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Digital quantum simulation of many-body non-Markovian dynamics
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We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-
Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the
global system propagator into the product of subsystem propagators, which may not be quantum channels, and
second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations
and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter
decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of
the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally
achievable for a variety of interesting cases.
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I. INTRODUCTION

All quantum systems are invariably in contact with an
environment to some extent. Therefore, the development
of tools for the study of such open quantum systems,
undergoing nonunitary dynamics as a result of system-
environment interactions, is of importance for understanding
a rich variety of phenomena [1,2]. Historically, effort has been
focused on studying Markovian open quantum systems, whose
dynamics is described by master equations in the Gorini,
Kossakowski, Sudarshan, and Lindblad (GKSL) form [1–3].
However, recently there has been an explosion of interest
in open quantum systems beyond the Markovian regime,
in which, since the typical assumptions made in deriving
GKSL master equations are no longer valid, more complex,
history-dependent descriptions of the system dynamics are
necessary [4–8].

In particular, the study of non-Markovian open quantum
systems promises to allow us to better understand the nature of
dissipation and decoherence [1–13], thermalization and equili-
bration [14,15], nonequilibrium phase transitions [16,17], and
transport phenomena in strongly correlated [18–20] and bio-
logical systems [21–27]. Furthermore, within the Markovian
context, it has been shown that dissipation and decoherence,
traditional enemies of quantum information processing, can be
exploited as a resource for quantum computation [28–30], the
preparation of topological phases [31–33], and the preparation
of entangled states [34–37]. In this sense, it is desirable to
understand the extent to which these protocols are robust
against relaxation of the strict assumptions involved in this
setting.

Simulations on controllable quantum devices promise to be
one of the most effective tools for the study of open quantum
systems. While a plethora of methods have been developed
for the simulation of Markovian open quantum systems, on
a wide variety of quantum devices [38–53], there have only
recently begun to emerge proposals for either classical [54–57]
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or quantum [30,58–60] simulation of non-Markovian open
quantum systems. If one has knowledge of certain properties
of the environment, then one of the most natural approaches is
through methods of embedding non-Markovian open quantum
systems in larger Markovian systems [6,61–63], which can
then be simulated through any of the available methods.
However, inspired by the recent success of digital quantum
simulations in a variety of contexts [64–66], largely based on
so-called Trotterization of the system’s dynamics [67–69], one
may wonder about the applicability of these digital methods
to a class of many-body non-Markovian dynamics, to which
they appear well suited.

In this work, we present a method for the digital quantum
simulation of many-body k-local, locally indivisible non-
Markovian open quantum systems, rigorously defined in
Sec. II. The first part of this method, described in Sec. III,
consists in a Suzuki-Lie-Trotter (SLT) decomposition [67–70]
of the global system propagator into the product of local
propagators, which due to the local indivisibility of the system
may not be quantum channels. Generalizing the work of
Ref. [38] to this context, we provide a rigorous error bound for
such an SLT decomposition, allowing us to study the efficiency
of the digital method. Importantly, as discussed in Sec. III, we
cannot expect to obtain an efficient method for an arbitrary
non-Markovian open quantum system, and as such the primary
aim of this analysis is to understand how the efficiency of the
method depends on appropriate measures of the indivisibility
of the system of interest.

The second part of the method consists in an algorithmic
procedure for the implementation of Hermiticity- and trace-
preserving maps which are not quantum channels. Specifically,
inspired by the notion of quantum instruments [71,72], we
show in Sec. IV how any such map may be algorithmically
implemented through unitary operations and measurements
on a dilated space. In Sec. V, we then combine the results of
Secs. III and IV to provide a complete method for the digital
algorithmic simulation of k-local, locally indivisible, non-
Markovian open quantum systems. Furthermore, we provide
in Sec. V a detailed analysis of the efficiency of this method,
which then allows for an assessment of whether a particular
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system may be feasibly simulated, given a specified set of
resources. In light of this analysis, it is expected that the
proposed method should be experimentally achievable for
a variety of interesting cases, in particular those which are
weakly indivisible with respect to the measures we define.
Finally, in Sec. VI we summarize our results and present an
outlook on future directions.

II. SETTING

We consider finite lattices �, consisting of N lattice sites
so that |�| = N . With each x ∈ � there exists an associated
finite Hilbert spaceHx � Cdx , and we defineHX =⊗x∈X Hx

for all subsets X ⊂ �, and H ≡ H�. For simplicity, we
assume that dx = d for all x ∈ �. We denote the space of
all bounded linear operators A : H → H as B(H), and given
A ∈ B(H), we define the support of A, denoted supp(A), as the
smallest subset X ⊂ � for which there exists a nontrivial AX ∈
B(HX) such that A = AX ⊗ 1�/X. For any X ⊂ �, BX(H) ≡
{A ∈ B(H)|supp(A) ⊂ X} denotes the space of all bounded
linear operators on H with support contained in X. Given a
Liouvillian L : B(H) → B(H) ∈ B(B(H)), the support of L
is given by supp(L) ≡⋃{X ⊂ �|B�/X(H) ⊂ ker(L)}, which
is the set of sites on which L generates a nontrivial time
evolution, and LX = {L ∈ B(B(H))|supp(L) ⊂ X} is the set
of Liouvillians with support in X

We are interested in k-local open many-body quantum
systems described by time-local master equations. These are
systems whose dynamics satisfies

d

dt
ρ(t) = L(t)[ρ(t)] =

∑
Z⊂�

LZ(t)[ρ(t)], (1)

for some piecewise continuous time-local Liouvillian L :
R+ → B(B(H)), which can be written as the sum of strictly
k-local terms LZ : R+ → LZ , with Z ⊂ �. Here, strict k

locality means that |Z| � k for all LZ such that LZ(t) �= 0 for
all t—i.e., each LZ term of the Liouvillian acts nontrivially
on at most k subsystems. Given a system defined by Eq. (1),
we denote by K = |{LZ(t)|LZ(t) �= 0}| � Nk the number of
strictly k-local terms in the decomposition of L. Labelling
the K nontrivial strictly k-local Liouvillians then allows us to
redefine Eq. (1) as

d

dt
ρ(t) = L(t)[ρ(t)] =

K∑
i=1

Li(t)[ρ(t)]. (2)

We then define the system propagators as the family of
superoperators {TL(t,s)} satisfying ρ(t) = TL(t,s)ρ(s), for all
t � s � 0. These propagators uniquely solve the initial value
problem

d

dt
TL(t,s) = L(t)TL(t,s), TL(s,s) = 1. (3)

In addition, for each i ∈ [1,K], we define the local propagators
{TLi

(t,s)} as the family of superoperators which uniquely solve
the initial value problem

d

dt
TLi

(t,s) = Li(t)TLi
(t,s), TLi

(s,s) = 1. (4)

