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Effect of component variations on the gate fidelity in linear optical networks
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We investigate the effect of variations in beam-splitter transmissions and path-length differences in the nonlinear
sign gate that is used for linear optical quantum computing. We identify two implementations of the gate and
show that the sensitivity to variations in their components differs significantly between them. Therefore, circuits
that require a precision implementation will generally benefit from additional circuit analysis of component
variations to identify the most practical implementation. We suggest possible routes to efficient circuit analysis
in terms of quantum parameter estimation.
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I. INTRODUCTION

Optical networks are important for a wide variety of
applications, from conventional optical routers and classical
optical computing [1] to quantum communication networks,
linear optical quantum computing, and optical metrology
[2–4]. The physical system that underpins all of these networks
is the multimode interferometer. It is a collection of passive
optical elements such as beam splitters, phase shifters, and
polarizers, as well as active elements such as optical squeezers,
photodetectors, and switches. These networks can be imple-
mented in bulk optics, fibre optics, or on chips. The typical
applications such as optical quantum computing, quantum
imaging, and quantum metrology all require an extremely
high precision in the optical elements. However, in any
practical implementation there will be significant variations
in the interferometer elements (sometimes exceeding 10%
of the specified value). Depending on the application, such
variations may be critically detrimental to the operation of the
interferometer. Furthermore, the variations in some elements
will have a much greater effect on the functionality of the
interferometer than those of others. It is therefore key to
improve our understanding of element sensitivity of optical
circuits.

The susceptibility of optical circuits to variations in their
components has been studied before, particularly in the context
of optical quantum information processing. The effect of
imperfect detectors in linear optical quantum computing was
studied by Glancy et al. [5], and beam-splitter variations
as a source of statistical errors in linear optical gates were
considered by Ralph et al. [6]. Lund et al. considered the
effect of nonideal ancilla mode creation and detection [7].
Rohde, Ralph, and Nielsen studied mode mismatching in the
temporal and frequency domain, and determined the optimal
wave-packet shapes to reduce mode mismatching errors [8,9].
A general approach to systematic errors in linear optical gates
was provided by Rohde et al. [10,11]. Here, we study the effect
of variations in the elements of optical circuits for different
implementations of the same gate. We find, surprisingly, that
different implementations of the same gate—with similar
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complexity—can have dramatically different responses to
variations in optical elements.

In this paper, we explore the sensitivity of the nonlinear
sign (NS) gate used in linear optical quantum computing [2]
as an example of circuit variation analysis. We consider two
versions of this gate with identical circuit complexity in terms
of the number of optical elements, input states, and detection
devices, and operating at the same success probability (see
Fig. 1). We will find that the design of the gate has significant
implications for the process fidelity’s sensitivity to variations
in the components. This means that any optical interferometer
design will have to be tested against alternative designs for
the best performance given realistic components. In Sec. II we
present two different version of the NS gate and in Sec. III we
study the effect of components variations. Section IV looks at
the broader connection to multiparameter estimation theory,
and we conclude with a brief discussion in Sec. V.

II. TWO NS GATE DESIGNS

The NS gate is a key component in the original proposal
by Knill, Laflamme, and Milburn (KLM) for a quantum
computer constructed from linear optical elements, single-
photon sources, and photodetection [2]. The main operation of
the gate is to induce a nonlinear phase shift UNS on an optical
mode defined by

α|0〉 + β|1〉 + γ |2〉 −→
UNS

α|0〉 + β|1〉 − γ |2〉, (1)

where |n〉 is the state of n photons in the input mode and
(α,β,γ ) are complex amplitudes normalized to 1. The action
of the NS gate on photon number states |n〉 with n > 2 is not
defined and allows additional freedom in the construction of
UNS.

