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We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain
(with periodic boundary condition) to which these central qubits are locally and weakly connected either at the
same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal
generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In
the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental
spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium
situations while the latter is created by a sudden but global change of the environmental transverse field is that
the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of
the spin chain, our study for d �= 0 indicates that there exists a threshold time above which concurrence attains a
finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by
d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time
evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar
behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by
analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence
factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when
the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs.
Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always
slower than the unentanglement rate. We further establish that the maximally and minimally decohering channels
show singular behavior which can be explained by invoking upon a quasiparticle picture.
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I. INTRODUCTION

The notion of entanglement, that emerged from the pioneer-
ing work of Einstein, Podolsky, and Rosen [1], is a key concept
of quantum computation and quantum information theories
[2–5]. Given the recent interest in the studies of quantum
correlations in the context of quantum critical systems [6–9],
there have been numerous efforts directed to understanding the
connection between quantum information and quantum phase
transitions (QPTs) [10–16]. Entanglement is usually quantified
through two quantum information theoretic measures: (i)
concurrence [17–19], a separability based approach to measure
the quantum correlation, and (ii) quantum discord [20–22], a
measurement based approach for estimating the nonclassical
correlations present in a bipartite system. There have also
been numerous studies on the entanglement entropy; this is
another important tool to probe the entanglement between two
blocks of a composite system obtained by measuring the von
Neumann entropy associated with the reduced density matrix
of one of the blocks [23].

It is now established that the effect of quantum criticality
gets imprinted in the behavior of the ground-state correlation
which becomes maximum at the quantum critical point (QCP);
for example, the concurrence can detect as well as characterize
a QPT [10,11]. On the other hand, the entanglement, arising
due to the interaction between the system and its environment,
leads to decoherence [24]. There exists a plethora of the
studies investigating the effects induced by the environment on
the quantum information processing [25]; simultaneously, the
dynamical control of the decoherence is also being investigated
extensively [26,27].

The central spin model (CSM), consisting of a single qubit
(spin-1/2) globally coupled to an environmental spin chain,

is an important prototypical model to study the Loschmidt
echo (LE), also known as the decoherence factor (DF)
characterizing the decoherence of the qubit; this has been
studied for both equilibrium [28–30] and nonequilibrium
[31–39] time evolution and also in the context of dynamical
phase transitions [40,41]. Moreover, the concurrence [42]
and the quantum discord [43] have been shown to satisfy
the universal scaling law as predicted by the Kibble-Zurek
argument [44,45] when a parameter of the environmental
Hamiltonian is driven linearly across a QCP. Additionally,
a generalized central spin model (GCSM) where two spins
are globally coupled to an environmental spin chain, with
a periodic boundary condition (PBC), is also studied for
probing the concurrence and quantum discord generated
between the qubits when the composite system evolves in
time [46–48]; the concurrence generation is found to be
maximum for the critical spin chain [49,50]. In connection to
the experimental studies, a QPT has already been observed
with ultracold atoms in an optical lattice [51]. A possible
realization of a one-dimensional XY chain has also been
proposed [52]. Furthermore, using NMR quantum simulator,
it has been experimentally confirmed that the LE shows a
dip at the QCP of a finite antiferromagnetic Ising spin chain,
thereby establishing it an ideal detector of a QCP [53].

Recently, there have been investigations [54,55] of the
unentanglement (i.e., the decoherence) between two distant
qubits initially entangled and connected to two different sites
of the spin chain that evolves in time. The state transfer quality
between two external qubits of a spin chain has also been
investigated by analyzing the entanglement between them [56].
Given the previous studies, we address the reverse question.
Is there a temporal generation of entanglement between a pair
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of qubits, initially prepared in an unentangled state, connected
at the same site and also two different sites (separated by a
distance d) of the environmental spin chain? To address this
particular issue, we consider two situations: (i) when the spin
chain (chosen to be a one-dimensional transverse Ising chain)
evolves temporally in time following the local coupling of the
qubits, referred to as the equilibrium situation; (ii) there is an
additional sudden global quench of the transverse field of the
environmental Hamiltonian in addition to the local coupling,
referred to as the nonequilibrium situation. Unlike the above
studies, here we investigate the generation of the concurrence
in the nonequilibrium situation using a GCSM with a local
coupling.

We briefly summarize our main results at the outset: First,
we are working in the weak-coupling limit considering a PBC
for the environmental spin chain. Our observation for the
equilibrium situation is that the entanglement generation is
of very small magnitude, although in the vicinity of the QCP
of the environment the concurrence becomes maximum and
remains small but finite even when the two qubits are separated
by a large distance. In the nonequilibrium situation, within
the weak-coupling limit, our investigation suggests that the
concurrence, of much higher magnitude than the equilibrium
case, can be induced by the global and sudden quench of
the transverse field; this concurrence eventually decays with
time. We explain this generic behavior of the concurrence
by analyzing the echoes associated with different decohering
channels (DCs) with time; we observe that the number of
independent channels is dictated by the separation d and
local difference of the transverse field of the two underlying
Hamiltonians governing the time evolution. The concurrence
attains a higher value for a higher number of independent
channels. The decay of the most rapidly decohering channels
is responsible for a maximum amount of entanglement while
the decay of the concurrence is nontrivially related to the
decay of one of the intermediate decaying channels. For a
finite separation between the qubits, we establish that the
concurrence attains a nonzero value after a threshold time;
this is attributed to identical behavior of different DCs up to
the threshold time. Additionally, we show that the respective
dephasing rate associated with each qubit is always slower
than the unentanglement rate between the qubits. Furthermore,
we characterize the distance dependent behavior of different
DCs following a critical quench by resorting to a quasiparticles
picture.

The paper is organized in the following manner. In
Sec. II, we introduce the CGCM consisting of two qubits
locally connected to two sites of an Ising chain with the
transverse field. In parallel, we define the concurrence derived
from the 4 × 4 reduced density matrix of the two qubits
obtained by tracing out the environmental degrees of freedom;
this density matrix contains different LEs corresponding to
different DCs associated with the environmental evolution. In
Sec. III the results obtained for the equilibrium situation are
presented while in Sec. IV we discuss the nonequilibrium
behavior of the concurrence. We analyze the behavior of
concurrence observed in equilibrium as well as nonequilib-
rium cases investigating the temporal evolution of different
decohering channels. Finally, we make concluding remarks in
Sec. VI.

|A>+|B>

System (Two Qubits)

Environment (Spin Chain with PBC)

p

q

1

N

Generalized Central Spin Model

δ

δ

d

FIG. 1. Schematic diagram shows the generalized central spin
model where two qubits A and B are locally connected to two different
environmental sites p and q separated from each other by a distance d

with a coupling strength δ. We consider a periodic boundary condition
for the environmental spin chain with N number of spins.

