
(b) K16 instances generated via SQA and majority vote decoding. The ME scheme exhibits substantially better performance. Majority vote
decoding with the same number of votes (3 and 5 for K8 and K16, respectively) was used for both schemes, and the optimal energy penalty was
used for each instance. SQA parameters: 104 sweeps, β = 1. Note that the effective temperature of SQA is modulated through the anneal by
the annealing schedule (Fig. 11 in Appendix B). By the end of the anneal, the effective (dimensionless) temperature is ≈0.05, smaller than the
absolute value of the smallest coupling used in our simulations, 0.1.

representative K8 instance as a function of the penalty strength,
when the number of sweeps is increased from 104 to 105.
The performance of both schemes improves, but we find that
the decoded ME scheme’s success probability is always larger
than LHZ’s, except at very small penalty values; we discuss the
reason for this below. In addition, the optimal penalty strength
for ME appears smaller; this is studied more systematically in
Fig. 4, which shows a roughly equal distribution for K8, but it
confirms that the LHZ scheme tends to require higher optimal
penalties for K16. This could be a disadvantage given practical
limitations of quantum annealing devices.

As we demonstrate in the next subsection, the reason for
the relatively poorer performance of the LHZ scheme is likely
due to its less efficient spin updates in the SQA simulations.
Two factors are likely responsible for this difference: First, the
LHZ scheme requires asymptotically twice as many physical
qubits as ME [more precisely, N (N − 1)/2 > N (�N/4� + 1)

for N � 8], and, second, the four-body constraint terms may
make updates via timelike cluster spin-flips less effective. It
is possible that alternative implementations of the constraints
(using, for example, two-body interactions along with coupling
to qutrits, as suggested in Ref. [17]) may improve the
performance of the LHZ scheme under SQA simulation; this
is left for a future study.

B. Comparing ME and LHZ via parallel tempering

We next study the probability with which the logical ground
state can be retrieved from the results of PT simulations that
use the classical physical Hamiltonians H LHZ

P and H ME
P . This

analysis allows us to directly study the resiliency to leakage
due to purely classical thermal errors.

Figure 5 presents our PT simulation results, as a function
of energy penalty, for representative K8 and K16 instances,

FIG. 3. Dependence on penalty strength and the number of sweeps. Shown is the success probability of the ME and LHZ schemes for a
representative instance generated via SQA as a function of penalty strength, with a varying number of sweeps: (a) 104 sweeps, (b) 5 × 104

sweeps, and (c) 105 sweeps. The decoded ME scheme always outperforms the decoded LHZ scheme. The optimal penalty strength increases
with the number of sweeps. Performance improves consistently for both ME and LHZ as the number of sweeps increase. The nonvanishing
success probability at zero penalty for the decoded LHZ scheme is an artifact of the small size of the logical problems considered, which allows
for a non-negligible probability that MVD will retrieve a logical ground state.
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FIG. 4. Optimal penalty strength comparison. Shown is a com-
parison of optimal penalties, i.e., the penalty values that maximize
the success probability after MVD and using SQA. These correspond
to the penalty strengths used for the results shown in Fig. 2. The
optimal penalty is roughly equally distributed on K8 instances (blue
dots) but tends to be higher for the LHZ scheme on K16 instances
(red diamonds). SQA parameters: 104 sweeps, β = 1.

where we also examine the size and temperature dependence.
We confirm in Fig. 5 for the K8 case that for sufficiently
large penalties and sufficiently low temperatures, the success
probability for both schemes is identical and high. Therefore,
the observed difference is attributable to more efficient spin
updates in the case of SQA simulations of the ME scheme.

At smaller energy penalties, thermal excitations are more
likely to populate leakage states, leading to differences
between the two schemes. This is instance and size dependent,
as can be seen by the differences between the two schemes in
Figs. 5(a) and 5(c), but the absence of a difference in Fig. 5(b).

The typical behavior is presented in the scatter plot of
Fig. 6, where we compare the success probabilities of the
LHZ and ME schemes at particular values of the inverse
temperature and energy penalty, for the same 100 random K8

FIG. 6. Comparing leakage resiliency of the ME and LHZ
schemes. Shown is a scatter plot for the K8 instances. The success
probability on both axes is measured relative to the PT state (β =
1.05) at a fixed intermediate value of the energy penalty (γ = 1).
Decoding was performed via majority vote.

instances as in the SQA case of Fig. 2(a). At this relatively
small penalty value, the ME scheme exhibits a small but
consistent advantage in its ability to recover states that have
leaked due to thermal excitations.