In Ref. [38], the digital simulation of such systems has
been considered, but in the case of Markovian many-body
open quantum systems, where each strictly k-local Liouvillian
can be written in the GKSL form [1–3]. More specifically,
where

Li(t)[•] = −i[Hi(t),•] +
dk∑

j=1

γi,j (t)D(Li,j (t))[•], (5)

with

D(Li,j (t))[•] = Li,j (t)Li,j (t)† − 1
2 {Li,j (t)†Li,j (t),•}+

and with γi,j (t) � 0, for all i ∈ [1,K], j ∈ [1,dk], and t ∈ R+.
In this case, the system is called locally divisible, meaning
that, for all i ∈ [1,K], and for all 0 � s � t ∈ R+, the local
propagator TLi

(t,s) is a quantum channel (completely positive
trace-preserving map) [3,5]. In this work, we aim to go beyond
this case and consider locally indivisible dynamics described
by time-local master equations, i.e., dynamics generated by a
k-local Liouvillian as in Eq. (1), but for which TLi

(t,s) may
not be a quantum channel for all i ∈ [1,K] and for all 0 � s �
t ∈ R+. Time-local master equations of this type are capable
of describing many non-Markovian systems [4–6], and the
simplest example of such a process is given by a system whose
dynamics is described by Eq. (5), but with dissipation rates
γi,j (t) which are not necessarily positive for all i,j and t [1,3].
We also note that we do not attempt to address here the question
of which k-local Liouvillians generate legitimate completely
positive dynamics, as the simulation method given here is valid
even in the case when the global dynamics is not completely
positive.

In order to quantify errors made within the presented
simulation scheme, we utilize the (1 → 1) norm for superop-
erators, where in general the (p → q) norm of a superoperator
T ∈ B(B(H)) is defined as [71]

||T ||p→q := sup
||A||p=1

||T (A)||q . (6)

The (p → q) norm defined above is induced from the Schatten
p norm of an operator, defined as ||A||p := [tr(|A|p)]

1
p ,

for all A ∈ B(H). Notice that the definition corresponds
up to a factor of 1/2 with the trace distance, dist(ρ,σ ) :=
sup0�A�1 tr[A(ρ − σ )], arising from a physical motivation of
operational distinguishability of quantum states [72], which is
relevant when working in the Schrödinger picture.

III. TROTTER DECOMPOSITION OF LOCALLY
INDIVISIBLE DYNAMICS

In line with conventional digital quantum simulation
techniques [64–66], our strategy for the simulation of locally
indivisible dynamics will be to implement TL(t,0) through
stroboscopic implementations of small time slices of the
strictly k-local propagators, formalized via a Suzuki-Lie-
Trotter (SLT) decomposition of TL(t,0) [67–69]. In order to
evaluate the performance of this strategy, it is necessary to
obtain error bounds on the relevant SLT decomposition. To
this end, we aim to generalize the results obtained in Ref. [38]
to the case of locally indivisible systems. It is essential to note
that we cannot expect to obtain an efficient simulation method
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for arbitrary non-Markovian systems [38]. This is largely due
to the fact that in many non-Markovian situations, in which
the system of interest is strongly coupled to an environment,
the dominant contribution to the dynamics arises from the
total system plus environment combination, and it is therefore
unrealistic to expect efficient scaling with respect to the size
of only the measured system of interest. As an illustration,
if efficient simulation of arbitrary non-Markovian dynamics
were possible, then one could in principle imagine efficiently
simulating an extremely complicated process or computation
occurring in the environment, whose results can flow back into
the system of interest due to the non-Markovian character of
the environment.

In light of these considerations, the primary goal of our
analysis will be to provide an error bound for a relevant
SLT decomposition. This will allow us to understand how
the efficiency of the SLT-based digital simulation method
depends on various measures of local indivisibility of the
simulated system. Then, given a particular locally indivisible
non-Markovian system, this would permit an experimentalist
the ability to determine whether the resources required for
such a simulation are practically feasible.

To this end, given a superoperator T ∈ B(B(H)), let us
define the check function

C(T ) =
{

0, if T is a quantum channel,

1, otherwise.

Note that, given a particular superoperator T ∈ B(B(H)),
the value of C(T) can in principle be determined through
construction and analysis of the Choi-Jamiolkowski state [72].
This procedure will be practical provided that the dimension
of the Hilbert space H is relatively small. Now, given a k-local
system specified by a Liouvillian L, as in Eqs. (1) and (2),
let us consider a fixed final time t � 0 and divide the time
interval [0,t] into m subintervals of length �t ≡ t/m, as
required by any SLT scheme. Given these values of t and m,
let us then define T

j

i ≡ T
j

Li
(tj/m,t(j − 1)/m) for i ∈ [1,K]

and j ∈ [1,m]. This leads to the following so-called measures
of local indivisibility,

Ñm
i =

m∑
j=1

C
(
T

j

i

)
� m, (7)

N̂m
j =

K∑
i=1

C
(
T

j

i

)
� K. (8)

These quantities are defined such that Ñm
i measures the number

of time intervals in the SLT scheme for which the propagator
T

j

i is not a quantum channel, while N̂m
j measures the number

of local propagators which are not quantum channels during
some given time interval [tj/m,t(j − 1)/m]. Note that, as a
consequence of strict k locality, it will generally be possible
to calculate these measures on a conventional computer for
realistic systems in which k is small and independent of the
total system size N . Given these quantities, we then define

Ñm = max
1�i�K

[
Ñm

i

]
� m, (9)

N̂m = max
1�j�m

[
N̂m

j

]
� K. (10)

Clearly, for locally divisible dynamics Ñm = N̂m = 0. Note
that all quantities defined so far depend implicitly on the
discretization factor m, and that naively it is possible to bound
Ñm from above by m, which occurs in the worst-case scenario
when all local propagators are not quantum channels—i.e.,
when the system is locally totally indivisible. However, it is
desirable to find a tighter upper bound than this and, to this
end, we define

t ID
i = lim

m→∞ Ñm
i �t = lim

m→∞
Ñm

i t

m
� t, (11)

and t ID = max1�i�K t ID
i . Furthermore, let us define Cm

i , the
number of disjoint indivisible intervals due to Li , via Cm

i =∑m−1
j=1 Seq(T j

i ,T
j+1
i ), where

Seq
(
T

j

i ,T
j+1
i

) =
{

1 C(T j ) = 0 ∧ C(T j+1) = 1
0 otherwise.

In addition, let us define Ci = limm→∞ Cm
i and C̃ =

2 max1�i�K Ci , so that, at this stage, it is possible to see that

Ñm � min

(
t ID

�t
+ C̃,m

)
. (12)