II. MODEL

We consider a GCSM in which two noninteracting qubits
are connected by a local interaction to an environmental
spin chain, chosen to be a one-dimensional ferromagnetic
(FM) transverse Ising spin model, in such a way that the
local transverse field of the environmental spin chain gets
modified. The composite system, thus, is a generalization
of the central spin model [29], in which a single spin-1/2
particle (qubit) is globally connected to all the spins of the
environmental spin chain with an interaction Hamiltonian;
the schematic diagram of the GCSM is shown in Fig. 1.
The combined Hamiltonian HT, comprising an environmental
transverse Ising Hamiltonian HE [9] with N number of spins
and interaction Hamiltonian HSE of two qubits, is given by

HT = HSE + HE. (1)

Here,

HE = −J
∑

n

σ x
n σ x

n+1 − λ
∑

n

σ z
n , (2)

where σ ’s are the usual Pauli matrices. λ and J (set equal
to unity below) are the transverse magnetic field and ferro-
magnetic cooperative interactions, respectively. We consider a
PBC σ i

N+1 = σ i
1. The interaction Hamiltonian for two qubits

A and B connected at different sites of the environment is
given by

HSE = −δ
(|↑〉〈↑|A ⊗ σ z

p + |↑〉〈↑|B ⊗ σ z
q

)
; (3)

here, |↑〉A,B is an eigenstate of σ z
A,B satisfying σ z

A,B |↑〉A,B =
|↑〉A,B , while σ z

p,q denote the environmental spin at pth and
qth site, respectively; these sites are separated by a distance d.
δ is the coupling strength and we shall work in the limit δ � 1,
which we shall address as the weak-coupling limit. Clearly, the
interaction Hamiltonian (3) suggests that interaction with the
qubits modifies the local transverse field of the environment.

In order to study the generation of concurrence between
two qubits, we take a completely unentangled (direct product)
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initial state given by

|φ〉AB = 1
2 (|↑〉A + |↓〉A) ⊗ (|↑〉B + |↓〉B). (4)

The initial state for the composite system is then given by
|ψ(λi,t = 0)〉 = |φ〉AB ⊗ |η(λi,t = 0)〉, where |η(λi,t = 0)〉
is the initial ground state of the environmental Hamiltonian
HE given in Eq. (2).

Focusing on the nonequilibrium situation, we consider a
sudden quenching of the transverse field which is instanta-
neously changed from an initial value λi to a final value λf

and study the subsequent temporal evolution of the composite
system. We note that the equilibrium situation corresponds
to λf = λi . Depending upon the state of the qubits, the
interaction Hamiltonian leads to four channels of evolution
for the environment. The channel Hamiltonians Hαβ with λf

governing the dynamics are given by

H↓↓(λf ) = HE(λf ),

H↑↑(λf ) = HE(λf ) − δ
(
σ z

p + σ z
q

)
,

(5)
H↓↑(λf ) = HE(λf ) − δσ z

q ,

H↑↓(λf ) = HE(λf ) − δσ z
p.

The time evolved state of the composite system is given by

|ψ(t)〉 = 1
2 (|↑↑〉 ⊗ |η↑↑(t)〉 + |↓↓〉 ⊗ |η↓↓(t)〉
+ |↑↓〉 ⊗ |η↑↓(t)〉 + |↓↑〉 ⊗ |η↓↑(t)〉), (6)

where |αβ〉 represents the state for two qubits and environ-
mental evolved state |ηαβ(t)〉 is given by

|ηαβ(t)〉 = e−iHαβ t |η(λi,t = 0)〉, (7)

where λi is the initial homogeneous transverse field same for
all sites, i.e., λn = λi .

One can construct the reduced density matrix of the qubits
by tracing out the environmental degrees of freedom from
the composite density matrix constructed from |ψ(t)〉. The
reduced density matrix for the two qubits system in the basis
{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} is given by

ρs(t) = 1

4

⎡
⎢⎢⎢⎣

1 d↑↑,↑↓ d↑↑,↓↑ d↑↑,↓↓
d∗

↑↑,↑↓ 1 d↑↓,↓↑ d↑↓,↓↓
d∗

↑↑,↓↑ d∗
↑↓,↓↑ 1 d↓↑,↓↓

d∗
↑↑,↓↓ d∗

↑↓,↓↓ d∗
↓↑,↓↓ 1

⎤
⎥⎥⎥⎦, (8)

where dαβ,γ λ = 〈ηαβ(t)|ηγλ(t)〉, with α,β,γ,λ are binary vari-
ables representing ↑ and ↓. The LEs corresponding to different
channels are Dαβ,γ λ(t) = |dαβ,γ λ(t)|2 and its explicit form is
the following:

Dαβ,γ λ(t) = |〈η(λi)|eiHαβ (λf )t e−iHγλ(λf )t |η(λi)〉|2. (9)

Now, using the density matrix ρs(t) given in Eq. (8), one can
compute the concurrence between the two qubits. We shall
follow Wooter’s definition of concurrence given by

C(ρs) = max(0,
√

ε1 − √
ε2 − √

ε3 − √
ε4), (10)

where εi’s are the eigenvalues in a descending order of the
non-Hermitian matrix M = ρsρ̂s with ρ̂s defined as

ρ̂s = (σy ⊗ σy)ρ∗
s (σy ⊗ σy). (11)

Therefore, one readily concludes that the concurrence between
the two qubits are determined by the LE associated with the
four channels. It is to be noted that the concurrence and LEs
are all dimensionless numbers and bounded between 0 and 1;
also, time is measured in appropriate dimension setting � = 1.
In this paper, we consider all the logarithms to the base e.

