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Quantum enigma machine: Experimentally demonstrating quantum data locking
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Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used
only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded
in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key
and still provide information-theoretic security. We present one of the first feasible experimental demonstrations
of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that
encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with
less than 6 bits per photon of encryption key while remaining information-theoretically secure.
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I. INTRODUCTION

One of the fundamental results of classical information
theory, due to Shannon, is that the secure encryption of a
message against an adversary with infinite computing power,
i.e., information-theoretic security, requires the single use of a
random secret key at least of equal length [1]. Therefore, in the
classical setting, the use of a shorter key may jeopardize the
security of a communication protocol. Surprisingly, Shannon’s
stringent criterion can be circumvented if information is
encoded in a quantum system. According to a phenomenon
known as quantum data locking (QDL), a short secret key can
encrypt a much longer message if the latter is encoded in a
quantum system in such a way that the encryption is provably
secure against an eavesdropper that intercepts and measures
the quantum system [2–5].

Together with other uniquely quantum phenomena, such
as Bell inequalities and teleportation, QDL represents one of
the strongest violations of classical information theory in the
quantum setting. Quantum information theory shows that some
strong QDL protocols allow for information-theoretic security
while encrypting a message with a key that is exponentially
shorter than the message itself. Here we present one of the
first experimental realizations of QDL as a “quantum enigma
machine” [6,7], i.e., an optical implementation of QDL,
allowing secure direct communication under the assumption
that an adversary must periodically make measurements on
the intercepted quantum state. Recently, we became aware
of an alternate experiment performed at approximately the
same time as ours [8] that limits an eavesdropper’s accessible
information to half that of the legitimate receiver by utilizing
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the protocol found in [2]. Our experimental realization, which
utilizes higher dimensions in free-space propagation, allows
us to limit an eavesdropper’s accessible information to an ar-
bitrarily small amount. This allows us, in principle, to securely
transfer 6 bits per photon of message, a new secret key, and
forward error correction via direct secret communication while
encrypting each photon with a key of strictly less than 6 bits.

II. QUANTUM DATA LOCKING

In a QDL protocol, outlined in [2–5,9], Alice attempts to
transmit messages encoded onto quantum states. Alice first
locks the data to be transmitted by applying a random unitary
operation on her quantum state and finally sends the quantum
state through a public channel to Bob. Alice and Bob share a
private key describing which unitary operations Alice used
such that Bob can accurately perform the inverse unitary
operations and unlock the original message. The objective,
for what concerns the security of the protocol, is to guarantee
that an eavesdropper, Eve, cannot retrieve the original message
if she intercepts the quantum state without access to the
private key. This security is provided by limiting Eve’s
accessible information, defined as the maximum classical
mutual information between the message Alice is trying to
send and an optimal measurement performed by Eve [2].

The security of QDL is granted under proper assumptions.
While we allow Eve to have unbounded computational power,
we must assume she has imperfect quantum technology. In
particular, we must assume Eve has a quantum memory
with finite storage time. This assumption compensates for
the fact that, in general, the accessible information is not
composable [10]. Composable security asserts that the security
of individual communication protocols is preserved when
used as subroutines within an overarching communication
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protocol [11]. Note that the same constraints can also be
imposed on Bob, meaning QDL does not require Bob to
have better quantum technology than Eve. The assumptions
of QDL are more stringent than those of standard quantum
key distribution (QKD) and are analogous to QKD systems
utilizing a bounded storage model which secures a key with
the assumption that Eve has a finite amount of memory,
whether classical or quantum [12]. QDL requires that Eve
has a quantum memory with finite storage time along with the
use of a preshared secret key. However, theory states that QDL
can tolerate higher loss. For example, in the case presented
in [9], QDL can tolerate up to 66% channel loss, as opposed
to 50% loss in the most robust QKD protocols, while also
promising unprecedented high rates [7,9,13,14].

In a typical QDL protocol, Alice and Bob first decide on the
number of possible messages M that will be encoded into n

quantum states (n single photons in our case) and transmitted
over n uses of a quantum channel. Each message will then
be log2(M) bits in length. Next, they then privately agree on
a log2(K) bit key that specifies a line within a public code
book containing K unique lines. Each line of the code book
specifies the sequence of n unitary operations on the n quantum
states that Alice sends to Bob. Specifically, each line lists
a sequence of n random seeds that generate a pseudorandom
unitary transform. Alice applies these unitary transforms to the
n quantum states and sends them to Bob. The total number of
all possible enciphered states is N = MK . For efficient QDL,
we require K � M [13,15]. If Eve knew precisely which of
the N possible enciphered states was sent, she could prepare
K copies of the full transmission and perform the inverse of
the K unitary transformation sequences on identical copies
of the enciphered state to determine which message was sent.
However, Eve cannot identify the original message from the set
of possible N states with only n � N measurements, ensuring
the security of this protocol.