Finally, we do not want to specify a priori that our local
equations of motion are in a specific form, so we specify the
local quantity

β = sup
0�s�t

[
max

1�i�K

(||Li(s)||1→1
)]

, (13)

which allows us to state the following theorem:
Theorem 1. Given a system whose dynamics is described by

Eqs. (1) and (2), the error of a first-order SLT decomposition
of a time evolution up to time t in m steps is bounded by∥∥∥∥∥∥TL(t,0) −

m∏
j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥
1→1

� E(m,K,β,t,Ñm,N̂m),

where

E = K2β2t2

m
e{3+K(2+Ñm)+Kmin[m,KÑm]+N̂m}β(t/m)

� K2β2t2

m
e(3+[3+C̃]K+C̃K2)β(t/m)e(K+K2)t IDβ. (14)

The proof of Theorem 1 can be found in the Appendix.
Note that we also have the following important corollary:

Corollary 1.1. Given

0 � ε � [2K2βt ln(2)e(K+K2)t IDβ]

(3 + [3 + C̃K + C̃K2])
, (15)

then ∥∥∥∥∥∥TL(t,0) −
m∏

j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥
1→1

� ε, (16)

provided m � 2Kβ2t2e(K+K2)t IDβ/ε.
From Corollary 1.1 (also proven in the Appendix), it is clear

that, as expected, in the case of locally indivisible dynamics,
the number of strictly k-local propagators scales exponentially
in K , and therefore potentially exponentially in N because of
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the relationship K � Nk , which is not necessarily saturated.
However, note that, when the dynamics is locally divisible, we
have that t ID = 0. Therefore, the number of local propagators
scales polynomially in N , reproducing the results of Ref. [38].
We also note that it is possible to replace the strictly k-local
propagators T

j

i , with the strictly k-local propagators T
j,avg
i =

exp(�tLj,avg
i ) of the averaged Liouvillians,

Lj,avg
i = m

t

∫ tj/m

t(j−1)/m

Li(s)ds, (17)

without changing the scaling of the SLT error [38]. Further-
more, when the Liouvillian is in GKSL form given in Eq. (5),
but possibly with negative dissipation rates at certain time, the
SLT error can be expressed in terms of

β̃ = sup
0�s�t

(
max

1�i�K
{ max

1�j�dk
[||Li,j (s)||∞]}

)
, (18)

the largest operator norm of the Lindblad operators [38].
At this stage, the strategy in the locally divisible case is

clear, as each strictly k-local propagator, which is a quantum
channel, can be implemented through a unitary Stinespring
dilation requiring an ancilla space whose dimension depends
only on k and d [38,71,72]. However, in the locally indivisible
case, not all local propagators are quantum channels (or even
positive maps) and therefore any realization of an SLT scheme,
such as the one provided by Theorem 1, requires a method for
the implementation of nonpositive maps.

IV. ALGORITHMIC IMPLEMENTATION
OF NONPOSITIVE MAPS

In this section, we construct a method to implement
the strictly k-local propagators emerging from the SLT
decomposition given in Theorem 1, which are not quantum
channels. In particular we restrict ourselves to Hermiticity- and
trace-preserving (HPTP) maps, but not necessarily positive
maps. Such maps would for instance arise in the case of a
k-local system specified by a Liouvillian in GKSL form, but
with negative dissipation rates for certain time intervals. As
mentioned briefly in Sec. III, we stress that, due to strict k

locality of these propagators, the support of these maps for
realistic many-body systems will be sufficiently small, so that
it is possible to obtain their spectrum either analytically or
numerically.

Given an HPTP map T : B(H) → B(H), there always
exists completely positive but not necessarily trace-preserving
(CPnTP) maps T (0) and T (1) such that T = T (0) − T (1). This
can be proven via the spectral decomposition of the associated
Choi-Jamiolkowski state [71]. As a result, we see that, if one
can implement the CPnTP maps T (0) and T (1), then one can
implement T algorithmically. Specifically, given any initial
state ρ ∈ B(H) and any observable A ∈ B(H), and defining
ρ ′ = T (ρ), we have

〈A〉ρ ′ ≡ tr[Aρ ′]

= tr[AT (0)(ρ)] − tr[AT (1)(ρ)]

= tr[Aρ ′
(0)] − tr[Aρ ′

(1)]

= 〈A〉ρ ′
(0)

− 〈A〉ρ ′
(1)

;

i.e., expectation values of the desired state ρ ′ can be algo-
rithmically reconstructed from the expectation values of the
outputs ρ ′

(0) and ρ ′
(1) of CPnTP maps T (0) and T (1). In light

of this, we are able to restrict our attention to constructing a
method for the implementation of CPnTP maps.

To this end, let us consider a CPnTP map T (x) : B(HS) →
B(HS), with HS � Cd , and Kraus representation {K (i)

x }|dx

i=1,
where dx � d2. Furthermore, let us define the so-called gauge
Gx via

Gx =
dx∑

i=1

(
K (i)

x

)†
K (i)

x . (19)

As T (x) is not trace preserving, we know that Gx �= 1. At this
stage, we can identify two cases: Case 1 is when the gauge
Gx is subnormalized, 1 − Gx � 0, and case 2 is when the
gauge Gx is not subnormalized. More specifically, let us define
gx = max[spec(Gx)]. From the structure of Gx (Hermitian and
positive semi-definite), we know that that gx � 0. Then, we
are in case 1 when gx � 1, and in case 2 otherwise. If we are
in case 2, then we can define the renormalized map T̂ (x) via
Kraus operators {K̂ (i)

x }|dx

i=1, where K̂ (i)
x = (1/

√
gx)K (i)

x . Let us
denote the gauge of T̂ (x) as Ĝx , and note that

Ĝx = 1

gx

Gx, (20)

so that Ĝx is subnormalized by construction. Furthermore,
note that for all ρ ∈ B(HS), we have that

T (x)(ρ) = gxT̂
(x)(ρ), (21)

so that, if we can implement T̂ (x), then T (x) can be implemented
algorithmically.

Given this setup, the problem considered here is the
following:

Problem. Given a CPnTP map T (x) : B(HS) → B(HS),
with HS � Cd , and an observable A ∈ B(HS), and given
multiple copies of ρ ∈ B(HS) (i.e., from some standard
preparation procedure or preliminary circuit), describe an
algorithmic procedure which yields 〈A〉ρ ′

(x)
, where

〈A〉ρ ′
(x)

= Tr[Aρ ′
(x)], (22)

with ρ ′
(x) = T (x)(ρ).

If we first restrict ourselves to case 1, then the protocol de-
scribed below, inspired by the notion of quantum instruments
[71,72], provides a solution to the problem.