Let us consider a generic Hamiltonian of a one-dimensional
Ising chain in a site dependent transverse field λn given by

H = −
∑

n

(
σx

n σ x
n+1 + λnσ

z
n

)
. (12)

One can obtain the initial Hamiltonian from the above Hamil-
tonian (12) by setting λn = λ while for the final Hamiltonian
λn becomes different from λ at those sites where the qubits
are coupled. For the initial homogeneous case (λn = λ), the
model in Eq. (12) has a QCP at J = λ separating FM and
quantum paramagnetic (PM) phases. Using Jordan-Wigner
transformations followed by Fourier transformation for a
homogeneous and periodic chain, the energy spectrum for the
Hamiltonian in Eq. (12) is obtained as [57,58]

εq = ±2
√

(λ + cos q)2 + sin2 q, (13)

where q is the momentum which takes discrete values given
by q = 2πm/N with m = 0, . . . ,N − 1 for a finite system of
length N .

In order to express the LE given in Eq. (9) in the
fermionic representation one has to cast the Hamiltonian in
the above basis following Jordan-Wigner transformation. The
Hamiltonian in Eq. (12) can be described by a quadratic form
in terms of spinless fermions ci and c

†
i [57,58],

H =
∑
i,j

[
c
†
i Ai,j cj + 1

2 (c†i Bi,j c
†
j + H.c.)

]
. (14)

Here, A is a symmetric matrix as H is Hermitian and B is an
antisymmetric matrix which follows from the anticommutation
rules of ci’s. The elements of these matrices thus obtained are

Ai,j = −(Jδj,i+1 + Jδi,j+1) − 2λjδi,j ,

Bi,j = −(Jδj,i+1 − Jδi,j+1), (15)

where λj is the site dependent transverse field.
The Hamiltonian (14) can be written in the following form

also:

H = 1
2�†H�, (16)

with � = (c†,c) = (c†1, . . . ,c
†
N,c1, . . . ,cN ) and H is given by

H =
[
−A −B

B A

]
. (17)

The above Hamiltonian can be diagonalized in terms of
the normal-mode spinless Fermi operators ηk given by the
relation [57]

ηk =
∑

i

[gk(i)ci + hk(i)c†i ], (18)

where gk(i) and hk(i) are real numbers; gk(i) and hk(i) are
obtained from the real matrices g and h, respectively.
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The unitary matrix U that diagonalizes the Hamiltonian
given in Eq. (17) can be constructed from gk(i) and hk(i),

U =
[
g h

h g

]
. (19)

Using this unitary operator one can also write the fermionic
operator in terms of normal modes,

ci =
∑

k

[gk(i)ηk + hk(i)η†
k]. (20)

In terms of the new operators ηk , the Hamiltonian in Eq. (17)
takes the diagonal form,

H =
∑

k

�k

(
η
†
kηk − 1

2

)
, (21)

with �k being the energy of different fermionic modes with
index k.

In order to study the time evolution of concurrence
C, we have to first compute the time-dependent LE that
constitutes the reduced density matrix of two spins given
in Eq. (8). One can use the covariance matrix formalism to
determine time evolution of LE associated with the different
DCs governed by two different Hamiltonians [55,59]. These
different Hamiltonians Hαβ shown in Eq. (5) have different
sets of local transverse fields. This formalism allows us to
write the LE in the following way:

Dαβ,γ λ(t) = |det[I − Rαβ(t) − Rγλ(t)]|1/2. (22)

Here, I is an identity matrix and Rαβ(t)’s are the time evolved
covariant matrices given by

Rαβ(t) = e−iHαβ tR(0)eiHαβ t (23)

with R(0) = 〈η(λi,t = 0)|��†|η(λi,t = 0)〉, and its matrix
form is given by

R(0) =
[
〈c†c〉 〈c†c†〉
〈cc〉 〈cc†〉

]
=

[
hT h hT g

gT h gT g

]
, (24)

where T denotes the transpose of a matrix. This 2N × 2N

initial covariant matrix is composed of four blocks and all of
these blocks are having the same dimension of N × N .

III. EQUILIBRIUM STUDY

In this section, we shall illustrate the equilibrium behavior
of concurrence given in Eq. (10) as a function of time when
the environment evolves along different DCs originated from
the coupling to the qubit. In this case λi = λf = λ, for all the
sites except the sites where the qubits are locally connected.
Figure 2(a) depicts the behavior of concurrence for d = 0
while Fig. 2(b) shows it for d = 1. When the parameter value
is chosen to be close to the quantum critical value (λ = 0.99),
the concurrence initially grows as a function of time showing a
prominent dip at t = N/v = N/2 and subsequent revival; this
is because of the constructive interference of quasiparticles
generated due to the local connection of the qubit to the
spin chain having group velocity v = 2 at the QCP. Thus, the
finite-size effect is manifested in this dip of the LE which is
prominent for λ = 1. In the PM phase also, concurrence shows
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FIG. 2. Plot (a) shows the equilibrium behavior of concurrence
C as a function of time with both the qubits connected at the same
site, i.e., d = 0, for different phases (FM and PM phase) including
the QCP of the environmental chain; plot (b) shows the variation of C

as a function of time when d = 1. In both cases, the generation
of entanglement is of small magnitude. We consider N = 100
and δ = 0.1.

rapid fluctuations of small amplitude at around t = N/2;
otherwise, it shows a time-independent behavior. Comparing
Fig. 2(a) with Fig. 2(b), one can see that C is one order of
magnitude greater for d = 1 than for the d = 0 case. As we
shall discuss in Sec. V in the context of Fig. 7, for the case
d = 1, there are additional independent channels with different
LEs [see Eq. (9)] resulting in more prominent interference
effects; however, in the nonequlibrium case (see Fig. 5) there
exits additional channels for d = 0 also. What is noteworthy
is that even if the qubits are initially unentangled, there is a
generation concurrence only due to the local coupling during
the temporal evolution of the composite system.