Differences between the two schemes are also expected if
the number of updates is insufficient to reach the low-energy
physical states, and hence leakage states can still be populated.
In this case, even at large penalty values, the physical state need
not be equivalent to the logical state. This is what happens in
the LHZ case for the K16 instance shown in Fig. 5(c), where
evidently the success probability does not saturate at both the
high and low temperature value. We find that increasing the
number of steps in the PT simulations eliminates this feature
(Fig. 14 in Appendix D). Moreover, we find that for most of
the instances and penalty values, the SQA states are closer to
the PT states for ME than for LHZ (Fig. 15 in Appendix D).
Thus, we see once again that the LHZ scheme has greater

FIG. 5. Performance of the ME and LHZ schemes using PT. Shown are the success probabilities after MV decoding for three representative
instances generated via PT on K8 [(a) instance 3 and (b) instance 95] and K16 (c) (instance 72) graphs. Results for two temperatures are
shown; reducing the temperature boosts the success probabilities, as expected. The ME and LHZ schemes exhibit similar performance for the
K8 instances, though the optimal penalty value is again smaller for the ME scheme in (a). Similar results are seen for the K16 instances. The
drop in success probability at large penalty strength for β = 1.05 in the LHZ case (all but 2 of our 100 instances exhibit this signature) can be
understood as a signature of incomplete thermalization at the chosen parameter values. It is alleviated by increasing the number of PT swaps
(see Appendix D). PT parameters are discussed in Appendix B.
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FIG. 7. Critical penalty strength comparison. Shown is the
penalty strength where the PT success probability after MVD is 0.5 for
β = 20. There is a systematic increase in the critical penalty strength
for both schemes as the problem size increases from K8 (blue dots)
to K16 (red diamonds). Additionally, the ME critical penalty strength
is systematically lower for the K16 instances.

difficulty with single spin updates than ME, in agreement with
our earlier SQA results.

The different response to small and large energy penalties
explains the striking steplike behavior of the success
probability observed in Fig. 5 for the low-temperature
simulations, where PT overwhelmingly samples the physical
ground state. This steplike behavior appears at the smallest
value of the energy penalty such that the physical ground state
is correctly mapped to the logical ground state. A scatter plot
of the corresponding critical energy penalty values is shown
in Fig. 7, where it is seen to be larger for the LHZ scheme,
in agreement with the SQA optimal penalty results seen in
Fig. 4. However, a lower bound argument shows that the value
of the optimal penalty should scale at least with N in both
schemes (see Appendix F).

IV. MINIMUM WEIGHT, MAXIMUM LIKELIHOOD,
AND BELIEF PROPAGATION DECODING

OF THE LHZ SCHEME

In an attempt to improve the performance of the LHZ
scheme, in this section we present and study a decoding
strategy that extends the approaches of Refs. [17,21] and
is designed to address independent or weakly correlated
physical spin-flip errors. As we have already stressed, this
is not an accurate model of noise in quantum annealing.
However, adopting this perspective allows us to develop
well-defined decoding strategies, which we in turn test on
relevant distributions generated via SQA and PT. We shall find
that this leads to substantial improvements.

A. Minimum weight decoding

Let us denote the final states of the K physical qubits at
the end of a quantum annealing run by �tf = {sk}Kk=1 (with
sk = ±1). This readout amounts to a syndrome measurement
S defined by the list of values of the four-local constraints:S =

{ζc}Cc=1 = {−λsz
cu

sz
cd

sz
cl
sz
cr
}Cc=1, with ζc = ±1. Given a physical

state with violated constraints, the goal of MWD is to find the
nearest Hamming distance constraint-satisfying physical state.

Consider the ground state � = {ek}Kk=1 (ek = ±1) of the
following Hamiltonian, defined on the same LHZ graph as the
original optimization problem:

HMWD = −
∑

k∈VLHZ

σ z
k −

∑
c∈VC

ζcCc, (6)

where it is assumed that the four-body interactions Cc =
−λσ z

cu
σ z

cd
σ z

cl
σ z

cr
are sufficiently strong such that � minimizes

(satisfies) all constraint terms. The MWD decoded state is then
given by:

�MWD = {eksk}Kk=1, (7)

for the following reason: In the absence of any constraint-
violating terms � = {+1}Kk=1, i.e., the original physical state
need not be changed. When the physical state violates a
constraint, a sequence of spin-flips must be performed to
correct this violation. The second term in Eq. (6) forces the
state � to undo the measured syndrome, and the first term
minimizes the number of spin-flips (i.e., ek = −1) in G.