Step 1. Construct K (∞)
x such that

Gx + (K (∞)
x

)†
K (∞)

x = 1. (23)

Note that the existence of K (∞)
x is guaranteed by virtue of

the assumed subnormalization of Gx . Furthermore, note that
through the inclusion of the additional Kraus operator K (∞)

x ,
we can extend T (x) to a map T (x)

e which is both completely
positive and trace preserving.
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Step 2. Construct the unitary operator Ux ∈ B(Cdx+1 ⊗ HS)
via

Ux =

⎛
⎜⎜⎜⎜⎜⎜⎝

K (1)
x

...
...

...
...

...
...

...

K (dx )
x

...
...

...

K (∞)
x

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

Note that Ux is precisely the Stinespring dilation of T (x)
e , the

trace-preserving extension of T (x), with dilation space HEx
�

Cdx+1.
Step 3. Define the set of projectors P (x) = {P (x)

1 ,P
(x)
2 } via

P
(x)
1 =

dx∑
j=1

d∑
k=1

|j,k〉〈j,k|, (25)

P
(x)
2 =

d∑
k=1

|dx + 1,k〉〈dx + 1,k|, (26)

where {|j,k〉}|dx+1
j=1 |dk=1 is the basis for HEx

⊗ HS in which Ux

is given.
Step 4. Note now that if one starts with the state |1〉〈1| ⊗ ρ,

applies the unitary Ux , and then performs the measurement
defined by P (x), then the probability of obtaining measurement
outcome 1 is given by

Prx(1) ≡ Tr
[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †

xP
(x)
1

]
, (27)

in which case the reduced state of the system is

ρ ′ = TrEx

[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †

xP
(x)
1

Tr
[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †

xP
(x)
1

]
]
. (28)

Furthermore, note that by construction

T (x)(ρ) = TrEx

[
P

(x)
1 Ux(|1〉〈1| ⊗ ρ)U †

xP
(x)
1

]
, (29)

so that we can rewrite Eq. (28), with the help of Eqs. (27) and
(29), as

ρ ′ = T (x)(ρ)

Prx(1)
, (30)

or alternatively

ρ ′
(x) = Prx(1)ρ ′. (31)

Step 5 (case 1). Finally, note that via Eq. (31)

〈A〉ρ ′
(x)

= Tr[Aρ ′
(x)]

= Prx(1)Tr[Aρ ′]

= Prx(1)〈A〉ρ ′ . (32)

Now, 〈A〉ρ ′ can be obtained from the state ρ ′, which in turn can
be produced through unitary evolution of a dilated system via
Ux , followed by the measurement P (x), and postselecting on
measurement outcome 1. Furthermore, the constant Prx(1) can
be asymptotically obtained through repetitions of the process
of unitary evolution and measurement (with the same initial
state each time), by recording the proportion of measurement
outcome 1 to measurement outcome 2. To sum up, through
unitary evolutions and measurements of a dilated system, it is

possible to obtain algorithmically the desired value of 〈A〉ρ ′ ,
provided the assumption of subnormalization holds.

Now, let us consider the case when subnormalization is
not satisfied, i.e., case 2. In this case, we can repeat steps 1
through 4, not for the map T (x), but for the renormalized map
T̂ (x). Finally, we slightly modify step 5, where the hats now
just indicate the relevant object defined from T̂ (x), as opposed
to T (x):

Step 5 (case 2). Note that

〈A〉ρ ′
(x)

= Tr[AgxT̂
(x)(ρ)]

= gxPrx(1)Tr[Aρ̂ ′]

= gx P̂rx(1)〈A〉ρ̂ ′ . (33)

Now, 〈A〉ρ̂ ′ can be obtained from the state ρ̂ ′ which, again, can
be produced through unitary evolution of a dilated system via
Ûx , followed by the measurement P (x). Again, the constant
P̂rx(1) can be obtained asymptotically through repetitions of
the process of unitary evolution and measurement.

Clearly, for this protocol to work, it is necessary to obtain
the value of the constant Prx(1). In a practical setting, it
is necessary to construct some estimator PrNT

x (1) for Prx(1)
from a finite number of measurements NT . The error in
approximating the desired output state ρ ′

(x) = Prx(1)ρ ′ with
ρ̃ ′

(x) = PrNT

x (1)ρ ′ is then given by

||ρ ′
(x) − ρ̃ ′

(x)|| = ∣∣Prx(1) − PrNT

x (1)
∣∣||ρ ′|| (34)

= ∣∣Prx(1) − PrNT

x (1)
∣∣. (35)

Therefore, given some error threshold ε � 0, it is necessary to
determine the minimum number of repetitions of the process
of unitary evolution and measurement which are necessary to
construct an estimator PrNT

x (1) such that |Prx(1) − PrNT

x (1)| �
ε. Given that the measurement P only has two possible
outcomes, this is essentially the problem of constructing a
binomial proportion confidence interval.

As discussed in Refs. [73,74], in order to construct an
interval with reliable properties for a potentially small number
of trials, or a value of Prx(1) which is potentially close
to either 0 or 1, it is necessary to use the Wilson score
interval [75]. Formally, let us denote the number trials in
which measurement outcome 1 is observed as N1 and define
the proportion p̂ = N1/NT . Furthermore, the maximum error
associated with our estimator will be associated with some
confidence level, given by the z value of a standard normal
distribution and denoted here as z. The Wilson score interval
then prescribes that the best estimate PrNT

x (1) is given by

PrNT

x (1) = p̂ + 1
2NT

z2

1 + 1
NT

z2
, (36)

with a confidence interval [PrNT

x (1) − Ez,PrNT

x (1) + Ez],
where

Ez =
z
√

1
NT

p̂(1 − p̂) + 1
4N2

T

z2

1 + 1
NT

z2
. (37)
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As an example, given a z value z = 4.42, associated with a
99.99% confidence [73], this means that we will have∣∣Prx(1) − PrNT

x (1)
∣∣ � Ez (38)

99.99% of the times in which such an estimator is constructed.
Therefore, given a maximum error tolerance of ε � 0, one
can show, by noting that the right-hand side of Eq. (37) is
maximized for p̂ = 1/2, that∣∣Prx(1) − PrNT

x (1)
∣∣ � ε, (39)

with the confidence level associated with z, provided that

N2
T

NT + z2
� z2

4ε2
. (40)

Note, from Eqs. (36), (37), and (40), that in the large NT limit
the best estimate is given by PrNT

x (1) = p̂, and the condition
given by Eq. (40) becomes

NT � z2

4ε2
, (41)

which is what one would expect from using the more intuitive
Wald confidence interval [73,74].