Additionally, maximum concurrence is generated when λ

is close to the critical value (when there is a diverging length
scale) rather than in the PM and FM phases. That the value
of the concurrence attains maximum for λ � 1 is independent
of the distance d between the qubits and hence is a universal
observation. We however note that in the weak-coupling limit
the magnitude of the maximum value of the concurrence thus
generated is smaller in contrast to the nonequilibrium case to
be discussed in the next section, although, it should be noted
that in the relatively strong-coupling limit the maximum value
of concurrence (see Fig. 3) in the equilibrium case is of the

C

d

δ
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FIG. 3. Plot shows the variation of C as a function of distance
d (with d > 0) and coupling strength δ when λ = 0.99 (QCP),
N = 100, and t = 7.3. In the weak-coupling limit the concurrence is
nonzero for relatively larger separation d .
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FIG. 4. Plot (a) shows the variation of C as a function of
time followed by a sudden quench of the transverse field of the
environmental Ising chain choosing the environment initially in the
FM phase. The concurrence initially increases and eventually decays
to zero showing a primary peak at t = t∗ and a secondary peak
at t = t2 > t∗; t∗ and t2 both decrease with the quench amplitude
|λi − λf |. Here, λi = 0.2 and δ = 0.1. Plot (b) shows the variation of
C as a function of time when the spin chain is quenched from the PM
phase with λi = 1.5 to QCP at λf = 0.99 for different values of δ.
Inset shows the variation of t∗ with δ within the weak-coupling limit,
t∗ ∝ δ−1. Here, it has been shown that ln(t∗) is linearly proportional
to ln(δ) with a slope �−0.93; the logarithm is to the base e. For both
the above cases, we consider d = 0 and N = 100.

same order of magnitude as the nonequilibrium case shown in
Figs. 4 and 5 for small δ limit.

A close inspection of Fig. 3 suggests that for the strong-
coupling limit with δ > 1, the concurrence becomes finite for
only short distance 1 < d < 3. In contrary, the concurrence
gradually decreases over a relatively large distance (starting
from d = 1) in the weak-coupling limit δ < 1, although the
magnitude of C is small compared to the δ > 1 regime. For
relatively strong-coupling strength δ ∼ O(1), the concurrence
becomes maximum (reaching a value around 0.19) for small d.

A large value of δ(� 1) makes the value of the local
transverse field off-critical so that the correlation become
short ranged and consequently the entanglement between two
distant qubits is vanishingly small while for small δ(� 1) the

 0
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FIG. 5. Figure shows the variation of C as a function of time with
distance d as the parameter when the environmental chain is quenched
from the FM phase to QCP. The concurrence becomes maximum for
d = 0; there exists a threshold time tTH above which C attains a finite
value for d �= 0.

value of the local transverse field stays critical and hence a
long-range correlation exists in the environment. There exists
a pronounced oscillatory behavior of C as a function of δ for
two qubits coupled within a small distance d between them.
This is explained noting that the concurrence is derived from
Dα,β,γ,λ having sinusoidal factors like cos2[Eαβ(δ)t] where
Eαβ(δ) is the eigenvalues of the Hamiltonian Hαβ(δ) [Eq. (5)].
Therefore, when t and d are kept fixed, different LEs [see
Eq. (9)] exhibit oscillating behavior with δ which then gets
reflected into concurrence. However, we are interested in the
weak-coupling limit, hence these oscillations are not going to
influence the results presented in the subsequent discussions.

IV. NONEQUILIBRIUM STUDY

We shall now extend the previous studies to the situation
in which the environmental spin chain undergoes a global
sudden quenching, i.e., the transverse field λ is suddenly
changed from an initial value λi to a final value λf . In this
nonequilibrium situation, two external qubits become more
strongly entangled as compared to the earlier equilibrium
situation. Results presented in Fig. 4(a) suggest the following:
(i) The concurrence generation is maximum when the spin
chain is quenched to the QCP starting from the FM phase.
(ii) Quenching within the same phase yields entanglement
of smaller magnitude between the qubits as compared to
the quenching between two different phases. Furthermore,
concurrence remains nonzero for longer time if the quenching
is performed within the same phase. Finally, there is a
prominent peak in C appearing at time t = t∗ that becomes
smaller for higher quench amplitude. Additionally, there exists
a secondary peak at t = t2 after the primary peak at t∗. On the
other hand, we show in Fig. 4(b) that t∗ decreases with δ,
in fact, is inversely proportional to δ as shown in the inset.
We note that the above features of C is qualitatively identical
for all types of quenching protocols. Comparing the results
presented in Figs. 3 and Fig. 4, we can infer that the large δ

equilibrium case is equivalent to the small δ nonequilibrium
case so far as the concurrence generation is concerned.

Figure 5 shows that for the critical quenching starting from
the FM phase, C becomes maximum for d = 0 while for other
cases with d �= 0, it attains a finite value only after a threshold
time tTH; this threshold time increases with the increasing
d. One can note that t∗ attains a higher value for d = 0
as compared to the case d �= 0; in the latter case, t∗ almost
remains constant. Additionally, we observe that C stays at a
nonzero value for longer time for d = 0 as compared to d �= 0
case. The maximization of C for d = 0 case may be related to
the relatively strong interference between a larger number of
independent LEs as compared to the finite d case where two
of the LEs behave identically. We shall elaborate it further in
Sec. V while discussing Figs. 9 and 10. The interference effect
is also hinted in Figs. 2(a) and 2(b) for the equilibrium case.

V. INTERPRETATION USING CHANNEL ANALYSIS

In this section, we shall analyze the results presented in
previous sections using the LEs associated with the different
DCs which in turn lead to the generation of entanglement
between the qubits which are initially unentangled. For this
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FIG. 6. Schematic diagram explicitly shows the formation of four
channels μ1, μ2, μ3, and μ4 with their underlying Hamiltonians Hαβ ;
μ1 is governed by H↑↑ and H↓↓, μ2 by H↓↓ and H↓↑, μ3 by H↑↑ and
H↓↑, and μ4 by H↓↑ and H↑↓.

purpose, let us fix our notation first: D2
αβ,γ λ = |det(I − Rαβ −

Rγλ)| = |dαβ,λγ |4. Recalling Eq. (9), we have D2
↓↓,↑↑ = μ1;

periodic boundary condition ensures that D2
↓↓,↑↓=D2

↓↓,↓↑=μ2,
D2

↑↑,↑↓ = D2
↑↑,↓↑ = μ3 (hence, this is valid for all d as well as

for equilibrium and nonequilibrium cases) and D2
↓↑,↑↓ = μ4.