Under proper scenarios, QDL has the potential to replace
some QKD systems and may serve as a better option
to alternate quantum-secure direct communication (QSDC)
protocols. QDL has, in principle, the possibility of being a
valuable alternative to standard QKD because QDL boasts
a higher secure-key rate (per photon) when the limited
quantum memory of an eavesdropper becomes a practical
assumption [13]. Of course, the actual field-tested secure bit
rate, based upon technological limitations and channel losses,
will be the final deciding factor as to whether QDL or QKD is
used. It should also be noted that QDL holds many similarities
with QSDC, whose goal is to transmit information directly
over a quantum channel without having to first establish a
shared private key, if at all. The core of QSDC security relies
on fundamental quantum principles such as the no-cloning
theorem [16], uncertainty principles, or quantum correlations.
QSDC protocols ensure security through the ability to either
detect an eavesdropper before information is leaked [17,18]
or to prevent information leakage by denying outsiders access
to the entirety of a correlated quantum state [19–22]. In many
cases, these protocols either require that a single quantum
state is transmitted over a quantum channel twice (from Alice
out to Bob and then back) or necessitate the distribution of a
correlated, possibly entangled, quantum state. It is clear that
QDL depends on the initial establishment of a short secret

key. However, none of the alternate QSDC protocols appear
to utilize the locking effect afforded through the definition
of the accessible information. In addition, because of the
experimental difficulty with distributing entangled states or
with losses from having a state traverse a quantum channel
twice, no experimental demonstrations have been published in
a peer-reviewed journal to date.

III. QUANTUM ENIGMA

In a proof-of-principle experimental demonstration of QDL
presented in Fig. 1, we focus on one possible application
for QSDC and encode 6 bits of information onto a single
photon while encrypting that information with less than 6
bits of key. Single-photon pairs are generated from the pro-
cess of degenerate spontaneous parametric down conversion
(SPDC) [23], whereby a pump-laser photon at 325 nm down
converts into two 650-nm daughter photons, referred to here
as signal and herald. The herald photon, detected by Alice’s
avalanche photodiode detector (APD), is used to herald the
presence of the signal photon on Bob’s detector. Alice uses a
512×512 pixel spatial light modulator (SLM) to both encode
information in the transverse linear phase of the signal photon’s
wave front while also operating with a scrambling unitary
operation specified by one of n random-number-generating
seeds in each line of the code book. Each scrambling unitary is
a 128×128 superpixel random binary phase mask composed of
zero and π relative phase shifts. Utilizing properties of Fourier
optics, a linear phase shift on a wave front corresponds to a
linear shift in the focal point of that wave front’s Fraunhofer
diffraction pattern [24], while a scrambled wave front has
no well-defined focal point. Alice adds 1 of 64 linear phase
patterns to a scrambling phase pattern and uses the resulting
pattern to phase modulate her single photon with an SLM.
She then transmits this photon to Bob. Once Bob receives
the photon, he applies an inverse scrambling phase unitary
with his SLM and focuses the resulting state onto a high-
efficiency 8×8 single-photon-detecting nanowire array [25].
This detector array is cryogenically cooled to 0.8 K and was
used because it exhibits one of the lowest dark count rates of
any single-photon-detecting array to date (an essential criterion
for accurately transmitting messages). If Bob unscrambles the
wave front properly, the photon will register on a detector pixel
of Alice’s choosing. Hence, linear phases encoded up to 6 bits
of encrypted information per photon.

The effectiveness of the scrambling unitaries is depicted
in Fig. 2. Alice encrypted each of the 64 settings over 600
times, while Bob used the secret key to unscramble the wave
front. Eve’s optimal distribution was obtained in a best-case
scenario using Bob’s properly aligned SLM and detector while
lacking the secret key. Therefore, she was forced to randomly
guess inverse unitaries in an attempt to maximize her mutual
information. The result of Bob’s measurements is highly cor-
related with Alice’s intended messages. Alternatively, Eve’s
measurements follow a highly uncorrelated flat distribution
for the probability of photodetection.