At this stage, we have therefore obtained a complete
algorithmic procedure for the approximate implementation of
an arbitrary HPTP superoperator. In the following section, we
proceed to combine this technique with the results of Sec. III,
in order to formulate a complete procedure for the simulation
of k-local locally indivisible dynamics.

V. ALGORITHMIC DIGITAL SIMULATION OF LOCALLY
INDIVISIBLE DYNAMICS

In this section, we present an algorithmic digital method
for the implementation of

T̃ ≡
m∏

j=1

K∏
i=1

T
j

i , (42)

with m fixed by Corollary 1.1. In order to develop a concise
notation, let us define a multi-index γ = (j,i) ∈ [1,mK], such
that T̃ can be rewritten as

T̃ =
mK∏
γ=1

T γ . (43)

We stress that the γ indexes the strictly k-local propagators
in the SLT decomposition and does not indicate an exponent.
Given this notation, we will then say that T

j

i is the nth non-CP
map if T

j

i is non-CP (i.e., C(T j

i ) = 1) and
∑(j,i)

γ=1 C(T γ ) = n.
Furthermore, if T γ is non-CP, but HPTP, as we are assuming
all non-CP strictly k-local propagators are, then we denote the
decomposition of T γ into the difference of CPnTP maps, as
shown in Sec. IV, via T γ = T γ,0 − T γ,1. In addition, it will be
useful for us to define β(x,n) as the nth element of the binary
representation of non-negative integer x, and

fx(T γ ) =
{
T γ , if C(T γ ) = 0,

T γ,β(x,n), if T γ is the nth non-CP map.

Defining the total number of non-CP maps appearing in the
decomposition of T̃ as Ñm

TOT =∑K
i=1 Ñm

i allows us to define

the rth circuit, denoted Cr and consisting only of quantum
channels and CPnTP maps, as

Cr =
mK∏
γ=1

fr (T γ ), (44)

where r ∈ [0,2Ñm
TOT − 1]. Finally, defining the parity function

P as

P(r) =
⎧⎨
⎩

1, if the binary representation of
r has an odd number of 1’s,

0, otherwise,

allows us to obtain the expression

T̃ =
2Ñm

TOT −1∑
r=0

(−1)P(r)Cr. (45)

In essence, Eq. (45) shows how T̃ can be implemented
algorithmically through the implementation of circuits con-
sisting only of quantum channels and CPnTP maps. In other
words, given an initial state ρ(0) and an observable A, and
defining ρ̃(t) = T̃ [ρ(0)] and ρ(r)(t) = Cr [ρ(0)], it follows
from Eq. (45) that

〈A〉ρ̃(t) = tr[Aρ̃(t)]

=
2Ñm

TOT −1∑
r=0

(−1)P(r)tr[Aρ(r)(t)]

=
2Ñm

TOT −1∑
r=0

(−1)P(r)〈A〉ρ(r)(t); (46)

i.e., expectation values of the desired state ρ̃(t) can be
reconstructed from the expectation values of ρ(r)(t), the
outputs of circuits Cr .

As an example, illustrated in Fig. 1, let us consider a
two-local global propagator T̃ = T 3T 2T 1 acting on a total
system of three sites. Here, T 2 is a quantum channel acting
nontrivially on sites 2 and 3, so C(T 2) = 0, while T 1 and
T 3, acting nontrivially on sites 1 and 2, are not quantum
channels, so C(T 1) = C(T 3) = 1. In this simple situation. we
have that the total number of non-CP maps is two. Therefore,
given an initial state ρ(0), the expectation values of the
state ρ̃(t) = T̃ (ρ(0)) can be reconstructed algorithmically, via
Eq. (45), from the states ρr (t) = Cr (ρ(0)) for r ∈ [0 : 3].

At this stage, what remains to be done is to incorporate
explicitly into this algorithmic procedure for implementing T̃ ,
the implementation of CPnTP maps within the circuits Cr . To
this end, given a CPnTP map T γ,i , with i ∈ {0,1}, let us denote
the associated subnormalized map as T

γ,i
s = (1/gγ,i)T γ,i and

the associated CPTP extension of T
γ,i
s as T

γ,i
e . We then denote

the unitary Stinespring dilation of T
γ,i
e , constructed as per

Eq. (24), as Uγ,i . Furthermore, given an arbitrary state ρ, we
denote the output of a successful trial by

Aγ,i(ρ) = trEγ,i

[
P

γ,i

1 Uγ,i(|1〉〈1| ⊗ ρ)(Uγ,i)†P γ,i

1

]
Nγ,i(ρ)

= T
γ,i
s (ρ)

Nγ,i(ρ)
= T γ,i(ρ)

gγ,iNγ,i(ρ)
, (47)
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= =

= =C2 C3

T 2
T 2

T 2 T 2

T 1,0

C0 C1

T 3,0

T 1,0 T 3,1

T 3,0

T 3,1

T 1,1

T 1,1

FIG. 1. Given a 2-local global propagator T̃ = T 3T 2T 1, with C(T 1) = C(T 3) = 1 and C(T 2) = 0, this propagator can be implemented
algorithmically through the implementation of the four circuits {Cr}|3r=0. Each circuit Cr consists only of quantum channels and CPnTP maps.

where P
γ,i

1 is defined as per step 3 of the procedure described
in Sec. IV, and we denote the probability of measurement
outcome 1 on the input state |1〉〈1| ⊗ ρ by Nγ,i(ρ). Note at
this stage, from Eq. (47), that

T γ,i(ρ) = gγ,iNγ,i(ρ)Aγ,i(ρ). (48)

Now, let us define

Mγ
r (ρ) =

{
T γ (ρ), if C(T γ ) = 0,

Aγ,β(r,n)(ρ), if T γ is the nth non-CP map.

Given an initial state ρ(0), then

ρ̃(r)(j ) =
j∏

γ=1

Mγ
r (ρ(0)), (49)

such that

ρ(r)(t) = Cr (ρ(0)) = ρ̃(r)(mK)

⎛
⎝mK∏

γ=1

Gγ
r N γ

r

⎞
⎠, (50)

where

Gγ
r =

⎧⎨
⎩

1, if C(T γ ) = 0,

1, if T γ,β(r,n)is subnormalized,

gγ,β(r,n), otherwise,

and

N γ
r =

{
1, if C(T γ ) = 0,

Nγ,β(r,n)[ρ̃r (γ − 1)], otherwise.