The optical circuit for the original NS gate is shown
in Fig. 1(a). It is a simple circuit that lends itself well to
analysis. However, the circuit is not unique. We can define
a “reverse” NS gate, shown in Fig. 1(b), that achieves the
same transformation on the space of zero, one, and two
photons, with the same probability of success. However, the
two implementations do differ in the way they respond to
variations in the transmission coefficients on the beam splitters
and path-length deviations. In this paper we analyze the
difference in performance under these systematic errors of the
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FIG. 1. Two designs for the NS gate: (a) the KLM NS gate and
(b) the reverse NS gate. The two circuits have the same complexity
in terms of components, input states, and detectors, and they have the
same probability of successfully applying an NS gate (psuccess = 1

4 ).
However, the two circuits differ dramatically in the way they respond
to variations in their component characteristics.

two incarnations of the NS gate. We will refer to the original
gate in Fig. 1(a) as the KLM NS gate, and to Fig. 1(b) as the
reverse NS gate.

The NS gate is nonlinear in the sense that no combination
of linear optical elements can implement the transformation
in Eq. (1). The gate is induced by interference with ancilla
photons in additional modes, followed by postselection on a
particular measurement outcome in the ancilla modes. This
implies that the NS gate is successfully implemented with a
probability smaller than unity. The traditional implementation
employs a single ancilla photon and two extra optical modes
[2]. The maximum success probability of any NS gate is
psuccess = 1

4 [12,13], which is achieved by both implemen-
tations in Fig. 1.

Next, we establish our conventions in describing the NS
gates. We define the action of a beam splitter as a matrix
transformation UBS on the mode operators â1 and â2 of the
two input modes a1 and a2, such that

UBS â1 U
†
BS = cos θ â1 + sin θ â2,

(2)
UBS â2 U

†
BS = − sin θ â1 + cos θ â2,

and the mode operators are defined by the usual commutation
relations

[âj ,â
†
k] = δjk, (3)

with δjk the Kronecker symbol. All other commutators are
zero. The KLM NS gate in Fig. 1(a) has beam-splitter angles

θ1 = arccos η1, θ2 = arccos η2, θ3 = −θ1, (4)

where

η1 = 1

4 − 2
√

2
and η2 = 3 − 2

√
2 . (5)

The phases ϕj in Fig. 1(a) are all zero [2]. We determine the
beam-splitter angles for the reverse NS gate by requiring that
the success probability of the ideal gate is again one quarter,
and that the ancilla state and detection signature is the same as
the KLM NS gate. Since we are primarily interested in finding
an alternative gate and at this point do not wish to generate
a complete family of NS gates, this construction suffices. We
construct the mode transformations from Eq. (2) and collect
the terms that have a single creation operator â

†
2 and no mode

operators â
†
3, corresponding to the postselection on a detected

photon in mode a2 and no detected photons in mode a3. We
then obtain coefficients c0, c1, and c2 for the zero-, one-, and
two-photon terms in the output state, respectively. Solving for
c0 = c1 = −c2, we obtain

ξ1 = arctan χ1, ξ2 = π + arctan χ2, ξ3 = −ξ1, (6)

where

χ1 = 4
√

8 and χ2 =
√

16
√

2 − 13

7
, (7)

with all phases ζj in Fig. 1(b) equal to zero. Postselection is
implemented by projecting the three-mode output state onto
the state |1,0〉23, which has exactly one photon in mode 2,
and zero photons in mode 3. For these values, the coefficients
|ck| = 1

2 , yielding an overall success probability of a quarter,
independent of the input state in mode a1. In the next section
we consider imperfections in the beam-splitter transmission
coefficients and the path lengths in the interferometer.

III. IMPERFECT COMPONENTS

In any practical implementation of the NS gate, there will
be variations in the components, such as beam-splitter reflec-
tivities and path-length differences that introduce unwanted
phases in the optical modes. These are systematic errors
that must be overcome by calibration of some sort, rather
than quantum error correction codes. In this section we will
determine the sensitivity of each of the NS gates to variations
in the three beam splitters and four path lengths. To this end
we use the gate fidelity as a figure of merit [14,15]. We find
that given a specified target gate fidelity, the tolerances of the
optical components vary significantly.