Within the Appendix A, we derive the necessary key rates
needed to secure this system according to the accessible
information. The experimental scheme realizes the theoretical
proposal presented in [9]. A crucial parameter to determine

022315-2



QUANTUM ENIGMA MACHINE: EXPERIMENTALLY . . . PHYSICAL REVIEW A 94, 022315 (2016)

FIG. 1. Experimental diagram. Ultraviolet (UV) laser light passes through a nonlinear bismuth triborate (BiBO) crystal to produce
down-converted signal-herald photon pairs. After separating the photons with a beam splitter (BS), Alice uses single-mode (SM) fibers to
transfer the herald photon to an avalanche photodiode (APD) detector while sending the signal photon to be polarization prepped by a
quarter-wave plate (QWP), a half-wave plate (HWP), and a polarizer for use with a spatial light modulator (SLM). Alice then phase modulates
her signal photon with an SLM to encode and lock information. Imaging lenses map Alice’s wave front to Bob’s SLM, where he applies an
inverse unitary phase operation to unlock the information before focusing his light onto a low-noise cryogenically cooled 8×8 pixel nanowire
array. Bob then uses the heralded detection event sent by Alice to herald the arrival of single photons. See the Appendix B for details.

the secret key length is the dimension of the quantum
communication channel d. Roughly speaking, the setting with
the most efficient use of the key is when d is comparable to
the number of possible messages per photon. Our detector
limits the set of possible messages per photon to 64. We
utilize free-space propagation and present two potential ways
to estimate d. A practical estimate is to assume that the
eavesdropper is also constrained to measure with an 8×8
detector array identical to Bob’s. In this way, the effective
dimension is not greater than d = 64. An alternate, more
conservative estimate is to consider the transverse beam profile
within the plane of the detector and evaluate the total number
of unique (i.e., nonoverlapping) spatial modes that may exist
according to the propagation characteristics of the system. We
use the practical estimate, d = 64, here within the main text.
See the Appendix A for details along with alternate results for
the conservative estimate.

IV. SECRET KEY AND MESSAGE TRANSMISSION
WITH FORWARD ERROR CORRECTION

In order to reliably transmit messages and new secret keys,
error rates must be low enough such that the data packets
can be reliably transmitted and decrypted by Bob. Practically,
these errors will never be omitted entirely. The overall error
rate between what Alice transmits and what Bob receives
is approximately 10%, originating from a combination of
sources including SPDC photons scattering from the SLM’s
and background photons. However, this error rate is low
enough that it may be overcome by implementing forward
error correction (FEC) protocols. Including FEC means that
our 6-bit photon must be partitioned to contain error correction,
key, and message bits. FEC requires redundancy to detect and
correct errors. Unfortunately, this redundancy can aid Eve in

her attempt to unlock the message. As shown in [9], Alice
and Bob can implement error correction while maintaining
security, at the cost of a higher key consumption rate, where
the extra key is used to cover up the redundancy in the error
correction code.

We used Reed-Solomon error correction codes [26]. Reed-
Solomon codes detect and correct errors on symbols (where
each symbol is represented by several bits) rather than
correcting errors on individual bits. Thus, Reed-Solomon
codes treat all bit errors on a single symbol as a single error.
This is particularly advantageous to our experiment where a
6-bit symbol is encoded by a single photon. Reed-Solomon
codes also transmit in packets of symbols, or “blocks,” with
the largest block length being 2s − 1 symbols for an s-bit
alphabet. Hence, transmissions with 63 symbols per packet
correspond to the most efficient use of Reed-Solomon codes
for our 6-bit alphabet. We implemented Reed-Solomon (63, x)
protocols that encode in packets of 63 symbols, or 63 photons
in our case, where x < 63 is the number of symbols in the
original data packet containing a message and new secret key.
Of those 63 symbols, 63 − x symbols encode the redundant
information. A Reed-Solomon (63, x) code can correct up
to (63 − x)/2 symbol errors. The fractional redundancy of the
useful information is (63 − x)/x. To cover up this redundancy,
the secret key is scaled to be 1 + (63 − x)/x times larger.
This leaves less information that we can allocate towards
an encrypted message. Because the key rate is larger, the
code book length will be exponentially larger. The number
of bits allocated to message, redundancy, and a new secret key
operates as a function of the Reed-Solomon (63, x) code used.
Because of this, Fig. 3 presents the bit allocation per photon
as a function of the Reed-Solomon (63, x) code implemented
for n = 63 uses of the channel. Note that the allocated new
secret-key bits within Fig. 3 are equal to the number of
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FIG. 2. Joint probability distributions. The joint probability
distributions presented are derived from experimental data where
Alice scans through 64 messages while locking the information with
128×128 pixel binary phase masks. (a) Eve randomly guesses at
binary phase masks in the hopes of unlocking the information while
being allowed, in a worst-case scenario, to use Bob’s properly aligned
detector. (b) Bob unlocks the messages with binary phase masks
prescribed according to a secret key. The distribution with the highest
mutual information is a normalized identity matrix with diagonal
elements equal to 1/64 ≈ 0.016. The comb structure seen in (b) is
due to a gradient of error rates across the detector array, possibly due
to a slight misalignment of a lenslet array placed above the detector
array. In summary, Alice and Eve’s distribution is highly uncorrelated,
while Alice and Bob’s distribution is highly correlated, attesting to
the effectiveness of this locking method.

consumed-key bits used to secure the transmission of the 6-bit
photon.