Note that Eqs. (49) and (50) formalize the algorithmic proce-
dure to implement the circuits Cr , by means of (a) quantum
channels and (b) unitary operations and measurements on a
dilated space. The quantum channels can be straightforwardly
implemented via unitary Stinespring dilations [38]. At this
stage, combining Eqs. (45), (49), and (50), we end up with the
expression

ρ̃(t) = T̃ (ρ(0))

=
⎛
⎝2Ñm

TOT −1∑
r=0

(−1)P(r)

⎡
⎣mK∏

γ=1

Gγ
r N γ

r

⎤
⎦
⎡
⎣ j∏

γ=1

Mγ
r

⎤
⎦
⎞
⎠ρ(0).

Via a similar analysis to Eq. (46), it is therefore clear that
expectation values of the desired output state ρ̃(t) can be
algorithmically reconstructed from the expectation values of
the states

ρ̃(r)(mK) =
mK∏
γ=1

Mγ
r (ρ(0)). (51)

These states can be obtained through unitary operations and
measurements, involving ancillary spaces whose dimensions,
independent of N , depend only on d and k. Using the same
example illustrated in Fig. 1, this procedure of obtaining
ρ̃(r)(mK) is shown in Fig. 2, for the case of r = 0.

From Eq. (50), it is clear that the algorithmic reconstruction
of the states ρr (t) from the states ρ̃(r)(mK) requires knowledge
of the constants N γ

r . However, as discussed in Sec. IV, we
approximate in practice the states ρr (t) with the states

φ(r)(t) = ρ̃(r)(mK)

⎛
⎝mK∏

γ=1

Gγ
r Ñ γ

r

⎞
⎠, (52)

where Ñ γ
r is an estimator for N γ

r , constructed from a finite
number of measurements. The final output of the algorithmic
procedure described here, an approximation of the desired state
ρ̃(t) = T̃ (ρ(0)), is therefore the state

φ̃(t) =
2Ñm

TOT −1∑
r=0

(−1)P(r)φ(r)(t). (53)

One can then show that the algorithmic error made in
approximating ρ̃(t) with φ̃(t) is bounded by

||ρ̃(t) − φ̃(t)|| � 2Ñm
TOT−1 max

r
||ρ(r)(t) − φ(r)(t)||, (54)

and that the error made in approximating ρ(r)(t) with φ(r)(t) is
bounded by

||ρ(r)(t) − φ(r)(t)|| � GrÑ
m
TOT max

1�γ�mK

∣∣N γ
r − Ñ γ

r

∣∣,
with Gr ≡∏mK

γ=1 G
γ
r . As a result, if one requires that the total

algorithmic error is less than εA � 0, one then needs to ensure
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|1

ρ(0)

U1,0 =

P 1,0

T 2

U3,0 =

P ,

|1

ρ̃(0)(3)ρ̃(0)(1) ρ̃(0)(2)

“1”“2” “1”“2”

3 0

FIG. 2. Considering the same example as shown in Fig. 1, the circuit shown here illustrates the method, given by Eq. (51), for constructing
ρ̃(0)(3), from which the state ρ(0)(t) = C0(ρ(0)) can be algorithmically reconstructed. Starting with the specified initial state ρ(0), the first
CPnTP map T 1,0 is implemented, as described in Sec. IV, through a unitary operation U 1,0 and a measurement P 1,0 on a dilated space. It is
crucial to note that if measurement outcome 1 is obtained when performing the measurement, then the correct state ρ̃(0)(1) has been obtained
and the procedure can continue, but if measurement outcome 2 is obtained then the procedure needs to be restarted. The quantum channel
T 2 can then be implemented straightforwardly, via a conventional Stinespring dilation (not shown), before the second CPnTP map T 3,0 is
implemented, analogously to T 1,0.

that

max
r

(
max

γ

(∣∣N γ
r − Ñ γ

r

∣∣)) � εA

GÑm
TOT2Ñm

TOT−1
, (55)

where G ≡ maxr [Gr ]. From Eqs. (40) and (55), it is then
straightforward to calculate the number of trials necessary to
obtain a sufficiently accurate estimator Ñ γ

r .
At this stage, given an initial state ρ(0), if the Trotterization

error, given by Theorem 1, is less than εT , i.e., if ||TL(t,0) −
T̃ ||1→1 � εT , and if the algorithmic error associated with
implementing T̃ is less than εA, then the total error will be
upper bounded by

||ρ(t) − φ̃(t)|| � εT + εA. (56)

Therefore, if one requires a total error less than ε, it suffices
to choose m such that εT � ε/2, via Corollary 1.1, and the
number of trials required for the construction of the estimators
N γ

r , via Eqs. (40) and (55), such that εA � ε/2.
Finally, it is necessary to make some comments regarding

the efficiency of the method. As discussed earlier, it is not
expected to obtain an efficient method for an arbitrary locally
indivisible system. Indeed, from the analysis above one can see
that the number of strictly k-local CPnTP maps which need
to be implemented, given by (2ÑM

TOT )mK , where m is given
by Corollary 1.1, depends strongly on the the indivisibility
of the system as measured by ÑM

TOT and t ID. Furthermore, as
a result of the algorithmic procedure for implementing the
non-CP strictly k-local propagators, each circuit Cr in fact
needs to be successfully implemented a number of times, given
by Eqs. (40) and (55), to construct the required estimators Ñ γ

r .
However, as pointed out earlier, it is crucial to note that, as a
result of the definition of Aγ,i , a successful implementation
of the circuit Cr requires that all measurements involved in
the circuit result in measurement outcome 1. Therefore, the
probability of achieving a successful implementation of circuit

Cr is given by P (Cr ) =∏mK
γ=1 N

γ
r , with

(
max

1�γ�mk

[
N γ

r

])Ñm
TOT

� P (Cr ) �
(

min
1�γ�mk

[
N γ

r

])Ñm
TOT

.

In practice, as N γ,i(ρ) ≡ tr(T γ,i
s )(ρ), the value of N γ

r can
be estimated by implementing the strictly k-local propagator
T

γ,B(r,n)
s on a classical computer for a random selection of

inputs ρ, and by taking the average value of output traces. This
estimated value of N γ

r , in conjunction with the value of t ID

and Ñm
TOT, can then be used to decide whether the algorithmic

procedure given here is plausible for the system of interest.

VI. CONCLUSIONS AND OUTLOOK

We have presented an algorithmic digital quantum simula-
tion method for many-body locally indivisible non-Markovian
open quantum systems. The method consists of an SLT
decomposition of the k-local global system propagator into
the product of strictly k-local propagators, which may not
be quantum channels. In this case, we also provide an
algorithmic method for the implementation of those strictly
k-local propagators which are not quantum channels, through
unitary operations and measurements on a dilated space. The
efficiency of the method, which reduces to the method of
Ref. [38] in the case of locally divisible dynamics, expectably
depends on various measures of the local indivisibility of the
system. For systems which are weakly indivisible, with respect
to the measures defined here, this method should be achievable
with current experimental setups [64,65].