Let E(ρ) denote a trace-preserving quantum process on a
density operator ρ. We define the gate fidelity of E relative to
an ideal (unitary) gate U as the quantity

F (E,U ) =
∫

dψ 〈ψ |U † E(ψ) U |ψ〉, (8)

where dψ is the uniform (Haar) measure over the quantum
state space [15]. Unfortunately, the NS gate is a non-trace-
preserving quantum process, since the probability of success
for the gate is less than unity. Moreover, the success probability
of the gate changes significantly with variations in the optical
components. The probabilities of finding the detector signature
that heralds success for the two NS gates as a function of
variations in the beam-splitter angles are shown in Fig. 2.
While the theoretical maximum success probability of the
ideal NS gate is one quarter, larger probabilities of finding
the right detector outcomes are possible when the beam-
splitter coefficients change and the implemented gate deviates
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FIG. 2. The probability of a detector signature that heralds the
success of the NS gates for varying beam-splitter transmission
coefficients and equal amplitudes α = β = γ = 1/

√
3. In the top

graph, �θj is the variation away from the ideal value θj in the KLM
NS gate, while in the bottom graph �ξj is the variation away from
the ideal value ξj in the reverse NS gate. The black line indicates the
ideal success probability of one quarter. Success probabilities larger
that 0.25 are allowed, and indicate a significant departure from the
ideal NS gate.

significantly from the ideal NS gate. We note that the curves
for the first and third beam splitters are mirror images of each
other in both the KLM and reverse NS gates. This is explained
by the time-reversal symmetric nature of the gates, keeping in
mind that time-reversed detectors are sources, and vice versa.

The variation in success probability means that we cannot
use Eq. (8) in a straightforward manner. The process E must
be normalized, but this means that Eq. (8) can no longer be
evaluated analytically for the NS gates. Instead, we average
the gate fidelity over 10 000 random uniformly sampled input
states for each value of gate component variations. Since
our input state consists of a linear superposition of the first
three Fock states (and ignoring a global phase), the state
space is given by the unit sphere in a three-dimensional
complex Hilbert space {ψ ∈ C3 : ‖ψ‖ = 1}, where C is the
complex plane and ‖ · ‖ is the usual complex vector norm.
Any state |ψ〉 in C3 can be obtained by applying a suitable
matrix U to an initial state |ψ0〉, and finding a uniform
distribution over the state space reduces to finding a uniform
distribution over the set of unitary matrices U acting on C3

with respect to the Haar measure. This is accomplished using
the complex normal distribution on C3 [16]. In the remainder
of this section, we study the effect of beam-splitter variations
and path-length differences individually, and calculate the

FIG. 3. The gate fidelity of the KLM and reverse NS gates for
variations �θ and �ξ in the three beam splitters, respectively. The
reverse NS gate is most sensitive to the first and third beam splitter,
while the KLM NS gate is sensitive only to the second.

minimum, maximum, and mean gate fidelities for a distribution
of variations across the circuit.

A. Imperfect beam splitters

The gate fidelities for the KLM and reverse NS gates with
imperfect beam splitters are shown in Fig. 3. The KLM NS
gate is particularly sensitive to variations in the second beam
splitter, which is the one that directly interacts with the signal
mode. The gate is significantly less sensitive to variations in the
two other beam splitters. For example, at a fixed gate fidelity
of F = 0.999, the tolerance in the first and third beam splitters
(�θ1 and �θ3, respectively) is more than three times larger
than �θ2. The curves for the first and third beam splitters are
again mirror images of each other, as expected. The reverse
NS gate shows a similar range of sensitivities to beam-splitter
variations. Again, the two beam splitters in the direct signal
path have the greatest effect on the gate fidelity, and the shape
of these curves are very similar to the �θ2 curve for the KLM
NS gate. Again, we have mirror symmetry for the first and
third beam splitters.

Both gates have a success probability of psuccess = 1
4 , but

the sensitivity of the reverse NS gate of variations in two beam
splitters instead of one makes the KLM NS gate the preferable
circuit for practical implementations. In implementations that
require high precision, the circuit design may require a variable
beam splitter such as a directional coupler that is tuneable
either mechanically [17], electrically [18], or thermally [19].
Since these structures are likely costly and will introduce other
imperfections (such as drift), the fewer beam splitters that need
to be corrected in this way, the better. Generally, there will be
room to optimize the circuit design based on the tolerances
of the circuit on the variations in its elements. In practice,
variations in beam splitters can be quite large in bulk optics
(on the order of 10%).