Ideally, a single-photon source will transmit a single photon
on demand. Such sources are still in development, forcing
us to rely upon heralding with SPDC. SPDC dictates that
numerous down-converted events will take place randomly per
SLM setting. While alternate versions of a quantum enigma
machine may allow the transmission of more than one photon
per channel use (as in [14]), this version of a quantum enigma
machine should have an accurate measure of the losses and
only allow one photon transmission per channel use. These

FIG. 3. Single-photon bit allocation (for n = 63 channel uses).
The plot lists how many secret-key bits (blue squares), FEC
redundancy bits (red triangles), and message bits (black diamonds) are
encoded within a single 6-bit photon as a function of Reed-Solomon
(63, x) codes. The new secret-key plot shows the necessary allocation
of bits to replenish the consumed key. Any FEC redundancy requires
the consumption of more of the secret key. Moving from n = 63
channel uses to n = 126 or higher will result in less secret-key
consumption per photon and larger message-bit capacities. Message
bits may be allocated to either additional key or secret messages for
direct communication.

two points are, perhaps, the greatest limitations of a quantum
enigma machine. However, the strength of a quantum enigma
machine is not based on novel hardware or a particularly clever
protocol. The strength of a quantum enigma machine resides
in the use of a weaker security definition in comparison to
QKD. Therefore, many of the techniques used in QKD to cope
with photon splitting and other attacks can be equally applied
to a quantum enigma machine.

To demonstrate the capability of this system if we were
using an ideal single-photon source, we recorded only the
first heralded event per SLM setting and neglected the rest.
Figure 4 presents the success rates for different Reed-Solomon
error correction protocols as a function of the number of
key and message symbols x. When only considering our
first-count heralded events, we transmitted 420 packets of 63
symbols with varying error correction capabilities. Reducing
the available capacity for message symbols allowed for more
redundancy symbols with higher transmission success rates.
In our analysis, a single incorrect symbol in the corrected
packet corresponded to a complete failure of the entire packet.
Figure 4 also plots the available message capacity per photon
as a function of x and the number of channel uses n. Because
the Reed-Solomon codes require us to transmit in packets of
63 symbols, we chose to make the number of channel uses
n a multiple of 63. When limiting the message to 1.02 bits
per photon (x = 35, n = 126) after having already allocated
space to FEC and a new secret key, we achieved a 99.5%
packet success rate. While our bit-error ratio is significantly
larger than telecommunications standards (typically less than
10−6 bit errors per bits transmitted [27]), the experiment is
merely meant as a proof-of-principle demonstration of our
ability to lock messages and new secret keys with success rates
approaching 100%. Clearly, errors in the transmission will
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FIG. 4. Reed-Solomon error correction success rates. The success
rates for a Reed-Solomon (63, x) code are presented, where x is the
number of 6-bit symbols containing the new key and message and
63 is the total number of packet symbols after including redundancy.
These data were obtained after transmitting packets of 63 photons
420 times. The plot also depicts the available capacity for message
bits per photon as a function of x and the number of channel uses n.

destroy Bob’s ability to decode future messages. Additional
redundancy bits or different forms of error reduction and error
correction will be required to make a quantum enigma machine
a practical form of secure communication.

V. CONCLUSION

In conclusion, we demonstrated the phenomenon of quan-
tum data locking with a proof-of-principle experiment where
we applied an information-theoretic secure encryption scheme
to lock 6 bits per photon while using less than 6 bits per
photon of secret key. To demonstrate the feasibility of locking
both messages and new secret keys, we securely applied a
Reed-Solomon (63,35) protocol and transmitted 420 packets of
63 photons (where each photon was a 6-bit symbol containing
1 bit of message, 2.3 bits of new secret key, and 2.7 bits of
redundancy) with a success rate of 99.5%.

Although QDL has been known for about 10 years, only a
handful of theoretical papers were devoted to its application
to cryptography, and our present contribution presents the
first experimental implementation. However, since the biggest
difference between QDL and standard QKD is not in the
hardware but in the security definition, we believe that most of
the knowledge accumulated in standard QKD (e.g., analysis of
finite-size protocols, use of decoy states, measurement device
independence) can be straightforwardly transferred to QDL.