We therefore have to deal with these four DCs to analyze the
temporal behavior of C. We shall refer to μ1, μ2, μ3, and μ4

as DCs in the subsequent discussion and figures.
We reiterate that there are total of four governing Hamil-

tonians Hαβ (with α,β = ↑,↓) as given in Eq. (5) depending
on the spatial configuration of the local coupling term [see
Eq. (3)]. These Hamiltonians ultimately dictate the behavior
of C through the DCs i.e., μ1, μ2, μ3, and μ4. One can
see that H↑↑ is the maximally deviated from the unperturbed
Hamiltonian H↓↓ and other two Hamiltonians H↑↓ and H↓↑ are
deviated from H↓↓ by just one local transverse field term. The
schematic diagram as shown in Fig. 6 depicts these different
Hamiltonians H↑↑, H↑↓, H↓↑, and H↓↓ that govern the time
evolution of four DCs. We note that μ2 and μ3 may behave
in an identical fashion; moreover, for the d = 0 case, μ4

trivially becomes unity throughout whereas μ1, μ2, and μ3

never become unity. For d �= 0, none of these μn’s becomes
unity. We shall investigate each of these DCs in subsequent
discussions at length.

Let us first investigate the behavior of individual channel in
the equilibrium scenario. In a generic situation all the DCs
are independent with their corresponding LEs 4

√
μ1, 4

√
μ2,

4
√

μ3, and 4
√

μ4. Figure 7(a) represents the temporal behavior
of different DCs for d = 0 when the environment is in the FM
phase. The channel μ4 does not have a dynamics and hence
remains trivially unity for all time due to the fact that the initial
state evolves with two identical Hamiltonians, both with an
additional transverse field δ at one site. In the weak-coupling
limit δ → 0, μ2 � μ3; therefore, one can approximately work
with two independent DCs, μ1 and μ2. This can be attributed
to the fact that the underlying Hamiltonians are different from
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FIG. 7. Equilibrium echo for different DCs μ1, μ2, and μ3 as a
function of time are plotted when the spin chain is in the FM phase.
Plot (a) represents d = 0 case while the plot (b) depicts the behavior of
DCs along with an additional channel μ4 for d = 1 case. We observe
that μ3 superimposes on μ2 leading to two nontrivial independent
channels for d = 0 case as explained in the text. On the other hand,
for finite distance between the qubits, μ2 deviates from μ3 which
is more prominent in late time region. In addition, there is an extra
independent channel μ4 which is no longer trivially unity like the
earlier d = 0 case. For both cases we consider, N = 100, δ = 0.01.

each other in an identical way, i.e., at a single coupling site
only the local transverse field of one of the Hamiltonians is
deviated by δ from the other. These observations lead us to the
conclusion that for d = 0 and within the weak-coupling limit,
the number of independent channels effectively depends on the
corresponding difference in the local fields of two underlying
Hamiltonians that dictate the time evolution of the initial state;
the differences in this case are δ for μ2 and 2δ for μ1.

Figure 7(b) represents the temporal behavior of different
DCs for d = 1 when the environment is in the FM phase.
Interestingly, μ4 in this case is not trivially unity as in the
previous case of d = 0. In this case for d �= 0 and δ � 1,
where indeed we have four independent channels though for
δ → 0, there is a significant overlap between μ2 and μ3;
however, μ2 deviates from μ3 which is more prominent in
the large time limit, as δ increases. This deviation may be
originated from the fluctuations coming from the local details
of the underlying Hamiltonians associated with the transverse
field at two different coupling sites, i.e., H↓↓, H↓↑ for μ2 and
H↑↑, H↓↑ for μ3, and that is why this deviation is eminent in
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FIG. 8. The temporal behavior of equilibrium echo for different DCs are plotted when the spin chain is at the QCP with d = 0 (a), d = 1
(c), and in the PM phase with d = 0 (b), d = 1 (d). The DCs in PM phase deviate minimally from the initial value, i.e., unity, and behave almost
independent of time except around t = N/v = 50 where DCs exhibit rapid fluctuations. On the other hand, decoherence effect is stronger
resulting in a noticeable temporal variation of these DCs. For both the cases we consider, N = 100, δ = 0.01.

Fig. 7(b) as compared to Fig. 7(a). In this FM phase, μ1 and μ4

almost overlap with each other; μ1 in the above phase shows
prominent oscillations as one increases d.

Figures 8(a) and 8(b) represent the temporal behavior of
different DCs for d = 0 when the environment is at QCP
and in the PM phase, respectively, while Figs. 8(c) and 8(d)
correspond to the d = 1 case. Comparing Figs. 7(a) and 8(a)
and 8(b), the other notable point is that μ2, calculated in
different phases and at QCP, always remains at a higher value
than that of μ1. This can be attributed to the fact that μ1

exhibits a sharper short time fall than that of μ2. Comparing
Figs. 7(b) and 8(c) and 8(d), one can see that in the FM phase
μ2 is always higher than μ1 and μ4. On the other hand, in
the PM phase or at the QCP μ4 > μ2 > μ1. One can hence
conclude that for d �= 0 the channel μ4 is maximally affected
in the FM phase as compared to the QCP and PM phases. In
all the cases discussed above, μ1 is maximally deviated from
unity during its temporal evolution.

We shall now compare the dephasing rate of a single
qubit [60] with the temporal decay of the concurrence which
is generated following a nonequilibrium evolution. This is
calculated invoking upon the reduced 2 × 2 density matrix
ρA(B) of the qubit A(B) that is obtained by tracing over one
of the qubits from the 4 × 4 density matrix of the two-qubit
system as in (8). Here, the off-diagonal terms of the reduced
density matrix are called the dephasing factor (DP); these terms
are denoted by SA(B)(t) to quantify the loss of coherence of
a single qubit which was initially prepared in a pure state
with another qubit. The decay of SA(B)(t) as a function of
time, therefore, determines the time over which the coherence
vanishes. Tracing over one of the qubits in Eq. (8), one gets

ρA(t) = ρB(t) = 1

2

⎡
⎣ 1

√
μ′

3+
√

μ′
2

2√
μ′

3+
√

μ′
2

2 1

⎤
⎦, (25)

where μ′
n = √

μn. Remarkably, the off-diagonal terms
SA(t) = SB(t) = (

√
μ′

3 + √
μ′

2)/4 are completely independent
of μ1 and μ4; this leads to an interesting consequence as we
shall elaborate below.