B. Variations in path lengths

A similar analysis can be performed for the various
path-length differences in the circuit. The KLM NS gate is
completely insensitive to path-length variations encoded in
the phases ϕ1 and ϕ2, as expected. Similarly, the reverse NS
gate is insensitive to variations in ζ1 (see Fig. 4). For the
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FIG. 4. The gate fidelity of the KLM and reverse NS gates for
variations �ϕj and �ζk in the four relevant path lengths, respectively.
The KLM NS gate is again far less sensitive to path-length variations
than the reverse NS gate.

remaining phases there is a marked difference in the two gates.
The KLM NS gate loses only about a percent in fidelity when
the path lengths associated with ϕ3 and ϕ4 varies by half a
wavelength, while the reverse gate sees a significant drop in
average gate fidelity. Compared to the beam-splitter variations
we can say that the KLM NS gate is effectively insensitive
to path-length differences, while the reverse NS gate is very
sensitive to path-length differences. This is another reason to
strongly prefer the KLM NS gate over the reverse NS gate, and
underlines the importance of circuit analysis for component
variations.

C. Compound variations

In addition to individual errors in components, we may
consider compound errors in all beam splitters and path
lengths. This describes the more realistic behavior where all
components are subject to small variations. We define an error
vector δ with eight components (three for the beam splitters
and four for the path lengths) and magnitude |δ|. For a given
total error r distributed among the components, all possible
error configurations are described by a 6-sphere of radius |δ|.
We randomly sample this error space and calculate the gate
fidelity. The results are shown in Fig. 5.

For each value of |δ| we generate 50 000 random vectors
δ. The gate fidelity for each δ is then calculated again using
10 000 random input states into the NS gate. In Fig. 5 we
plot the minimum, maximum, and mean gate infidelities
1 − F as a function of |δ|. The maximum gate infidelity
is the worst case scenario for a given |δ|. It reaches a
maximum of approximately 0.76 with increasing |δ| for both
the KLM and reverse NS gate. This value represents the limit
where the circuit is so badly constructed that it no longer
outperforms a randomly constructed circuit, and we call this
the randomization limit. The gate infidelity of the reverse NS
gate reaches this value much faster than the KLM NS gate,
which is consistent with our earlier observation that the reverse
NS gate is more sensitive to variations in the two in-line beam
splitters, compared to the KLM NS gate that is sensitive to
variations in the single in-line beam splitter. In both cases the
effect of path-length variations is much less important than the
beam-splitter variations.

FIG. 5. Minimum, maximum, and mean gate infidelities as
functions of the compound error |δ| for the KLM (top) and reverse
(bottom) NS gates. The minimum gate fidelity exhibits strong
statistical fluctuations due to the relatively long tail in the distribution
of gate fidelities for a given |δ|. Both circuits reach the same
randomization limit of 0.76.

The minimum gate infidelity exhibits strong statistical
fluctuations (the green lines in Fig. 5). This is due to the long
tail in the fidelity distribution for given |δ|. Only relatively
few circuit configurations δ will give a high gate fidelity, and
the finite number of samples (50 000) is unlikely to hit upon
the true minimum gate infidelity. This line is therefore more
accurately characterized as a lower bound on the maximum
gate fidelity (or, equivalently, an upper bound on the minimum
gate infidelity).

The method used to analyze compound errors can be gener-
alized for any system, but in practice this is a computationally
intensive process. Generating k error vectors over n input
states requires kn evaluations of the gate fidelity. For 3-port
optical networks this is still tractable, but for general N -port
networks the number of optical elements—and therefore the
dimension of the error vector—scales as O(N2). We will need
more sophisticated theoretical methods to analyze complex
optical networks.