While our implementation relies on free-space propaga-
tion, long-distance direct communication requires that QDL
be tailored for fiber-optic transmission using, for example,
phase modulation [15] or the continuous-variable modulation
of coherent states with homodyne detection [7,14,28]. To
elaborate, a phase-modulation scheme could be realized by
encoding information in time and scrambling that information
by random phase delays. Alice would apply a time delay to a
signal photon to encode information and then pass the signal
photon through a positive group-velocity dispersive (GVD)
medium [29] to coherently spread the photon over d time bins.
Alice would then apply random phases, specified by a private

key and a public code book, to each time bin to scramble the
time signature. To recover the timing information, Bob would
apply the corresponding phase delays, specified by the public
code book, to each time bin and then pass the resulting photon
through an appropriate negative GVD medium.

Our free-space experiment presents a fundamentally sim-
ple implementation that is a stepping stone to efficient
information-theoretic secure direct communication. This
quantum enigma machine marks one of the first experiments
to implement QDL, circumventing Shannon’s standard, in an
attempt to remain information-theoretically secure under the
assumption that both legitimate receivers and adversaries have
quantum memories with limited storage times.
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APPENDIX A: SECRET-KEY LENGTH

Quantum data locking provides a secure method of infor-
mation transfer such that two legitimate parties, Alice and
Bob, can effectively communicate encrypted information via
quantum states over a d-dimensional quantum channel while
limiting an eavesdropper, Eve, to an accessible information of

Iacc � O(ε log2(dn)) (A1)

bits when using a quantum channel n times, where ε grows
exponentially small with channel use, i.e., ε = 2−nc

for c < 1.
The foundation for our theory is elegantly outlined in [9]. Our
experiment encodes a 6-bit symbol x onto a single-photon state
|xc〉 for c = 1,2, . . . ,64. The transmission of a single photon
counts as a single use of the quantum channel. Hence, for
Alice to encode one of M = 64n messages within n photons,
she must prepare the quantum state

|ψc〉 =
n⊗

j=1

|xj,c〉 (A2)

and must encode each photon with a unitary transformation
U (s) for s = 1,2, . . . ,Kn. The resulting unitary operating on
the n-photon state is

U (s) =
n⊗

j=1

U
(s)
j . (A3)

The n-photon encrypted quantum state is then

∣∣ψ (s)
c

〉 = U (s)|ψc〉 =
n⊗

j=1

U
(s)
j |xj,c〉. (A4)

According to [9], Eq. (A1) is satisfied provided the number
of scrambling unitaries satisfies

Kn � max

{
2
(

2d
d+1

)n( 1
ε2 ln M + 2

ε3 ln 5
ε

)
,

dn

M
4 ln 2 ln dn

ε2 ,
(A5)
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FIG. 5. Secret-key consumption rate. Letting d = 64, Eq. (A5) is
used to calculate the amount of key bits per photon (assuming one
photon per channel use). QDL is only possible if (log2 Kn)/n < 6;
we see that QDL is possible for most values of n.

where the maximum is taken over the two equations, M = 64n,
and ε = 2−nc

for c < 1.
The only unknown variable within Eqs. (A1) and (A5) is

the dimension of the communication channel d. Because our
quantum enigma machine relies on free-space propagation that
employs a lenslet array immediately before the detector, the
channel dimension can be estimated in two ways.

1. Practical estimate of d

The first estimate of d follows a practical line of reasoning
that considers only the spatial modes that can be measured
after propagating through the lenslet array. While there are
numerous spatial modes that may exist within the plane of
Bob and Eve’s detector, only those modes that overlap the
8×8 lenslet array will be mapped to the 8×8 nanowire array.
This means there are only 64 possible distinguishable modes.
All other spatial modes have 100% loss and cannot be used to
transmit information. If we limit Eve to the same constraints as
Bob, then Eve can only measure the modes that overlap with
her 8×8 lenslet array. Since each lens within the lenslet maps
all light impinging on it to one unique nanowire, all detectable
transmissions must exist within a space of d = 64 dimensions.

Letting d = 64, M = 64n, and ε = 2−√
n, Eq. (A5) is used

to derive the necessary amount of key per photon and is plotted
within Fig. 5.

In addition to the standard QDL protocol, we also apply
Reed-Solomon forward error correction (FEC) codes using
symbols of 6 bits per photon. The optimal block length for a
Reed-Solomon code with a 6-bit alphabet is 63 symbols within
a block. Thus, it is reasonable to set the number of channel
uses to be a multiple of 63. In our analysis, we consider two
cases: n = 63 and n = 126.