Now, we focus on the nonequilibrium evolution of the
channel choosing d = 0 first. Here, one has four independent
channels unless δ → 0 when μ2 coincides with μ3 though

μ4 becomes trivially identity as in the equilibrium case.
Figures 9(a)–9(c) show nonequilibrium temporal evolution of
C, DC, and DP with d = 0 for the FM, the critical, and the
PM quenching while the initial state of the environment is in
the FM phase, respectively. One can see that the primary peak
of the concurrence occurs when μ1 → 0 and the secondary
peak when μ2μ3 → 0. To be more precise, the secondary
peak appears when μ3 → 0 but μ2 is finite and hence their
product μ2μ3 → 0. On the other hand, concurrence becomes
vanishingly small when μ

1/2
3 → 0. Additionally, one can see

that in the early time region μ2 almost overlaps with μ3 but in
the course of the evolution, these two channels start to behave
differently leading to a visible deviation from each other.
Recalling SA(B) we find that there exists a finite coherence
even long after the qubits become unentangled from each other;
this implies that the dephasing rate is slower than the rate in
which the qubits lose the entanglement [60]. This observation
is qualitatively explained as follows: the DCs μ2 and μ3 appear
in the DP SA and SB in an additive manner; on the other
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FIG. 9. Nonequilibrium echos for different DCs, DP, and C are
plotted as a function of time with three different situations: quenching
to the FM phase with λf = 0.8 (a), quenching to the QCP with
λf = 0.99 (b), and quenching to the PM phase where λf = 1.8 (c).
Here, N = 100, δ = 0.1, d = 0, and λi = 0.2. μ1 displays the
sharpest decay to zero among all the four channels. μ4 exhibits
time-independent behavior and μ3 vanishes more rapidly than μ2.

022316-7



TANAY NAG AND AMIT DUTTA PHYSICAL REVIEW A 94, 022316 (2016)

 0
 0.3
 0.6
 0.9
 1.2

 0  200  400  600  800  1000  1200  1400  1600

C
, D

C
, D

P t

(a)λf=0.8 C
μ1
μ2

μ3
μ4

μ2 μ3

SA

μ2
1/2

μ3
1/2

 0
 0.3
 0.6
 0.9
 1.2

 0  200  400  600  800  1000  1200t

(b)

λf=0.99

 0
 0.3
 0.6
 0.9
 1.2

 0  100  200  300  400  500t

(c)

λf=1.8

FIG. 10. DC, DP, and C for d = 40 are plotted as a function
of time with three different situations, quenching to the FM phase
with λf = 0.8 (a), quenching to QCP with λf = 0.99 (b), quenching
to the PM phase where λf = 1.8 (c). Here, N = 100, δ = 0.1, and
λi = 0.2. There exists a threshold time tTH above which C attains a
nonzero value. The dynamical behavior of μ2 coincides with that of
the μ3 throughout the temporal evolution.

hand, concurrence depends on the μ’s in a complicated way.
We therefore observe a long dephasing time TD (dictating the
decay of SA and SB) as compared to unentanglement time
tUE above which the concurrence vanishes between the two
qubits. Additionally, TD � TUE for FM quenching whereas TD

is comparable (of the same order) to TUE for the PM quenching
case and the quantum critical case. All the above observations
are independent of the quenching path i.e., sudden quenching
within the same phase or to QCP or to a different phase.

In parallel, Figs. 10(a)–10(c) represent the time evolution
of C, DC, and DP with d = 40 for the FM, critical, and the PM
quenching, and the initial state in the FM phase, respectively.
For this d �= 0 case, the μ4 exhibits improper oscillations
with time. μ4 remains the minimally affected channel in the
nonequilibrium situations like the equilibrium situations as it
always lies close to unity. But the main difference with the
d = 0 case is that μ3 and μ2 almost always coincide with
each other even when δ is not vanishingly small. Therefore,
here we have three independent channels μ1, μ2, and μ4. It
shows that the primary peak of C occurs when μ1 → 0 and the
secondary peak is obtained when μ2μ3 � μ2

2 → 0. A detailed
observation suggests that μ2 and μ3 both become sufficiently
small (∼0.15); as a result their product μ2μ3 → 0. The
concurrence becomes vanishingly small when μ3 → 0. In all
the phases μ

1/2
2 and μ

1/2
3 remain finite even after concurrence

vanishes. The other notable feature of this finite d case is that
the TUE � TD/2 for critical and PM quenching. TD � TUE

for the FM quenching case which has also been observed for
the d = 0 situation. One remarkable observation for d �= 0
is that up to a threshold time tTH, concurrence remains
zero and different DCs overlap with each other; for t < tTH,
we see that μ4 � μ1 and μ2

3 � μ1 and after this threshold
time the different DCs move away from each other except
for the channels μ2 and μ3. We observe that C can only take
a positive value after tTH as shown in Fig. 5.

Comparing the results presented in Figs. 9 and 10, we
note that for d = 0, H↓↑ determining the evolution of μ2 has
a local transverse field modified by only δ with respect to
the final unperturbed Hamiltonian H↓↓ in which there is an
effect of coupling; on the other hand, H↑↑ in μ3 has a local
field modified by 2δ. Hence, μ2 and μ3 behave differently
with time. One can infer that the dynamical evolution of μ2

matches with that of the μ3 only in the δ → 0 limit as we have
already mentioned earlier. Now, for d �= 0, the underlying
Hamiltonians H↓↑, H↑↑ governing the dynamics of μ2 and
μ3 are similar in the sense that both of them are having the
identically modified transverse fields by just an amount δ at
two different sites over the Hamiltonian H↓↓. This explains the
observation that the temporal evolution μ2 and μ3 are identical
and they fall on top of each other with time. In a nutshell, our
study suggests that the square of the LEs (μn’s) themselves
are more important than the LEs (

√
μn’s) in determining the

behavior of the concurrence, although its decay may depend on
the LEs. The conditions of appearance of the first and second
peak of C are universal for any d.