IV. QUANTUM ESTIMATION OF CIRCUIT COMPONENTS

One potentially fruitful approach toward analyzing the
effect of component variations on the gate fidelity in linear
optical networks is to use the theory of multiparameter
quantum estimation. When we consider the components of
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the multimode interferometer, the variations away from the
ideal designed value become a vector of random variables δ in
a parameter estimation problem. We can then use techniques
from quantum metrology [20], information geometry [21], and
the theory of the dynamical evolution of quantum states [22] to
shed light on the sensitivity of an interferometer to its elements.

The quantum Fisher information (QFI) is a metric in the
state space that is parametrized by the random variables δ. It is
a special case of the Bures metric [23]. Intuitively, the quantum
Fisher information IQ(δ) is the amount of information about δ

that is contained in the state |ψ〉. However, for our purposes it
is sufficient to note that a large QFI means that we can detect
small variations in δ. Therefore, IQ(δ) is also a metric for the
sensitivity of |ψ〉 on δ.

Let a unitary transformation of an optical circuit be denoted
by U , and deviations in the characteristics of a component
c (such as a beam splitter or phase shifter) are generated by
Gc. The unitary transformation corresponding to an inaccurate
component is then

Ũc(δc) = exp(−iGcδc) Uc exp(iGcδc), (9)

where δc is a component of the vector δ. The QFI for δc

is bounded by the variance (�Gc)2 of Gc with respect to the
optical quantum state |�c〉 immediately prior to the component
c [24]. By studying (�Gc)2 with respect to a variety of
quantum states |�c〉 (average, best, and worst case scenario)
we can estimate the effect of variations of that component on
the total gate. Postselection on a particular detection signature
(as in the case of the NS gate) will typically exclude certain
states |�c〉, and the most informative average QFI will no
longer be due to a uniform distribution of |�c〉 in the quantum
state space. Instead, the set of |�c〉 that are to be averaged over
should be constructed from a uniform distribution of input
states over all the nonancilla input modes, tensored with the
ancilla input states and transformed to the state just before the
component c.

The above procedure still requires averaging over a large
number of states. To circumvent this lengthy process, we need a
way to determine the optimal conditional state that maximizes
the QFI as evaluated by (�Gc)2, while still being capable of
triggering the detectors according to the required signature (see
Fig. 6). The variance (�Gc)2 must be evaluated with respect to
this optimal state |�opt

c 〉. Again, this may be a computationally
difficult problem.

Finally, we can calculate the weighted average Wc over
the variance (�Gc)2

� as a measure of the sensitivity of a
component to variations:

Wc =
∫

d� p�(�Gc)2
�, (10)

where p� is the probability that the state |�c〉 leads to the
required detector signature, and d� is the Haar measure

U U
Uc

1 2

optimal conditional state

FIG. 6. The optimal conditional state |�opt
c 〉 is taken just before

the component c of interest (dashed line), and it is the state that
maximizes the quantum Fisher information (evaluated by the variance
of the generator of Uc with respect to |�opt

c 〉), while still being capable
of triggering the detector array in the required way.

over the entire multimode optical state just before entering
component c. For the NS gate this is a three-mode state. We
also explicitly included the subscript on (�Gc)2

� to remind
ourselves that the variance depends on the input state. Which
of these approaches is most suitable likely depends on the
specifics of the optical circuit under consideration, and the
exact relation between circuit analysis and quantum parameter
estimation will be the subject of future studies.

V. DISCUSSION AND CONCLUSIONS

We have shown that the construction of optical networks
that implement a given unitary transformation is generally not
unique, and that variations in the components of the network
can have dramatically different effects on the network (gate)
fidelity. Moreover, different network topologies for the same
transformation may place very different precision require-
ments on the components, and any practical implementation
should involve a circuit analysis on how to best implement
the optical network. For small networks, a simple numerical
calculation of the average gate fidelity may be tractable, but
larger networks require more sophisticated methods. One such
method is the quantum Fisher information, which can be
calculated efficiently for optical components by considering
the variance of the generator of translations.

Our findings prompt a number of important questions
for future research into the practical construction of optical
networks: (i) Why do some elements in a network require
much more precise fabrication than others? (ii) How can
we design optical networks that minimize the number of
sensitive elements? (iii) How can we determine the component
characteristics in situ, after the network has been fabricated?
These questions will be studied further in future work.
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