From Fig. 5, we show that (log2 K63)/63 ≥ 1.434 bits
per photon and (log2 K126)/126 ≥ 1.287 bits per photon are
enough to limit Iacc to only a few bits compared to having
transmitted 378 bits and 756 bits, respectively. The resulting

message bit capacities and Reed-Solomon success rates are
shown in the main text.

2. Conservative estimate of d

A more conservative estimate of the channel dimension
d is obtained by considering all of the possible distinguish-
able spatial modes that can exist after passing through an
infinite-dimensional lenslet array, as opposed to only those
that can be measured. The lenslet array effectively maps
a high-dimensional spatial pattern to a lower-dimensional
one. d is obtained by dividing the average distribution in
a plane of Eve’s detector by the area of a circular lens
within an infinite-dimensional lenslet array. This effectively
overestimates the dimension because a circular lens was used
within the experiment and areas between the circular lenses
correspond to “dead space” where light cannot be mapped to a
detector. The choice of a circular lens area, instead of a square
area, results in a larger d and an oversecure key rate.

Eve’s average distribution was obtained by modeling the
propagation of light through the system. Our experimental
setup used a 512×512 pixel spatial light modulator (SLM) to
both scramble and encode linear phases onto a single photon
projected from a single-mode optical fiber. The transverse
profile of our single-photon state takes the form

|xc〉 = 1

N

∫∫ ∞

−∞
ei(φx,cx+φy,cy)e

{− x2+y2

4σ2 }
dx dy |x,y〉, (A6)

where N is a normalization constant and φx,c and φy,c are
the necessary linear phases to encode a message with specifier
c = 1,2, . . . ,64 into the transverse profile of a single-photon
state whose probability distribution follows a Gaussian with a
standard deviation of σ . Using the SLM, Alice simultaneously
applies the linear phase encoding the message and encrypts
each photon wave front with a scrambling unitary operation
U

(s)
j . The unitary operations are composed of random binary

phase patterns containing the values zero and π . While
each scrambling unitary consists of 512×512 SLM pixels,
superpixels composed of 4×4 SLM pixels were used to
generate 128×128 superpixel resolution random binary phase
patterns. The lower-resolution binary patterns aided in the
alignment of Alice’s SLM to the image plane on Bob’s SLM.
Each unitary has the form

U
(s)
j =

∑
x

∑
y

eiθk (x,y)|x,y〉〈x,y|, (A7)

such that θk(x,y) is a random binary variable (0 or π ) chosen
from a uniform distribution. This probability amplitude is
propagated to the focal point of a lens using a Fourier transform
defined by

G(fx,fy) =
∫∫ ∞

−∞
g(x,y)e−2πi(fxx+fyy)dx dy

= F[g(x,y)]. (A8)

To obtain the probability distribution in either Bob’s or
Eve’s focal plane (PBob or PEve), we need only consider the
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following:

PBob = 1

N

∣∣∣∣F
[
e
{− x2+y2

4σ2 }
ei(φx,cx+φy,cy)

]∣∣∣∣
2

, (A9)

PEve = 1

N

∣∣∣∣∣F
[∑

x,y

e
{− x2+y2

4σ2 }
ei(φx,cx+φy,cy+θk (x,y))

]∣∣∣∣∣
2

, (A10)

where N is the necessary normalization constant to form a
probability distribution.

While these probability distributions are infinite-
dimensional, the actual detector system within the experiment
contained a lenslet array placed one focal length in front of
the nanowire array. The lenslet array mapped the area of a
single lens onto a single nanowire. If we extend the lenslet
array to operate on the entire distribution, Eve’s distribution is
then effectively discretized by the area of a lens. The resulting
dimension d is then the ratio of Eve’s average distribution area
to the area of a single lens within the lenslet array.

The actual Fourier transform probability distributions,
residing within the detector’s cryostat, were not measured.
However, we can infer both the area of Eve’s distribution and
the diameter of lenses within the lenslet array by knowing the
initial beam profile on Alice’s detector and by using the 64
nanowire phase settings within the experiment. Magnification
effects, used to focus the light down onto a single nanowire, are
not required within the calculation of d. The magnification is
not required because it will inevitably cancel when calculating
the ratio of Eve’s distribution area to the lens area. We chose
to perform this calculation numerically.

The lens area was calculated using experimental settings.
Linear phase settings were optimized within the experiment to
have focal points centered on each nanowire. Hence, the linear
phases should be an accurate measure of the lens spacing
within the lenslet array. Using these linear phase settings,
we Fourier transformed them to find the lens centers. The
lens separations were found in units of pixels (relative to the
resolution of the numerical Fourier transform). The Fourier
transform was zero padded to resolve fine details: one pixel on
Alice’s SLM was mapped into nine Fourier transform pixels.