In light of these results, various natural avenues arise for
the extension of this work. The first direction consists in
investigating any potential improvements that could be gained
from utilizing higher order SLT decompositions [68,69].
However, as discussed in Refs. [64–66], due to practical
experimental constraints on gate implementation, any such
analysis needs to take into account the tradeoff which arises
between greater accuracy in the SLT decomposition and a
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larger number of required gates. The second natural direction
involves investigating alternative or improved methods for the
implementation of strictly k-local propagators which are not
quantum channels. In particular, it would be of interest to
construct methods for the simulation of maps which are not
necessarily Hermiticity and trace preserving.

Finally, given the necessary inefficiency of digital methods
for the simulation of non-Markovian systems, it would
be of interest to investigate the potential of digital-analog
approaches [76–78]. In particular, it would be of interest to
investigate whether efficient simulations are possible through
the utilization of non-Markovian analog building blocks, such
as recently introduced quantum memristors [30,79], com-
bined with digital steps. Furthermore, one should investigate
whether such efficient simulations could play any role in
the emerging field of quantum machine learning [80], where
purely digital approaches may be restricted by fundamental
obstacles.
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APPENDIX: PROOF OF THEOREM 1

In this Appendix we will provide a proof for Theorem 1, and
the associated Corollary 1.1, through a sequence of lemmas,
following the strategy given in Ref. [38] but generalized to the
case of locally indivisible dynamics where necessary. In what
follows, for notational convenience, we will drop the subscript
1 → 1 notation from all superoperator norms, as well as the
subscript 1 for operator norms. In addition, given a k-local
system described by Eqs. (1) and (2), and using the same
notation as in Theorem 1, we will define

ξ ≡
∥∥∥∥∥∥TL(t,0) −

m∏
j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥. (A1)

Given this notation we can then state our first lemma, which
will allow us to bound the norms of both local and global
propagators.

Lemma 2. Given TL(t,s) ∈ B(B(H)), which solves the
initial value problem (3) for some piecewise continuous
Liouvillian L : R+ → B(B(H)) and some 0 � s � t , then
(TL(t,s))−1 exists, denoted T −1

L (t,s), and we have that

||TL(t,s)|| � exp

[∫ t

s

||L(r)||dr

]
(A2)

� exp

[
(t − s)

(
sup

s�r�t

||L(r)||
)]

, (A3)

and

∥∥T −1
L (t,s)

∥∥ � exp

[∫ t

s

||L(r)||dr

]
(A4)

� exp

[
(t − s)

(
sup

s�r�t

||L(r)||
)]

, (A5)

Furthermore, if TL(t,s) is a quantum channel (CPTP), then we
have that ||TL(t,s)|| = 1.

The proof of Lemma 2 can be found in Ref. [38] using
properties of product integrals given in Ref. [81]. We can now
proceed to begin to construct a bound on ξ via the following
lemma.

Lemma 3. Given a k-local system, described by Eqs. (1)
and (2), we have that

ξ �

⎡
⎣m−1∑

j=0

⎛
⎝
⎡
⎣ m∏

l=j+2

P l
2

⎤
⎦P

j

1

⎞
⎠
⎤
⎦
(

max
1�j�m

∥∥∥∥∥T j

L −
K∏

i=1

T
j

i

∥∥∥∥∥
)

,

(A6)

where

P α
1 =

∥∥∥∥∥∥
α∏

j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥, P α
2 = ∣∣∣∣ T α

L
∣∣∣∣ , (A7)

and P 0
1 = 1.

Proof. Using the same strategy as in Ref. [38], but taking
note that ||T j

i || �= 1 for all i,j , we find that

ξ =
∥∥∥∥∥∥

m∏
j=1

T
j

L −
m∏

j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥ (A8)

=
∥∥∥∥∥∥T m

L

m−1∏
j=1

T
j

L −
(

K∏
i=1

T m
i

)⎛
⎝m−1∏

j=1

K∏
i=1

T
j

i

⎞
⎠
∥∥∥∥∥∥

�

∥∥∥∥∥∥
m−1∏
j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥
∥∥∥∥∥T m

L −
K∏

i=1

T m
i

∥∥∥∥∥

+ ∥∥T m
L
∥∥
∥∥∥∥∥∥

m−1∏
j=1

T
j

L −
m−1∏
j=1

K∏
i=1

T
j

i

∥∥∥∥∥∥ (A9)

�
m−1∑
j=0

⎡
⎣
⎛
⎝
⎡
⎣ m∏

l=j+2

P l
2

⎤
⎦P

j

1

⎞
⎠
∥∥∥∥∥T j+1

L −
K∏

i=1

T
j+1
i

∥∥∥∥∥
⎤
⎦

�

⎡
⎣m−1∑

j=0

⎛
⎝
⎡
⎣ m∏

l=j+2

P l
2

⎤
⎦P

j

1

⎞
⎠
⎤
⎦( max

1�j�m

∥∥∥∥∥T j

L −
K∏

i=1

T
j

i

∥∥∥∥∥
)

.

(A10)

In the above, (A10) follows from (A9) by comparing the last
norm on line (A9) with the right-hand side of (A8), and then
iterating. �
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We now note that

P α
1 �

K∏
i=1

m∏
j=1

∥∥T j

i

∥∥ (A11)

�
K∏

i=1

([eβ�t ]Ñ
m
i ) (A12)

� eKβÑm�t (A13)

� eKβm�t , (A14)

and
m∏

i=j+2

P i
2 �

m∏
i=1

∣∣∣∣ T i
L
∣∣∣∣ (A15)

�
min(KÑm,m)∏

i=1

eβK�t (A16)

� eKβ[min(KÑm,m)]�t (A17)

� eKβm�t , (A18)

where (A12) follows from (A11), and (A16) follows from
(A15) via Lemma 2 and the definition of β. As a result of the
above observations and the statement of Lemma 3 we then get
the following corollary:

Corollary 3.1. Given a k-local system, described by Eqs. (1)
and (2), we have that

ξ � m(e[min(KÑm,m)+Ñm]Kβ�t )

×
(

max
1�j�m

∥∥∥∥∥T j

L −
K∏

i=1

T
j

i

∥∥∥∥∥
)

.

From Corollary 3.1, it is clear that, to proceed, it is necessary
to bound the quantity ||T j

L −∏K
i=1 T

j

i ||. Such a bound is
provided by the following lemma:

Lemma 4. Using the notation and setting of Secs. II and III
we have that∣∣∣∣∣
∣∣∣∣∣T j

L −
K∏

i=1

T
j

i

∣∣∣∣∣
∣∣∣∣∣ � (KeβN̂m

j �t )

×
(

max
2�φ�K

∣∣∣∣T j∑φ

z=1 Lz

− T
j

φ T
j∑φ−1

z=1 Lz

∣∣∣∣).