To gain additional insight into the MWD problem, and to
connect it to maximum likelihood decoding of Sourlas codes
[50,51], we first note that the MWD Hamiltonian (6) can be
brought back to the LHZ form (3). Let us assume that we can
find a set of spin-flips G = {gk}Kk=1 with gk = ±1 (−1 means
a spin-flip) that removes all unsatisfied constraints, i.e., that
replaces every ζc by +1. It is easy to find at least one such G

state, by performing a sequence of spin-flips that changes the
sign of each constraint one by one [this is not necessarily the
MWD state since it need not minimize the number of spin-flips;
an example is shown in Appendix F, Fig. 19(b)]. Alternatively,
one can think of G as a gauge transformation σ z

k �→ gkσ
z
k such

that ζc �→ 1, which allows Eq. (6) to be rewritten as

H
g

MWD = −
∑

k∈VLHZ

gkσ
z
k +

∑
c∈VC

Cc. (8)

Equation (8) is now in the form of Eq. (3) and thus can be
mapped back to an optimization over a complete (logical)
graph KN with couplings gij = gk:

H
spin
MWD = −

∑
i<j

gijσ
z
i σ z

j . (9)

We can extract a vector Eg = {eg

k }Kk=1 from the ground state
{sg

i }Ni=1 of this optimization problem, where e
g

k = gij s
g

i s
g

j [i.e.,
e
g

k is positive or negative if the coupling corresponding to
the pair (i,j ) is satisfies or unsatisfied, respectively]. Eg is
the minimum-weight corrected state. Taking into account the
gauge transformation we have:

�MWD = {
e
g

k gksk

}K

k=1. (10)

Note that a syndrome measurement does not uniquely
identify an error. In fact, there are 2N possible G states, related
by gauge transformations on the logical graph. Two different
choices of G will thus define two optimization problems over
a KN that only differ by a gauge transformation, i.e., the two
corresponding decoding processes are equivalent.
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B. Maximum likelihood decoding

In Eq. (9) we have formulated the decoding process in
terms of a spin system with ferromagnetic or antiferromagnetic
unit interactions gij = ±1. In this formulation, the spin-flip
error probability Pε corresponds to the probability of an
antiferromagnetic interaction gij = −1. Errors thus corrupt
the sign of the couplings of the spin system [Eq. (9)]. This
formulation of the decoding of the LHZ scheme corresponds
precisely to the decoding of a Sourlas code for error correction
of classical signals transmitted over a noisy channel, wherein
the transmitted physical bits correspond to the couplings,
while the logical bits are encoded in the ground state of an
Ising model [50,51]. As was shown in Refs. [67,68], optimal,
MLD decoding of a Sourlas code corresponds to performing
a thermal average at the Nishimori inverse temperature βN =
1
2 ln[(1 − Pε)/Pε]:

(
e
g

k

)
MLD = g

g

ij sgn
(〈
s
g

i

〉
βN

〈
s
g

j

〉
βN

)
. (11)

An intuitive explanation for the need to perform a finite
temperature decoding for optimal performance is that for
sufficiently large error probabilities Pε , the Ising Hamiltonian
(9) is corrupted to such a degree that the correct state is most
likely encoded in one of the excited states rather than in the
ground state. These excited states are optimally explored by
thermal sampling if performed at the Nishimori temperature.

C. Hardness of MWD and MLD

MWD requires the minimization of the Hamiltonian defined
in Eq. (9). This is equivalent to solving an instance of maximum
2-satisfiability, which is NP-hard; MLD requires thermal
sampling, which is #P-hard and thus even harder [69–71].
Nevertheless, we expect the typical instance to be easy in
the small Pε regime. This observation can be made more
precise thanks to the connection between Sourlas decoding and
statistical mechanics. Specifically, the spin system defined in
Eq. (9) will be in a ferromagnetic phase for sufficiently small
error probabilities Pε , where decoding is expected to be easy.
On the other hand, a disordered phase will arise for sufficiently
large Pε . A phase transition between the decodable (ordered)
and undecodable (disordered) regimes is thus expected at
a threshold error probability Pth. A mean-field analysis of
the problem in Eq. (9), valid in the large-N limit, reveals
the presence of a phase transition between ferromagnetic
and spin-glass phases at Pth = 1/2 [9,10]. Moreover, in the
ferromagnetic phase, the thermal average in Eq. (11) recovers
the uncorrupted state perfectly at any finite temperature.
In this sense, in the large-N limit, MWD is equivalent to
MLD.2 On the other hand, for Pε � Pth = 1/2, we are in the
undecodable regime, in which (eg

k )MLD does not recover the
uncorrupted state. Note that the perfect decoding achievable
with MWD/MLD for Pε � 1/2 is a consequence of the fault
tolerance of the LHZ scheme when the only source of errors
is random spin-flips [17,21].

2At finite N , MWD decoding is equivalent to MLD decoding in the
Pε → 0 (βN → ∞) limit only.

D. Weight-3 parity check with belief propagation

Given a classical error correcting code, instead of perform-
ing MLD, which is hard, one can use belief propagation (BP)
as a suboptimal, but more manageable, decoding technique,
where decoded values are iteratively updated based on the
expected error rate. It turns out that BP works very well with
low-density parity check (LDPC) codes.