To obtain the average area of Eve’s distribution, the relative
area of the beam profile on a 512×512 pixel SLM needed to
be calculated to perform a numerical simulation. The relative
area of the initial beam on the SLM (in units of SLM pixels)
was obtained by first measuring the collimated beam profile
found in the actual experiment. Using the aspherical lens from
the experiment to collimate light emitted from a single-mode
optical fiber, the beam profile was imaged with a camera, and
a Gaussian function was then fit to this profile, as shown in
Fig. 6. Knowing the pixel sizes for the camera and SLM,
we calculated the necessary standard deviation of a Gaussian
beam such that its profile would fill the same relative area on
our SLM for the numerical simulation.

Eve’s probability distribution was calculated by averaging
over each of the 64 possible messages. Each message was
scrambled 300 times by different random 128×128 binary
phase patterns composed of zero and π phase shifts. After
averaging over each of the 64 messages, the distribution was
thresholded, keeping only those values within a 4σ radius of
the resulting zero-order distribution. The average distribution

FIG. 6. Gaussian fit to beam profile. A Gaussian function was fit
to the original beam profile seen within the experiment. This fit was
used to find the original beam profile on Alice’s SLM for a numerical
simulation.

can be seen in Fig. 7. Notice the size of this distribution in
comparison to the lenslet size. To approximate the dimension
of the communication channel, the number of nonzero pixels
within a 4σ radius of Eve’s average distribution was divided
by the lenslet area. This simulation was done ten times, while
averaging over 300 scrambling operations for each of the 64
messages, to arrive at a dimension d = 644.8 ± 0.8.

FIG. 7. Eve’s average distribution. This distribution was obtained
by averaging over each of the 64 scrambled messages 300 times using
a different random phase pattern for each scrambling operation. The
lenslet array, calculated from experimental parameters, is outlined in
white.
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FIG. 8. Secret-key consumption rate. Letting d = 650, Eq. (A5)
is used to calculate the number of key bits per photon (assuming one
photon per channel use). QDL is only possible if (log2 Kn)/n < 6;
we see that QDL is possible for most values of n. For n � 50, a key
size just under 4 bits per photon is sufficient for QDL and has the
potential to enable the use of error-correcting codes.

Within the actual experiment, the lenslet array was placed
approximately one focal length away from the nanowire array.
Hence, Bob and Eve would not have placed their lenslet in the
focus of their Fourier transform lens. The degree of misfocus
can be accounted for by introducing a misfocus operator
into the propagation equations taking the form of a quadratic
phase factor associated with a spherical lens. We describe the
misfocus by an operator of the form

Ferror =
∑

x

∑
y

eiα(x2+y2)|x,y〉〈x,y|, (A11)

where α � 1. Note this quadratic phase must be applied before
the Fourier transform.

Repeating the previous simulation with any reasonable
degree of misfocus (up to a maximum crosstalk error of 50%,
significantly larger than in the actual experiment), we always
obtain a smaller channel dimension d compared to that of
the previous simulation with no misfocus. Hence, the largest
possible dimension is rounded up slightly to d = 650 to err on
the side of security. Overestimating slightly requires a longer
key, meaning we can transmit fewer message bits over n uses of
the channel. However, sacrificing communication bits within
reason is a safer alternative to not limiting Iacc sufficiently.

Calculating the necessary key rates for n = 63 and n = 126
while letting d = 650, M = 64n, and ε = 2−√

n, Fig. 8 plots
(log2 Kn)/n to arrive at the necessary number of key bits per
photon to secure the transmission. As long as (log2 Kn)/n < 6,
QDL is possible for given n. From the plot, we show that
(log2 K63)/63 ≥ 3.757 bits per photon and (log2 K126)/126 ≥
3.611 bits per photon are enough to limit Iacc to only a few
bits compared to having transmitted 378 bits and 756 bits,
respectively. While the two different values of (log2 Kn)/n for
different n calculated here vary only slightly, the option to
move from n = 63 to n = 126 or higher may have a profound
impact on the available message bits once the redundancy of
the Reed-Solomon codes has been accounted for; that is, the

FIG. 9. Single-photon bit allocation (for n = 63 channel uses).
The plot lists how many secret-key bits (blue squares), FEC
redundancy bits (red triangles), and message bits (black diamonds) are
encoded within a single 6-bit photon as a function of Reed-Solomon
(63, x) codes for a channel dimension d = 650. The new secret-key
plot shows the necessary allocation of bits to replenish the consumed
key. Any FEC redundancy requires the consumption of more of the
secret key. Moving from n = 63 to higher values will result in less
secret-key consumption per photon and larger message-bit capacities
as the key asymptotically approaches a constant. The Reed-Solomon
(63, 51) code holds the largest Reed-Solomon error-correcting
capability for d = 650 and n = 63.