One can write the composite density matrix of two qubits in
a generic form, valid for equilibrium as well as nonequilibrium
situations, given by

ρs(t) = 1

4

⎡
⎢⎢⎢⎢⎣

1
√

μ′
3

√
μ′

3

√
μ′

1√
μ′

3 1
√

μ′
4

√
μ′

2√
μ′

3

√
μ′

4 1
√

μ′
2√

μ′
1

√
μ′

2

√
μ′

2 1

⎤
⎥⎥⎥⎥⎦. (26)

The above density matrix given in Eq. (26) is obtained from
Eq. (8) through replacing dαβ,λγ by 4

√
μn = √

μ′
n. This density

matrix can be reduced to a simplified form when d �= 0 with
μ2 = μ3. On the other hand, when d = 0 and δ → 0 one has
μ4 = 1 and μ2 → μ3, respectively.

The four eigenvalues obtained from ρsρ̂s with μ2 = μ3 are
given by

ε1 = (−1 +
√

μ′
4)2, ε2 = (−1 +

√
μ′

1)2,

ε3,4 = 1
2 (2 − 8μ′

3 + 2
√

μ′
4 + μ′

4 + 2
√

μ′
1 + μ′

1

∓
√

(
√

μ′
4 −

√
μ′

1)2[−16μ′
3 + (2 +

√
μ′

4 +
√

μ′
1)2])

(27)

One can also show that the concurrence, obtained using the
above eigenvalue in terms of μn, becomes maximum when
μ1 → 0 while μ4 and μ2 are nonzero. This is depicted in
Fig. 11(a) where concurrence is plotted as a function of μ1

and μ2; concurrence shows a nearly monotonic increase with
decreasing μ1. This justifies the maximization of concurrence
that happens for the d = 0 case when μ1 → 0. However, μ2

and μ3 are not always the same for the d = 0 case except for
the δ → 0 limit. We consider the simplified situation μ2 = μ3

and μ4 = 1 to show explicitly that the concurrence indeed
maximizes with the μ1 → 0 limit. This feature is common
when μ4 < 1 (for the d �= 0 case) and μ2 �= μ3 (for the d = 0
case).

Now we shall examine the second peak observed in C

when μ2μ3 → 0 for any value of d. In order to investigate this
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FIG. 11. We plot C obtained from the reduced two qubits density
matrix with μ4 = 1 as a function of μ1 and μ2 [with μ2 = μ3 in
Eq. (26)] in (a) and as a function of μ2 and μ3 (with μ1 = 0) in
(b). Plot (a) indicates that the concurrence, calculated using Eq. (27),
becomes maximum for μ1 = 0. Plot (b) suggests that C, obtained
numerically by using Eq. (26), becomes maximum when μ2 → 0
with a finite μ3 and vice versa hence C is maximum in the region
μ2μ3 → 0. The region where C becomes finite is highlighted. The
above features hold true for any other value of μ4 �= 1.

phenomenon, we have to set μ1 = 0 in the reduced density
matrix presented in Eq. (26). We note that functions involving
the product term μ2μ3 appear in the matrix M = ρ̂sρs ; hence,
the eigenvalues also contain this product, although an analytic
closed-form expression of eigenvalues in terms of μ2, μ3,
and μ4 cannot be obtained in this case. We present the
concurrence, numerically obtained from Eq. (26), in Fig. 11(b)
showing that the concurrence is almost a monotonic function
of μ2 (while μ3 � 1) and μ3 (while μ2 � 1) except near the
regions μ2 � 1, μ3 → 0 and μ3 � 1, μ2 → 0. We note that
the concurrence is finite only in the highlighted region and
becomes zero elsewhere. Therefore, it is now clear that C has
a secondary maximum when μ2μ3 → 0 except near the points
μ2 = 0 and μ3 = 0. This characteristic of concurrence is also
seen for the case when μ4 �= 1 (for finite d).

Our observation suggests that μ4 always stays at unity
for the d = 0 case but concurrence vanishes after the

unentanglement time tUE. One can therefore infer that concur-
rence becomes independent of μ4 and vanishes subsequently
when μ1 = μ2 = 0; this can be easily seen by calculating the
concurrence from the density matrix (26). Now, for the case
d = 0, concurrence vanishes immediately after

√
μ3 → 0 as

shown in Figs. 9(a)–9(c). Under the small δ approximation,
one can therefore conclude that μ2 � μ3 is the killing channel
which can destroy the concurrence. On the other hand, for
d �= 0, it is shown that concurrence vanishes after μ3 → 0
instead of μ

1/2
3 for the d = 0 case. We can say that in the

δ → 0 limit μ2 or μ3 is the killing channel for destroying
the concurrence. Once μ1 → 0, μ2 → 0, and μ3 → 0 then
concurrence becomes independent of the other channel μ4.
This can be seen in the temporal behavior of C for d = 0 and
d �= 0, where C vanishes even in the presence of a finite μ4.

We shall now explain the existence of a threshold time tTH

[see Figs. 10(a)–10(c)] in the light of above channel analysis.
We here connect the behavior observed for μn in Figs. 10(a)–
10(c) to μ′

n to write the reduced density matrix of the two
qubits up to the threshold time tTH given by

ρs(t) = 1

4

⎡
⎢⎢⎢⎢⎣

1
√

μ′
3

√
μ′

3 μ′
3√

μ′
3 1 μ′

3

√
μ′

3√
μ′

3 μ′
3 1

√
μ′

3

μ′
3

√
μ′

3

√
μ′

3 1

⎤
⎥⎥⎥⎥⎦. (28)

This is obtained from (26) by considering the numerically
observed behavior of DCs for the d �= 0 case, μ4 = μ1,
μ2 = μ3, and μ2

3 = μ1 (i.e., μ′
4 = μ′

1, μ′
2 = μ′

3, and μ′2
3 =

μ′
1). One can compute the concurrence using the above density

matrix (28). All the eigenvalues of ρsρ̂s are same, i.e., ε1 =
ε2 = ε3 = ε4 = (−1 + μ′

3)2. This yields zero concurrence
when t < tT H up to which the above density matrix (28) is
valid. After the threshold time, μ′

4 �= μ′
1, μ′2

3 �= μ′
1 and hence

concurrence becomes nonzero even if μ′
2 = μ′

3. This threshold
time increases with distance and becomes maximum when
the two qubits are separated from each other maximally, i.e.,
at d = 50.