The relative alignment of a pair of logical spins q̄i and q̄j can
be recovered in multiple ways. One way is to use the value of
the physical spin qi,j , but using weight-3 parity checks there are
N − 2 additional independent ways, specifically, qi,kqk,j , with
k = i,j . This particular approach was proposed by Pastawski
and Preskill (PP) [21] and can be viewed as a classical LDPC
code, which can be decoded with belief propagation. We follow
the same implementation of BP as used in Ref. [21]. For the
case of weakly correlated errors, the probability of a decoding
error is exponentially small in N [21]. PP noted that including
higher-weight parity checks can yield further improvements.
Indeed, to approach the performance of the MLD described in
Sec. IV B, one should include all parity checks and use finite
temperature decoding. We do not consider these extensions
here; they are an interesting possibility for future work.

E. Decoding results

To understand whether the advantage that ME has over
LHZ originates in the decoding step, we studied the efficacy
of several other decoding strategies for the LHZ scheme. We
included MWD, BP of Ref. [21], MVD over a large number
of trees (100). We did not include MLD since it gives a well-
defined decoding procedure only in the case of random spin-
flips, where the error probability Pε and the corresponding
Nishimori temperature are known.

Different decoding strategies using majority vote give very
similar results, as shown in more detail in Appendix C. This
suggests that majority voting schemes that attempt to exploit
a large number of decoding trees are not beneficial, as a
consequence of the fact that the noise generated via SQA
simulations does not correspond to uncorrelated random bit
flips. (We explicitly show how the SQA results differ from
uncorrelated noise in Appendix E.) In the latter case, we would
expect the decoding errors to decay exponentially with the
number of trees (below a decoding threshold as discussed in
the previous subsection).

We focus our attention here on MWD, which gives a
substantial improvement over MVD and slightly improved
performance over BP as seen in Figs. 8(a) and 8(b). Fig-
ures 8(b) and 8(c) show that, after MWD, the LHZ scheme
becomes competitive with ME on the K8 instances, although
its performance remains worse on the K16 instances. We thus
cannot conclude that MWD (which requires substantial effort
beyond MVD) is sufficient to enable the LHZ scheme to
outperform ME.

A closer examination shows that when the LHZ scheme
with MWD is superior to ME, it typically does so by having
a peak in the success probability at almost vanishing penalty
strengths [represented by the color scale of Figs. 8(b) and 8(c)].
Figure 9(a) shows the success probability as a function of
the penalty strength for an instance with the aforementioned
behavior. In this situation, success arises entirely from the
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FIG. 8. Performance of different decoding strategies for the LHZ scheme. Shown are scatter plots comparing success probabilities obtained
at the optimal penalty strength for (a) the LHZ scheme with BP decoding (using an error rate of 0.2 and 10 iterations) and the ME scheme on
the K8 set; (b) the LHZ scheme with MWD decoding and the ME scheme on the K8 set; (c) same as (b) but for the K16 set. Data were obtained
with SQA simulations (104 sweeps, β = 1). Color denotes the energy penalty values for the LHZ scheme. Note that LHZ outperforms ME
only for optimal penalty strength �1 (blue dots).

decoding process. This is related to the fact that MWD at zero
penalty strength corresponds to finding the ground state of
the following approximation of the original logical problem:
Jij → sgn(Jij ). To see this, note that when the energy penalties
vanish, the physical ground state is trivially given by the
physical configuration with all spins aligned to their local
fields. This configuration is typically a leaked state. Following
the steps described in Sec. IV A, it is easy to check that
gij = −sgn(Jij ) is a possible choice for a gauge transformation
which allows one to write the MWD problem Eq. (9), i.e.,
the approximation of the logical problem mentioned above. It
turns out that for our set of K8 instances, the ground state of
this approximate problem typically corresponds to the ground
state of the original problem, resulting in the observed peak in
success probability. Even when this does not happen, however
[as in the examples of Figs. 9(b) and 9(c)], MWD gives
comparable or better results than MVD.

V. CONCLUSIONS

The path toward the achievement of “quantum supremacy”
[72] using quantum annealing is fraught with many challenges,

among which is the embedding problem we have focused on
here. Lechner, Hauke, and Zoller have proposed an embedding
scheme which they claimed exhibits intrinsic fault tolerance
[17]. Unfortunately, our findings do not support the fault
tolerance claim in the context of a realistic error model for
quantum annealing: We find that the performance of the LHZ
scheme suffers under the errors generated using simulated
quantum annealing, as well as (to a smaller degree) under
classical thermalization. This is perhaps unsurprising, since
the fault tolerance claim was based on a model of weakly
correlated spin-flip errors, which does not accurately describe
the errors that arise due to dynamical and thermal excitations
during the course of a quantum annealing evolution (see
Appendix E).