key bits are scaled linearly with the redundancy corresponding
to an exponential change in the code book size. Because
the number of allocated message, redundancy, and key bits
depends on the Reed-Solomon (63, x) code used, Fig. 9
plots bit allocation within a 6-bit photon for n = 63 uses
of the channel as a function of x. Again, note that the
new secret-key bit plot is equal to the consumed key bits
necessary to secure the transmission of the 6-bit photon for

FIG. 10. Reed-Solomon error correction success rates. The suc-
cess rates for a Reed-Solomon (63,x) code are presented, where x is
the number of 6-bit symbols containing the new key and message and
63 is the total number of packet symbols after including redundancy.
These data were obtained after transmitting packets of 63 photons
420 times. The plot also depicts the available capacity for message
bits per photon as a function of both x and the number of channel uses
n after allocating the necessary bits to refresh a secret encryption key
obtained from Eq. (A5) with d = 650. From the plot, we see that less
key is required for n = 126, resulting in a higher message capacity.
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n = 63 uses of the channel. Also notice that QDL with FEC
becomes impossible once the message-bit capacity becomes
zero. Allocating a larger number of channel uses n > 63 will be
required to reduce the key length and allow for more message
and redundancy bits.

The corresponding impact on the available message bits
per photon is shown in Fig. 10. QDL is still possible, but the
Reed-Solomon code is not sufficient to correct the majority of
errors while providing message transmission capabilities on
top of new secret-key distribution.

Moving forward, in order to utilize QDL systems operating
over high-dimensional quantum channels, either detector
systems must be improved to make the available message
space larger (i.e., increasing the efficiency of key use), or more
efficient FEC protocols must be implemented to increase the
error-correcting capability with fewer redundancy bits.

APPENDIX B: ADDITIONAL EXPERIMENTAL DETAILS

Single-photon pairs were generated through type-I degen-
erate spontaneous parametric down conversion (SPDC) using
a nonlinear bismuth triborate (BiBO) crystal. Ultraviolet (UV)
laser light at 325 nm first passed through a notch filter to
clean the pump beam. The UV light was later filtered out
with a pump filter while passing the 650-nm down-converted
signal and herald photons. The signal and herald photons were
then separated into different paths by a 50:50 beam splitter
and coupled into single-mode fibers. The signal photon was
launched, collimated, and then prepared in a polarization state
to be phase modulated by a polarization sensitive Meadowlark
512 × 512 pixel liquid-crystal reflective-type SLM. Alice
modulated her state with both a linear phase and a scrambling
phase mask. The linear phase was chosen from a set of 64
linear phases that directed photons to a specific nanowire

within the nanowire array. Hence, linear phases encoded 6 bits
of information. Imaging optics within Eve’s domain mapped
the scrambled state from Alice’s SLM to Bob’s SLM. Bob
phase modulated his state with the inverse scrambling unitary
operation before focusing the light onto his 8 × 8 single-
photon-detecting nanowire array [25]. The nanowires were
cryogenically cooled to 0.8 K and were covered with an 8×8
lenslet array. Each lenslet was 150 μm in diameter and focused
light onto each nanowire. If Bob applies the correct inverse
scrambling unitary operation, only a single nanowire should
receive photons. Alice’s PerkinElmer avalanche photodiode
(APD) was used to herald the presence of a signal photon on
Bob’s detector using high-speed correlating electronics. We
were unable to guarantee that a single photon was transmitted
through the channel for each SLM setting (corresponding
to one use of the channel). To demonstrate the potential
of this implementation once single-photon sources become
commercially available, we only recorded the first heralded
event per SLM setting in our message-passing data analysis
with FEC.

Because of the losses within the system (including detec-
tors, SLMs, optics, and polarizers outside of Eve’s domain), we
assumed a weak-locking capacity [7] where Eve does not have
access to Alice’s SLM. While the 4F imaging system within
Eve’s domain contained antireflection coatings, we neglected
the losses that could be due to Eve. However, the experiment
is meant as a proof-of-principle example because we could
not alleviate the losses due to all other optical components and
equipment. If these losses can be accurately accounted for,
it has been shown in [6] that security according to a strong
locking capacity, where Eve has direct access to a noiseless
state from Alice’s SLM [7], can still be obtained when dealing
with an arbitrary amount of loss by making both the code book
and the dimension of Alice’s system larger.
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