Defining χ ≡ ||T j

L −∏K
i=1 T

j

i || for notational convenience,
the proof proceeds as follows:

Proof. Taking proper account of the presence of non-CP
strictly k-local propagators, we find that

χ =
∣∣∣∣∣
∣∣∣∣∣T j

LK+∑K−1
z=1 Lz

− T
j

K

K−1∏
i=1

T
j

i

∣∣∣∣∣
∣∣∣∣∣ (A19)
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LK+∑K−1
z=1 Lz

− T
j

KT
j∑K−1

z=1 Lz

+ T
j

KT
j∑K−1

z=1 Lz

− T
j

K

K−1∏
i=1

T
j

i

∥∥∥∥∥ (A20)
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∥∥∥∥T j

LK+∑K−1
z=1 Lz

− T
j

KT
j∑K−1

z=1 Lz

∥∥∥∥
+ ∥∥T j

K

∥∥
∥∥∥∥∥T j∑K−1

z=1 Lz

−
K−1∏
i=1

T
j

i

∥∥∥∥∥ (A21)
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− T
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φ T
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(A23)

� K

[
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i
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(A24)

� (KeβN̂m
j �t )

(
max

2�φ�K

∥∥∥∥T j∑φ

z=1 Lz

− T
j

φ T
j∑φ−1

z=1 Lz
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)

. (A25)

Note that line (A22) follows from line (A21) by comparing
the last norm on line (A21) with the norm on line (A19) and
iterating. Similarly, line (A25) follows from line (A24) via
Lemma 2, the definition of N̂m

j , and the definition of β. �
We now focus our attention on bounding the quantity

||T j∑φ

z=1 Lz

− T
j

φ T
j∑φ−1

z=1 Lz

||. To this end we use the following

lemma:
Lemma 5. Given two arbitrary time-dependent Liouvillians

K and L the following relationship holds:

||TK+L(t,s) − TK(t,s)TL(t,s)|| � 1

2
(t − s)2

[
sup

s�μ�r�t

||[K(u),L(r)]||
]

[e[(t−s)(3 sups�ν�t ||K(ν)||+2 sups�ν�t ||L(ν)||)]]. (A26)

Proof. For notational convenience let us define ζ = ||TK+L(t,s) − TK(t,s)TL(t,s)||. As shown in Ref. [38], using the
fundamental theorem of calculus allows one to obtain

ζ =
∣∣∣∣
∣∣∣∣
∫ t

s

dr

∫ r

s

dμTK(t,s)TL(t,r)T −1
K (μ,s)[L(r),K(μ)]T −1

K (r,μ)TK+L(r,s)

∣∣∣∣
∣∣∣∣, (A27)

from which, using Lemma 2, submultiplicativity of the 1 → 1 norm, and the triangle inequality, and again noting that not all
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propagators are necessarily quantum channels, it follows that

ζ �
∫ t

s

dr

∫ r

s

dμ

(
||[L(r),K(μ)]||exp

[(∫ t

s

||K(ν)||dν

)
+
(∫ t

r

||L(ν)||dν

)

+
(∫ r

μ

||K(ν)||dν

)
+
(∫ r

s

||K(ν) + L(ν)||dν

)])
(A28)
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(A29)
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� 1

2
(t − s)2

[
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s�μ�r�t

||[K(u),L(r)]||
]

[e[(t−s)(3 sups�ν�t ||K(ν)||+2 sups�ν�t ||L(ν)||)]]. (A31)

�

Applying Lemma 5 to the special case of the norm
||T j∑φ

z=1 Lz

− T
j

φ T
j∑φ−1

z=1 Lz

||, then yields the following corollary:

Corollary 5.1. Using the notation and setting of Secs. II
and III, we have that, for all 2 � φ � K , the following
inequality holds:∥∥∥∥T j∑φ

z=1 Lz

− T
j

φ T
j∑φ−1

z=1 Lz

∥∥∥∥ � (Kβ2)(�t)2e(3+2K)β�t .

Theorem 1 now follows straightforwardly as a consequence
of Corollary 3.1, Lemma 4, and Corollary 5.1. Finally, we
provide a proof of Corollary 1.1.

Proof (Corollary 1.1). Assume that

0 � ε � (2K2βt ln(2)e(K+K2)t IDβ)

(3 + [3 + C̃K + C̃K2])
, (A32)

and

m � 2Kβ2t2e(K+K2)t IDβ/ε. (A33)

It follows from Theorem 1 and assumptions (A32) and (A33)
that

ξ � K2β2t2

m
e(3+[3+C̃]K+C̃K2)β(t/m)e(K+K2)t IDβ (A34)

� ε

2
exp

[(
3 + [3 + C̃]K + C̃K2

)
ε

2K2βte(K+K2)t IDβ

]
(A35)

� ε

2
eln(2) (A36)

� ε. (A37)
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P. Zoller, Nat. Phys. 4, 878 (2008).
[38] M. Kliesch, T. Barthel, C. Gogolin, M. J. Kastoryano, and

J. Eisert, Phys. Rev. Lett. 107, 120501 (2011).
[39] T. Barthel and M. Kliesch, Phys. Rev. Lett. 108, 230504 (2012).
[40] D. G. Tempel and A. Aspuru-Guzik, New J. Phys. 16, 113066

(2014).
[41] R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and

J. Casanova, Sci. Rep. 5, 9981 (2015).
[42] H. Wang, S. Ashhab, and F. Nori, Phys. Rev. A 83, 062317

(2011).
[43] D. S. Wang, D. W. Berry, M. C. de Oliveira, and B. C. Sanders,

Phys. Rev. Lett. 111, 130504 (2013).
[44] D. S. Wang and B. C. Sanders, New J. Phys. 17, 043004

(2015).
[45] R. Sweke, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 90,

022331 (2014).
[46] R. Sweke, I. Sinayskiy, D. Bernard, and F. Petruccione, Phys.

Rev. A 91, 062308 (2015).
[47] B. Dive, F. Mintert, and D. Burgarth, Phys. Rev. A 92, 032111

(2015).
[48] P. Zanardi, J. Marshall, and L. Campos Venuti, Phys. Rev. A 93,

022312 (2016).
[49] M. Müller, K. Hammerer, Y. L. Zhou, C. F. Roos, and P. Zoller,

New J. Phys. 13, 085007 (2011).
[50] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez,

M. Hennrich, T. Monz, S. Diehl, P. Zoller, and R. Blatt, Nat.
Phys. 9, 361 (2013).

[51] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[52] H. Weimer, M. Müller, H. P. Büchler, and I. Lesanovsky, Quant.
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