Since the earlier minor embedding scheme by Choi [12,13]
has already found widespread use, it is important to compare
the performance of the two schemes. A particularly attractive
feature of the LHZ scheme is that it separates the problem
of controlling local fields and couplings. In principle, this
appears to allow for a drastic design simplification. Still,
it remains to be seen how flexible the LHZ scheme is to
the occurrence of faulty qubits or couplers, a problem that

FIG. 9. Comparison of MWD and MVD for the LHZ scheme as a function of energy penalty. Shown are results for two representative K8

instances (instance 3 and 5) and a representative K16 instance (instance 5). (a) MWD wins by peaking at a very small energy penalty value.
(b) A rare example where MVD performs better than MWD on a K8 instance. (c) A typical K16 instance where MWD beats MVD by a large
margin.
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FIG. 10. Examples of leakage errors in the LHZ scheme. Blue circles represent logical qubit errors, i.e., the corresponding physical qubits
have been flipped from the physical state representing the logical ground state (all red circles). Because of the presence of unsatisfied constraints
(red dots) the two configurations shown are leakage states, i.e., do not represent a logical state and need to be decoded. (a) A small number of
spin-flips, as expected for a model of weakly correlated, random spin-flips. (b) A small number of constraints is unsatisfied, but a large number
of spin flips have occurred, as expected for a realistic model of open-system quantum annealing.

has prompted the development of improvements to Choi’s
original ME scheme, showing that ME is easily adaptable to
architectures with faults [14,18]. Another attractive feature of
the LHZ scheme is that it is amenable to a host of different
decoding techniques, beyond the majority vote decoding
strategy that is typically used for ME. Indeed, we have
derived optimal minimum weight and maximum likelihood
decoding strategies for the random bit-flip error model and
demonstrated that the former boosts the performance of the
LHZ scheme for SQA. It is possible that the LHZ scheme may
rival or surpass the ME scheme with even better decoding
strategies, tailored to correlated spin-flip errors.

However, in several other important respects, the ME
scheme appears to be more attractive. First, the LHZ scheme
requires a factor of two more physical qubits than ME for
a given number of logical qubits. Second, the LHZ scheme
requires four-body interactions (or two-body interactions with
qutrits; it is an open question whether this would change our
results), which can be harder to implement, while the ME
scheme only requires standard, realizable two-body interac-
tions between qubits. Third, we found that the optimal penalty
strength tends to be lower for the ME scheme, which can be
important given practical constraints on the highest energy
scales achievable, especially in superconducting flux qubit-
based quantum annealing devices. Given that the penalties
are implemented differently in the two schemes, it is possible
that a suitable physical implementation of the LHZ scheme
achieves a higher maximum penalty strength, making this point
minor. However, both schemes suffer from requiring energy
penalties to grow with problem size, an issue that needs to be
addressed in both schemes for scalability (see Appendix F).
Finally, and perhaps most importantly, we found that the
ME scheme seems to outperforms the LHZ scheme under a
broad set of conditions. Namely, subject to identical simulation
parameters and decoding effort, the success probabilities of the

ME scheme are nearly always higher than those of the LHZ
scheme for randomly generated Ising instances over complete
graphs, up to the largest sizes we were able to test. We have
explained this finding in terms of better spin-update properties
of the ME scheme under SQA simulations.

We note several caveats regarding our results. First, the LHZ
scheme’s spin-update bottleneck under SQA simulations does
not necessarily correspond to a performance bottleneck for
an actual quantum annealing device: We used a discrete-time
quantum Monte Carlo version of SQA with only timelike
cluster updates, and such a model is ultimately not a complete
model of a true quantum annealer. Only experiments or
more detailed open-system quantum simulations can definitely
address whether one scheme has a true implementation

FIG. 11. Annealing schedule used in our SQA simulations. The
vertical axis units are arbitrary but correspond to the energy scale of
our Hamiltonians.
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advantage over the other. However, the past success of SQA
simulations in reproducing experimental quantum annealing
data does suggest that our results have predictive power.

Second, our study is not comprehensive, and our con-
clusions are obviously limited to the set of instances we
have considered. Thus, while we have observed a drop in
performance for the LHZ scheme relative to the ME scheme
when going from K8 to K16, our study does not suffice to

ascertain whether the observed relative performance between
the two embedding schemes persists for larger problem sizes.