Furthermore, we explore the behavior of four DCs μ1, μ2,
μ3, and μ4 as a function of time by varying the distance
between the two qubits. At the outset we note that v = 2
and it is independent of the distance between the qubits.
Figures 12(a) and 12(d) show that the μ1 and μ4 channels
are sensitive to d. When the two qubits are at symmetric
position (i.e., d = 50 for N = 100 and PBC), both the channels
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FIG. 12. The temporal behavior of four DCs μ1 (a), μ2 (b), μ3

(c), and μ4 (d) are plotted as a function of time choosing different
values of d . Here, N = 100, δ = 0.01, and λi,(f ) = 0.2(0.99). The
singular and the revival behavior are explained in the text.

022316-9



TANAY NAG AND AMIT DUTTA PHYSICAL REVIEW A 94, 022316 (2016)

exhibit a singular behavior at t = tS = N/(4v). This singular
behavior at tS does not exist for nonsymmetric situations.
It is also to be noted that additionally there is a revival
time occurring at t = tR = N/(2v). The other two channels
μ2 and μ3 are absolutely insensitive to distance and as a
result tS = N/(4v) is no longer a special time scale for these
channels even when d = 50 [see Fig. 12(b) and 12(c)]. For
the above two channels echo exhibits the singular behavior at
t = tS = N/(2v) which is twice the earlier singular time scale
for μ1 and μ4. These observations shall now be analyzed in
the light of the quasiparticle picture.

When the environmental spin chain is suddenly (and
globally) quenched from the FM phase to the QCP, each of
the environmental sites emit a pair of quasiparticles moving
with opposite momentum in opposite directions. Now, these
two quasiparticles meet at t = tR = N/(2v) after traversing
half of the environmental chain and there is a constructive
interference causing a partial revival of the initial state (see
Fig. 1). The channels μ1 and μ4 both involve two distinct
Hamiltonians (H↓↓,H↑↑) and (H↑↓,H↓↑) which are different
from each other in terms of the local transverse fields modified
through the coupling of the qubits to the two sites; one can
think of two extra separate emitters, located at these two
sites with distance d away from each other. Now, in the
symmetric position d = N/2, quasiparticles need to travel
only d/2 distance for such a revival to happen. Therefore,
tS = d/(2v) = N/(4v) and tR = 2tS . (Over the former time,
two quasiparticles travel N/4 while in the latter they traverse
a length of N/2.) In the case for d �= 50, the singular time
scale does not appear, as no constructive interference of two
oppositely moving quasiparticles is possible.

What is remarkable is that μ2 and μ3 do not exhibit the
singular behavior at time t = tS ; their dynamical evolution is
only governed by the revival time scale tR [see Figs. 12(b)
and 12(d)]. This is due to the fact that one of the underlying
Hamiltonians generates an extra pair of quasiparticles than
that of the other Hamiltonian involved in μ2 and μ3 [i.e.,
H↓↓ is different from H↑↓ by a locally modified transverse
field at a single site and same for (H↑↑,H↑↓)]. Therefore,
the quasiparticle from this single emitter has to travel a
distance N/2 to partially recover the initial configuration even
if the qubits are separated by a distance d = N/2. Therefore,
the number of independent emitters, originating from the
structure of the two underlying Hamiltonians that govern the
dynamics, dictates the time scales of revival and singular
behavior. These features are observed in the different channels
of echo following a sudden quench.

VI. CONCLUSION

In this paper, we have studied a GCSM where two qubits
are locally connected to the environmental transverse Ising
spin chain in such a way that the local transverse field of
the environment gets modified. Working in the weak-coupling
limit, we explore the generation of the entanglement between
the above pair of qubits, which are initially completely
unentangled, both in equilibrium as well as nonequilibrium
situations. In the former situation, the concurrence between
them is very small in comparison to the nonequilibrium
situation. However, the role of quantum criticality manifests

in the behavior of concurrence, as it becomes maximum at the
QCP and survives even when d is large; this behavior persists
even in the nonequilibrium situation. Additionally, in the latter
situation the concurrence remains nonzero for longer time if
the quenching is within the same phase. Furthermore, the time
at which concurrence exhibits a primary peak is inversely
proportional to the coupling strength. Remarkably, we show
that there exists a threshold time above which concurrence
becomes finite for d �= 0.

Analyzing the behavior of concurrence using different DCs,
we show that the number of effectively independent channels
is determined by the distance d and the local difference of the
transverse field of the two underlying Hamiltonians governing
the time evolution of the channels. The interference between
a larger number of independent channels may enhance the
concurrence. This is a universal observation that holds true
for both the equilibrium and nonequilibrium situations. The
decoherence is maximum in the channel (μ1) that involves
the maximum difference in the local transverse fields of two
Hamiltonians dictating the time evolution; consequently, the
short-time decay of the echo is most rapid for this channel in all
the situations discussed in the paper. Hence, the time at which
this most rapidly decaying DC decays to zero is the primary
peak in the concurrence. On the other hand, the product of the
intermediate decaying channels (μ2μ3) is responsible for the
secondary peak of the concurrence. Besides these above two
common features, there exists a markedly different connection
of concurrence with these DCs for a finite separation d. The
subsequent temporal decay of concurrence is attributed to
the behavior of the killing channel which is an intermediate
decaying channel (μ3); for d = 0, the concurrence decays to
zero when

√
μ3 → 0, while the condition gets modified to

μ3 → 0 for d �= 0.
Another noteworthy feature exhibited by concurrence in the

nonequilibrium case is that it acquires a finite value only above
the threshold time when the two qubits are separated from
each other by a finite distance. We analyze the existence of a
finite threshold time using the channel analysis. Comparing the
behavior of the concurrence in the nonequilibrium case with
the DP obtained from the reduced single qubit density matrix,
we explain the interesting observation that the dephasing
rate is always lower than the unentanglement rate. This is
a consequence of the fact that DCs appear additively in DP
and additionally, the most rapidly DC is absent in the 2 × 2
reduced density matrix. Finally, we resort to the quasiparticle
picture to characterize the temporal evolution of different
channels, following a critical quench, with different values
of the distance between the qubits as a function of time. We
explain the singular and revival behavior of different channels
analyzing the interference of quasiparticles. Remarkably, the
singular behavior in the evolution shows up only for the
maximally and minimally decaying channel denoted by μ1

and μ4, respectively.
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