Third, we focused on simulations with identical parameters
and annealing schedule, with the choices based on present
values for quantum annealing devices [47]. We expect that
using lower temperatures and longer anneals will improve the
performance of both schemes, but whether it changes the rel-
ative performance is unclear. Furthermore, we did not explore

FIG. 12. Comparison of different decoding strategies for the LHZ scheme. Shown are scatter plots comparing the success probabilities
computed via SQA for [(a) and (b)] belief propagation of Ref. [21], [(c) and (d)] majority vote over 100 spanning trees, and [(e) and (f)]
MWD, all relative to majority vote decoding over three and five spanning trees for the K8 [(a), (c), and (e)] and K16 [(b), (d), and (f)] instances,
respectively. The optimal penalty was used for each instance. SQA parameters: 104 sweeps for K8 and 5 × 104 sweeps for the K16 instances,
β = 1.
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the possibility of separately optimizing all the parameters of
both schemes to improve their respective performance. For
example, one possibility is to optimize the annealing schedule
for each scheme separately, as well as using a third independent
annealing schedule for the constraint strength.

Finally, in our tests, we did not include the effects of
errors in controlling the local fields and couplings. Given that
the LHZ only needs to control the local fields precisely to
implement the logical problem, while the ME scheme requires
control of both local fields and couplings, it is conceivable that
under inclusion of noise on the local fields and couplings, the
LHZ scheme may be robust to such hardware implementation
errors. This in itself would be very advantageous since such
errors can dominate the performance of quantum annealing
devices [73,74].

In conclusion, there is no question that the field of quantum
annealing will benefit from continued research into improved
embedding methods. An important consideration that should
guide such efforts is the integration of quantum error correction
to achieve scalability. Our work highlights the importance
of testing new embedding methods using errors models that
directly match quantum annealing.
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APPENDIX A: MAPPING PHYSICAL STATES
TO LOGICAL STATES FOR LHZ

Examples of leakage errors are given in Fig. 10. The absence
of unsatisfied penalties (all four-local constraints are satisfied)
ensures that the physical configuration describes a legitimate
logical configuration. As described in Ref. [17], a logical
qubit configuration can be reconstructed from the values of
an appropriately chosen group of independent physical qubits.
One possibility is to choose a group of physical qubits that
corresponds to a spanning tree of the logical graph. For
example, the group of physical qubits corresponding to the
upper diagonal of Fig. 10(a) [or Fig. 10(b)] defines a spanning
chain q1,2,q2,3, . . . ,qN−2,N−1,qN−1,N . To see how to perform
decoding, recall that the values of the physical qubits in
the LHZ scheme specify the alignment of the corresponding
logical pairs. This implies that each physical configuration
corresponds to a logical state only up to an overall flip of all
logical qubits. We may thus choose, by convention, to fix the
value of one logical qubit: q̄1 = +1. To decode the value of
logical qubit q̄i , we simply read out the relative alignments of
the logical pairs following the chain induced by the spanning
tree which connects q̄i to q̄1. Using the upper diagonal chain

FIG. 13. Effect of increasing the number of sweeps and lowering
the temperature. A comparison of the SQA results using majority
vote for the K8 instance shown in Fig. 3 for an increasing number of
sweeps (106) and lowering the temperature (β = 5).

mentioned above, we can decode as follows:

q̄i =
i−1∏
m=1

qm,m+1. (A1)

Similarly, the first column of Fig. 10(a) defines a starlike
spanning tree where each qubit is only connected to q̄1:
q1,2,q1,3, . . . ,q1,N−1,q1,N , and thus we have:

q̄i = q1,i . (A2)

In the examples given in Fig. 10(a), decoding using the chain of
Eq. (A1) gives the wrong state (one error hit), while decoding
using the star of Eq. (A2) gives the correct state (no errors hit).

FIG. 14. Effect of increasing the number of swaps. A comparison
of the PT results for the K16 instance shown in Fig. 5 for different
numbers of swaps. Increasing the number of swaps keeps the success
probability more fixed at high penalty values.
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APPENDIX B: NUMERICAL SIMULATIONS

1. Simulated quantum annealing

Our simulated quantum annealing simulations are based on
a discrete-time quantum Monte Carlo algorithm [5,40]. Details
of the implementation of this algorithm have been described
elsewhere [75]. Here we use a fixed Trotter slicing of Nτ = 64.
The annealing schedule used is shown in Fig. 11.

2. Parallel tempering

Parallel tempering (also known as exchange Monte Carlo)
[49] is a standard method used to thermalize spin systems.
In PT simulations, replicas of the spin system at different
temperatures are evolved independently for a fixed number of
Metropolis updates, followed by a “swap” operation. A swap
involves comparing the energies of neighboring replicas and
swapping their temperatures with a probability pswap given by:

pswap = min{1, exp [(Ei+1 − Ei)(βi+1 − βi)]}, (B1)

where (βi+1 − βi) < 0,∀i. For our simulations we perform 10
sweeps of single spin Metropolis updates per swap, and we
perform a total of 105 swaps. We use 64 different temperatures
distributed according to:

βi =
(

0.1

20

)(i−1)/63

β1 (B2)

with β1 = 20 and i = 1, . . . ,64.

APPENDIX C: DECODING STRATEGIES

Here we provide a more direct comparison of the various
decoding strategies we have tried: MWD, BP as in Ref. [21],
and majority vote on a large number (100) of random spanning
trees. As remarked in the main text, we did not implement
MLD.

To perform MWD, we ran simulated annealing with the
Hamiltonian in Eq. (9) 100 times with a linear schedule for
β ∈ [0.1,5] and 1000 sweeps. We found this to be sufficient
to find the ground state of the decoding Hamiltonian Eq. (9)
for our relatively small problem sizes. In the BP decoding

approach of Ref. [21] the alignment of a given pair of logical
qubits (q̄i ,q̄j ) is determined by iteratively updating its value
using a majority vote on N − 2 parity checks (qil,qlj ) (l = i,j ).
We then use a single random spanning tree to read out the full
logical state.

The various panels of Fig. 12 present our SQA success
probability results for the same 100 random K8 and K16 in-
stances considered earlier. It can be seen that the MVD scheme
give comparable results, with the BP and MWD scheme giving
much better results, as discussed in the main text.

APPENDIX D: ADDITIONAL RESULTS
FOR THE LHZ SCHEME

1. SQA simulations for at colder temperatures
and larger number of sweeps

In the main text, our SQA simulations for the K8 instances
were limited to β = 1 and 104 sweeps. Here we show for the
same instance in Fig. 3 that increasing the number of sweeps
and lowering the temperature does not necessarily improve the
performance of LHZ relative to ME. We show in Fig. 13 the
performance of each when using β = 5 and 106 sweeps. Both
the ME and LHZ performance is improved, but relative perfor-
mance is unchanged with ME continuing to show better results.

2. PT simulations for LHZ at higher swaps

In Sec. III A of the main text we noted that the fixed
number of updates performed in the PT simulations on the
LHZ embeddings was insufficient to properly thermalize the
PT replicas, which led to the drop in success probability at large
penalty strength in Fig. 5. In order to validate this conclusion,
we increase the total number of swaps (the number of sweeps
per swap remains fixed) by an order of magnitude and show the
corresponding results in Fig. 14. With this increased number
of swaps, the performance saturates for large penalties as
expected, indicating that the behavior observed in Fig. 5 is
indeed a consequence of an insufficient number of updates.
This behavior is to be expected, since single spin-flip thermal-
ization is completely frozen in the limit of very large penalty
values; in such a limit, only cluster updates of physical qubits

FIG. 15. Distance test between PT and SQA. Scatter plot of the distance [Eq. (D2)] of the LHZ and ME states obtained via SQA from their
respective PT simulation states. (a) Higher temperature, β = 2.1. (b) Lower temperature, β = 4.0. For most instances the ME scheme distance
is smaller, indicating better thermalization. Results are shown for all 100 K8 instances.
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FIG. 16. Average error rate. Shown is a histogram of the average error rate for the 100 instances for the (a) K8 and (b) K16 instances for
SQA with β = 1 and 104 sweeps. The error rate is calculated as follows. For the 1000 states generated for each instance and each penalty value,
we find the average minimum distance in terms of spin flips to the nearest degenerate ground state. The distance divided by the total number
of spins gives the average error rate for a given instance and penalty value. The data in the histogram uses the error rate at the optimal penalty
from the data shown in Fig. 2.

corresponding to a logical spin-flips would be efficient update
moves (these are moves we do not perform in our simulations).

3. Distance between the SQA and PT states

In order to quantify how close the ME and LHZ states are to
the PT states, we use the following distance measure [76]. For
each instance i we define the probability distribution function
pi(E) of finding a state with physical energy E:

pi(E) = 1

NE

NE∑
n=0

δEn,E, (D1)

where En is the energy of the nth excited state and NE is the
total number of energy levels observed for the given instance.
We then compute the total variation distance

D(p,q) = 1

2

∑
x

|p(x) − q(x)| (D2)

for a given instance i between the probability distributions for
SQA and PT, i.e., we let p = p

SQA
i and q = pPT

i . We resort to
this distance measure because of the relatively small number
of states (103) we have for each scheme, which prevents us
from reliably computing, e.g., the trace-norm distance between
states. Figure 15 is a scatter plot of the distances comparing
the ME and LHZ schemes, evaluated at the penalty that
maximizes the success probability (after MV decoding) for
each respectively, at two inverse temperatures of PT. For the
majority of the instances, the ME states tend to be closer to
the PT states than the LHZ scheme, in support of our assertion
that the ME scheme thermalizes more easily than the LHZ
scheme.

APPENDIX E: SQA NOISE IS NOT UNCORRELATED

Our motivation for using SQA as a noise model is that
it mimics thermal noise effects we expect from a finite
temperature quantum annealer. Here we demonstrate how
SQA noise differs from uncorrelated noise on the instances

FIG. 17. Error probability as a function of distance from the corner of the LHZ graph. Shown is the probability that a spin at distance d

from the top corner of the LHZ graph flips subject to uncorrelated noise and SQA-generated noise for two K8 instances. (a) K8: instance 3,
γ = 2.9. (b) K8: instance 95, γ = 2.4. The uncorrelated case is flat as expected, while the SQA case has a nontrivial distance dependence.
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FIG. 18. Distance dependence of error probability across all K8

instances. Shown is a histogram of the values of the coefficients of a
degree-6 polynomial fit to the curves generated as in Fig. 17, but for
all 100 K8 instances. We define a cutoff based on the average (over
distance) error rate minus twice the standard deviation of the error
rate of the uncorrelated noise. For each coefficient of the polynomial,
if the coefficient is above this threshold, we count it, otherwise we do
not. The histogram shown is the result of this binning process.

we have studied. First, Fig. 16 shows the average error rate for
our instances in the SQA simulations. For all instances, the
average error rates are below 0.5. Thus, our SQA simulations
generate noise in a regime that is favorable from the perspective
of decoding the LHZ scheme if in addition the noise were
uncorrelated [21].

However, SQA generates noise that is not uncorrelated. To
show this, we contrast it with uncorrelated noise and perform
the following test. Starting at the top corner of the LHZ graph
for the K8 case [the spin labeled 1,2 in Fig. 1(c)], we calculate

the average error rate for the spins at distances 0 to 6 (the largest
for the K8 case) from this corner spin; see the caption of Fig. 16
for how the error rate is calculated. Note that there are d + 1
spins at distance d. For uncorrelated noise we expect there
not to be any dependence on distance. We show in Fig. 17
the behavior of SQA-generated noise for the two instances
shown in Figs. 5(a) and 5(b), relative to uncorrelated noise,
generated by randomly flipping spins with a probability equal
to the averaged SQA error rate per spin (over all distances),
to generate 103 uncorrelated error states on the physical state
associated with the corresponding logical ground state of the
LHZ scheme.

Clearly, the two cases behave very differently: As expected,
the uncorrelated noise is effectively flat, while the SQA-
generated noise has a nontrivial dependence on distance. This
distance behavior is strongly instance and penalty strength
dependent. To demonstrate that this difference occurs across
all instances, we fit both the uncorrelated and SQA results
to a degree-6 polynomial, as shown in Fig. 18. Ideally, the
uncorrelated noise case will have its entire weight on the
constant (x0) term. We see that, as expected, the uncorrelated
noise has most of its weight on the low powers of the
polynomial, whereas the SQA-generated noise has most of
its weight on the higher powers.

APPENDIX F: SCALING OF THE STRENGTH
OF ENERGY PENALTIES

An important limitation of the embedded approach is that
the strength of the energy penalties grows with problem size.
This is true not only for the ME scheme [58] but also for
the LHZ scheme. We do not have a general lower bound for
the strength of the penalties in the LHZ scheme, but simple
arguments suggest that, in both schemes, the strength of the
energy penalties must grow linearly with the number of logical

FIG. 19. Configurations used to derive a lower bound on the scaling of the energy penalty strength. (a) Antiferromagnetic case with Jij = 1.
Colors represent alignment to the local fields: All the ∼N2 can be aligned (blue) to the physical local field by violating only N constraints.
(b) Random couplings case with Jij = ±1. Colors represent physical flips (blue) from the logical ground state: a domain of ∼N2 physical
qubits can be flipped by violating only one constraint. To prevent these two configurations from being the physical ground state, the strength
of the energy penalties should scale in both cases with N .
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qubits N . To see this in the case of the LHZ scheme, consider,
e.g., a completely antiferromagnetic KN . Roughly half of the
couplings are frustrated in the logical ground state. This should
be mapped to roughly half the physical qubits in the LHZ
scheme being down and the other half being up. However,
for sufficiently weak constraints, the LHZ ground state is a
physical configuration like that shown in Fig. 19(a) where
all physical qubits are pointing down, i.e., aligned with the
physical local field. The energy from aligning with the local
fields is of order N2, while the number of violated constraints
is of order N . This implies that the strength of the constraints

must grow at least with N in order for the physical ground
state to faithfully represent the logical ground state. Consider
now a KN with random couplings Jij = ±1. In this case, we
expect the logical ground state to be highly frustrated, with
roughly half of the corresponding physical qubits not aligned
to the local fields. Flipping a domain of order N2 physical
qubits like that shown in Fig. 19(b) will typically result in a
change in the energy of the physical configuration of the order
of

√
N2 = N . To avoid the possibility of such domain-flips to

lower the energy of the physical configuration, the constraints
must grow again at least with N .
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